combatlearn 1.1.1__tar.gz → 1.2.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: combatlearn
3
- Version: 1.1.1
3
+ Version: 1.2.0
4
4
  Summary: Batch-effect harmonization for machine learning frameworks.
5
5
  Author-email: Ettore Rocchi <ettoreroc@gmail.com>
6
6
  License: MIT
@@ -36,7 +36,6 @@ Dynamic: license-file
36
36
  [![Python versions](https://img.shields.io/badge/python-%3E%3D3.10-blue?logo=python)](https://www.python.org/)
37
37
  [![Test](https://github.com/EttoreRocchi/combatlearn/actions/workflows/test.yaml/badge.svg)](https://github.com/EttoreRocchi/combatlearn/actions/workflows/test.yaml)
38
38
  [![Documentation](https://readthedocs.org/projects/combatlearn/badge/?version=latest)](https://combatlearn.readthedocs.io)
39
- [![PyPI Downloads](https://static.pepy.tech/badge/combatlearn)](https://pepy.tech/projects/combatlearn)
40
39
  [![PyPI Version](https://img.shields.io/pypi/v/combatlearn?cacheSeconds=300)](https://pypi.org/project/combatlearn/)
41
40
  [![License](https://img.shields.io/github/license/EttoreRocchi/combatlearn)](https://github.com/EttoreRocchi/combatlearn/blob/main/LICENSE)
42
41
 
@@ -62,8 +61,8 @@ pip install combatlearn
62
61
  **Full documentation is available at [combatlearn.readthedocs.io](https://combatlearn.readthedocs.io)**
63
62
 
64
63
  The documentation includes:
65
- - [Methods Guide](https://combatlearn.readthedocs.io/en/latest/methods/)
66
- - [API Reference](https://combatlearn.readthedocs.io/en/latest/api/)
64
+ - [Methods Guide](https://combatlearn.readthedocs.io/en/latest/methods.html)
65
+ - [API Reference](https://combatlearn.readthedocs.io/en/latest/api.html)
67
66
 
68
67
  ## Quick start
69
68
 
@@ -159,21 +158,31 @@ Pull requests, bug reports, and feature ideas are welcome: feel free to open a P
159
158
 
160
159
  [Google Scholar](https://scholar.google.com/citations?user=MKHoGnQAAAAJ) | [Scopus](https://www.scopus.com/authid/detail.uri?authorId=57220152522)
161
160
 
162
- ## Acknowledgements
163
161
 
164
- This project builds on the excellent work of the ComBat family of harmonisation methods.
165
- We gratefully acknowledge:
162
+ ## Citation
166
163
 
167
- - [**ComBat**](https://rdrr.io/bioc/sva/man/ComBat.html)
168
- - [**neuroCombat**](https://github.com/Jfortin1/neuroCombat)
169
- - [**CovBat**](https://github.com/andy1764/CovBat_Harmonization)
164
+ If **combatlearn** is useful in your research, please cite the paper introducing this Python package:
170
165
 
171
- ## Citation
166
+ > Rocchi, E., Nicitra, E., Calvo, M. et al. Combining mass spectrometry and machine learning models for predicting Klebsiella pneumoniae antimicrobial resistance: a multicenter experience from clinical isolates in Italy. BMC Microbiol (2026). https://doi.org/10.1186/s12866-025-04657-2
167
+
168
+ ```bibtex
169
+ @article{Rocchi2026,
170
+ author = {Rocchi, Ettore and Nicitra, Emanuele and Calvo, Maddalena and Cento, Valeria and Peiretti, Laura and Asif, Zian and Menchinelli, Giulia and Posteraro, Brunella and Sala, Claudia and Colosimo, Claudia and Cricca, Monica and Sambri, Vittorio and Sanguinetti, Maurizio and Castellani, Gastone and Stefani, Stefania},
171
+ title = {Combining mass spectrometry and machine learning models for predicting Klebsiella pneumoniae antimicrobial resistance: a multicenter experience from clinical isolates in Italy},
172
+ journal = {BMC Microbiology},
173
+ year = {2026},
174
+ doi = {10.1186/s12866-025-04657-2},
175
+ url = {https://doi.org/10.1186/s12866-025-04657-2}
176
+ }
177
+ ```
172
178
 
173
- If **combatlearn** is useful in your research, please cite the original papers:
179
+ ## Acknowledgements
180
+
181
+ This project builds on the excellent work of the ComBat family of harmonisation methods.
182
+ Please consider citing the original papers:
174
183
 
175
- - Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. _Biostatistics_. 2007 Jan;8(1):118-27. doi: [10.1093/biostatistics/kxj037](https://doi.org/10.1093/biostatistics/kxj037)
184
+ - [**ComBat**](https://rdrr.io/bioc/sva/man/ComBat.html) - Johnson WE, Li C, Rabinovic A. _Biostatistics_. 2007. doi: [10.1093/biostatistics/kxj037](https://doi.org/10.1093/biostatistics/kxj037)
176
185
 
177
- - Fortin JP, Cullen N, Sheline YI, Taylor WD, Aselcioglu I, Cook PA, Adams P, Cooper C, Fava M, McGrath PJ, McInnis M, Phillips ML, Trivedi MH, Weissman MM, Shinohara RT. Harmonization of cortical thickness measurements across scanners and sites. _Neuroimage_. 2018 Feb 15;167:104-120. doi: [10.1016/j.neuroimage.2017.11.024](https://doi.org/10.1016/j.neuroimage.2017.11.024)
186
+ - [**neuroCombat**](https://github.com/Jfortin1/neuroCombat) - Fortin JP et al. _Neuroimage_. 2018. doi: [10.1016/j.neuroimage.2017.11.024](https://doi.org/10.1016/j.neuroimage.2017.11.024)
178
187
 
179
- - Chen AA, Beer JC, Tustison NJ, Cook PA, Shinohara RT, Shou H; Alzheimer's Disease Neuroimaging Initiative. Mitigating site effects in covariance for machine learning in neuroimaging data. _Hum Brain Mapp_. 2022 Mar;43(4):1179-1195. doi: [10.1002/hbm.25688](https://doi.org/10.1002/hbm.25688)
188
+ - [**CovBat**](https://github.com/andy1764/CovBat_Harmonization) - Chen AA et al. _Hum Brain Mapp_. 2022. doi: [10.1002/hbm.25688](https://doi.org/10.1002/hbm.25688)
@@ -3,7 +3,6 @@
3
3
  [![Python versions](https://img.shields.io/badge/python-%3E%3D3.10-blue?logo=python)](https://www.python.org/)
4
4
  [![Test](https://github.com/EttoreRocchi/combatlearn/actions/workflows/test.yaml/badge.svg)](https://github.com/EttoreRocchi/combatlearn/actions/workflows/test.yaml)
5
5
  [![Documentation](https://readthedocs.org/projects/combatlearn/badge/?version=latest)](https://combatlearn.readthedocs.io)
6
- [![PyPI Downloads](https://static.pepy.tech/badge/combatlearn)](https://pepy.tech/projects/combatlearn)
7
6
  [![PyPI Version](https://img.shields.io/pypi/v/combatlearn?cacheSeconds=300)](https://pypi.org/project/combatlearn/)
8
7
  [![License](https://img.shields.io/github/license/EttoreRocchi/combatlearn)](https://github.com/EttoreRocchi/combatlearn/blob/main/LICENSE)
9
8
 
@@ -29,8 +28,8 @@ pip install combatlearn
29
28
  **Full documentation is available at [combatlearn.readthedocs.io](https://combatlearn.readthedocs.io)**
30
29
 
31
30
  The documentation includes:
32
- - [Methods Guide](https://combatlearn.readthedocs.io/en/latest/methods/)
33
- - [API Reference](https://combatlearn.readthedocs.io/en/latest/api/)
31
+ - [Methods Guide](https://combatlearn.readthedocs.io/en/latest/methods.html)
32
+ - [API Reference](https://combatlearn.readthedocs.io/en/latest/api.html)
34
33
 
35
34
  ## Quick start
36
35
 
@@ -126,21 +125,31 @@ Pull requests, bug reports, and feature ideas are welcome: feel free to open a P
126
125
 
127
126
  [Google Scholar](https://scholar.google.com/citations?user=MKHoGnQAAAAJ) | [Scopus](https://www.scopus.com/authid/detail.uri?authorId=57220152522)
128
127
 
129
- ## Acknowledgements
130
128
 
131
- This project builds on the excellent work of the ComBat family of harmonisation methods.
132
- We gratefully acknowledge:
129
+ ## Citation
133
130
 
134
- - [**ComBat**](https://rdrr.io/bioc/sva/man/ComBat.html)
135
- - [**neuroCombat**](https://github.com/Jfortin1/neuroCombat)
136
- - [**CovBat**](https://github.com/andy1764/CovBat_Harmonization)
131
+ If **combatlearn** is useful in your research, please cite the paper introducing this Python package:
137
132
 
138
- ## Citation
133
+ > Rocchi, E., Nicitra, E., Calvo, M. et al. Combining mass spectrometry and machine learning models for predicting Klebsiella pneumoniae antimicrobial resistance: a multicenter experience from clinical isolates in Italy. BMC Microbiol (2026). https://doi.org/10.1186/s12866-025-04657-2
134
+
135
+ ```bibtex
136
+ @article{Rocchi2026,
137
+ author = {Rocchi, Ettore and Nicitra, Emanuele and Calvo, Maddalena and Cento, Valeria and Peiretti, Laura and Asif, Zian and Menchinelli, Giulia and Posteraro, Brunella and Sala, Claudia and Colosimo, Claudia and Cricca, Monica and Sambri, Vittorio and Sanguinetti, Maurizio and Castellani, Gastone and Stefani, Stefania},
138
+ title = {Combining mass spectrometry and machine learning models for predicting Klebsiella pneumoniae antimicrobial resistance: a multicenter experience from clinical isolates in Italy},
139
+ journal = {BMC Microbiology},
140
+ year = {2026},
141
+ doi = {10.1186/s12866-025-04657-2},
142
+ url = {https://doi.org/10.1186/s12866-025-04657-2}
143
+ }
144
+ ```
139
145
 
140
- If **combatlearn** is useful in your research, please cite the original papers:
146
+ ## Acknowledgements
147
+
148
+ This project builds on the excellent work of the ComBat family of harmonisation methods.
149
+ Please consider citing the original papers:
141
150
 
142
- - Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. _Biostatistics_. 2007 Jan;8(1):118-27. doi: [10.1093/biostatistics/kxj037](https://doi.org/10.1093/biostatistics/kxj037)
151
+ - [**ComBat**](https://rdrr.io/bioc/sva/man/ComBat.html) - Johnson WE, Li C, Rabinovic A. _Biostatistics_. 2007. doi: [10.1093/biostatistics/kxj037](https://doi.org/10.1093/biostatistics/kxj037)
143
152
 
144
- - Fortin JP, Cullen N, Sheline YI, Taylor WD, Aselcioglu I, Cook PA, Adams P, Cooper C, Fava M, McGrath PJ, McInnis M, Phillips ML, Trivedi MH, Weissman MM, Shinohara RT. Harmonization of cortical thickness measurements across scanners and sites. _Neuroimage_. 2018 Feb 15;167:104-120. doi: [10.1016/j.neuroimage.2017.11.024](https://doi.org/10.1016/j.neuroimage.2017.11.024)
153
+ - [**neuroCombat**](https://github.com/Jfortin1/neuroCombat) - Fortin JP et al. _Neuroimage_. 2018. doi: [10.1016/j.neuroimage.2017.11.024](https://doi.org/10.1016/j.neuroimage.2017.11.024)
145
154
 
146
- - Chen AA, Beer JC, Tustison NJ, Cook PA, Shinohara RT, Shou H; Alzheimer's Disease Neuroimaging Initiative. Mitigating site effects in covariance for machine learning in neuroimaging data. _Hum Brain Mapp_. 2022 Mar;43(4):1179-1195. doi: [10.1002/hbm.25688](https://doi.org/10.1002/hbm.25688)
155
+ - [**CovBat**](https://github.com/andy1764/CovBat_Harmonization) - Chen AA et al. _Hum Brain Mapp_. 2022. doi: [10.1002/hbm.25688](https://doi.org/10.1002/hbm.25688)
@@ -0,0 +1,5 @@
1
+ from .sklearn_api import ComBat
2
+
3
+ __all__ = ["ComBat"]
4
+ __version__ = "1.2.0"
5
+ __author__ = "Ettore Rocchi"