combatlearn 1.1.0__tar.gz → 1.1.2__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: combatlearn
3
- Version: 1.1.0
3
+ Version: 1.1.2
4
4
  Summary: Batch-effect harmonization for machine learning frameworks.
5
5
  Author-email: Ettore Rocchi <ettoreroc@gmail.com>
6
6
  License: MIT
@@ -21,14 +21,14 @@ Requires-Dist: nbformat>=4.2
21
21
  Requires-Dist: umap-learn>=0.5
22
22
  Provides-Extra: dev
23
23
  Requires-Dist: pytest>=7; extra == "dev"
24
- Requires-Dist: pytest-cov>=4.0; extra == "dev"
25
- Requires-Dist: ruff>=0.1; extra == "dev"
26
- Requires-Dist: mypy>=1.0; extra == "dev"
24
+ Requires-Dist: ruff>=0.8; extra == "dev"
25
+ Requires-Dist: pre-commit>=3.0; extra == "dev"
27
26
  Provides-Extra: docs
28
- Requires-Dist: mkdocs>=1.5.0; extra == "docs"
29
- Requires-Dist: mkdocs-material>=9.0.0; extra == "docs"
30
- Requires-Dist: mkdocstrings[python]>=0.24.0; extra == "docs"
31
- Requires-Dist: pymdown-extensions>=10.0; extra == "docs"
27
+ Requires-Dist: sphinx>=7.0.0; extra == "docs"
28
+ Requires-Dist: pydata-sphinx-theme>=0.15.0; extra == "docs"
29
+ Requires-Dist: myst-parser>=3.0.0; extra == "docs"
30
+ Requires-Dist: sphinx-copybutton>=0.5.0; extra == "docs"
31
+ Requires-Dist: linkify-it-py>=2.0.0; extra == "docs"
32
32
  Dynamic: license-file
33
33
 
34
34
  # **combatlearn**
@@ -36,12 +36,11 @@ Dynamic: license-file
36
36
  [![Python versions](https://img.shields.io/badge/python-%3E%3D3.10-blue?logo=python)](https://www.python.org/)
37
37
  [![Test](https://github.com/EttoreRocchi/combatlearn/actions/workflows/test.yaml/badge.svg)](https://github.com/EttoreRocchi/combatlearn/actions/workflows/test.yaml)
38
38
  [![Documentation](https://readthedocs.org/projects/combatlearn/badge/?version=latest)](https://combatlearn.readthedocs.io)
39
- [![PyPI Downloads](https://static.pepy.tech/badge/combatlearn)](https://pepy.tech/projects/combatlearn)
40
39
  [![PyPI Version](https://img.shields.io/pypi/v/combatlearn?cacheSeconds=300)](https://pypi.org/project/combatlearn/)
41
40
  [![License](https://img.shields.io/github/license/EttoreRocchi/combatlearn)](https://github.com/EttoreRocchi/combatlearn/blob/main/LICENSE)
42
41
 
43
42
  <div align="center">
44
- <p><img src="https://raw.githubusercontent.com/EttoreRocchi/combatlearn/main/docs/logo.png" alt="combatlearn logo" width="350" /></p>
43
+ <p><img src="https://raw.githubusercontent.com/EttoreRocchi/combatlearn/main/docs/source/_static/logo.png" alt="combatlearn logo" width="350" /></p>
45
44
  </div>
46
45
 
47
46
  **combatlearn** makes the popular _ComBat_ (and _CovBat_) batch-effect correction algorithm available for use into machine learning frameworks. It lets you harmonise high-dimensional data inside a scikit-learn `Pipeline`, so that cross-validation and grid-search automatically take batch structure into account, **without data leakage**.
@@ -62,16 +61,11 @@ pip install combatlearn
62
61
  **Full documentation is available at [combatlearn.readthedocs.io](https://combatlearn.readthedocs.io)**
63
62
 
64
63
  The documentation includes:
65
- - [Installation Guide](https://combatlearn.readthedocs.io/en/latest/installation/)
66
- - [Quick Start Tutorial](https://combatlearn.readthedocs.io/en/latest/quickstart/)
67
- - [User Guide](https://combatlearn.readthedocs.io/en/latest/user-guide/overview/)
64
+ - [Methods Guide](https://combatlearn.readthedocs.io/en/latest/methods/)
68
65
  - [API Reference](https://combatlearn.readthedocs.io/en/latest/api/)
69
- - [Examples](https://combatlearn.readthedocs.io/en/latest/examples/basic-usage/)
70
66
 
71
67
  ## Quick start
72
68
 
73
- For more details, see the [Quick Start Tutorial](https://combatlearn.readthedocs.io/en/latest/quickstart/).
74
-
75
69
  ```python
76
70
  import pandas as pd
77
71
  from sklearn.pipeline import Pipeline
@@ -116,7 +110,7 @@ print("Best parameters:", grid.best_params_)
116
110
  print(f"Best CV AUROC: {grid.best_score_:.3f}")
117
111
  ```
118
112
 
119
- For a full example of how to use **combatlearn** see the [notebook demo](https://github.com/EttoreRocchi/combatlearn/blob/main/docs/demo/combatlearn_demo.ipynb)
113
+ For a full example of how to use **combatlearn** see the [notebook demo](https://github.com/EttoreRocchi/combatlearn/blob/main/docs/source/demo/combatlearn_demo.ipynb)
120
114
 
121
115
  ## `ComBat` parameters
122
116
 
@@ -146,13 +140,13 @@ The following section provides a detailed explanation of all parameters availabl
146
140
 
147
141
  The `plot_transformation` method allows to visualize the **ComBat** transformation effect using dimensionality reduction, showing the before/after comparison of data transformed by `ComBat` using PCA, t-SNE, or UMAP to reduce dimensions for visualization.
148
142
 
149
- For further details see the [Visualization Guide](https://combatlearn.readthedocs.io/en/latest/user-guide/visualization/) and the [notebook demo](https://github.com/EttoreRocchi/combatlearn/blob/main/docs/demo/combatlearn_demo.ipynb).
143
+ For further details see the [API Reference](https://combatlearn.readthedocs.io/en/latest/api/) and the [notebook demo](https://github.com/EttoreRocchi/combatlearn/blob/main/docs/source/demo/combatlearn_demo.ipynb).
150
144
 
151
145
  ### Batch Effect Metrics
152
146
 
153
147
  The `compute_batch_metrics` method provides quantitative assessment of batch correction quality. It computes metrics including Silhouette coefficient, Davies-Bouldin index, kBET, LISI, and variance ratio for batch effect quantification, as well as k-NN preservation and distance correlation for structure preservation.
154
148
 
155
- For further details see the [Metrics Guide](https://combatlearn.readthedocs.io/en/latest/user-guide/metrics/) and the [notebook demo](https://github.com/EttoreRocchi/combatlearn/blob/main/docs/demo/combatlearn_demo.ipynb).
149
+ For further details see the [API Reference](https://combatlearn.readthedocs.io/en/latest/api/) and the [notebook demo](https://github.com/EttoreRocchi/combatlearn/blob/main/docs/source/demo/combatlearn_demo.ipynb).
156
150
 
157
151
  ## Contributing
158
152
 
@@ -3,12 +3,11 @@
3
3
  [![Python versions](https://img.shields.io/badge/python-%3E%3D3.10-blue?logo=python)](https://www.python.org/)
4
4
  [![Test](https://github.com/EttoreRocchi/combatlearn/actions/workflows/test.yaml/badge.svg)](https://github.com/EttoreRocchi/combatlearn/actions/workflows/test.yaml)
5
5
  [![Documentation](https://readthedocs.org/projects/combatlearn/badge/?version=latest)](https://combatlearn.readthedocs.io)
6
- [![PyPI Downloads](https://static.pepy.tech/badge/combatlearn)](https://pepy.tech/projects/combatlearn)
7
6
  [![PyPI Version](https://img.shields.io/pypi/v/combatlearn?cacheSeconds=300)](https://pypi.org/project/combatlearn/)
8
7
  [![License](https://img.shields.io/github/license/EttoreRocchi/combatlearn)](https://github.com/EttoreRocchi/combatlearn/blob/main/LICENSE)
9
8
 
10
9
  <div align="center">
11
- <p><img src="https://raw.githubusercontent.com/EttoreRocchi/combatlearn/main/docs/logo.png" alt="combatlearn logo" width="350" /></p>
10
+ <p><img src="https://raw.githubusercontent.com/EttoreRocchi/combatlearn/main/docs/source/_static/logo.png" alt="combatlearn logo" width="350" /></p>
12
11
  </div>
13
12
 
14
13
  **combatlearn** makes the popular _ComBat_ (and _CovBat_) batch-effect correction algorithm available for use into machine learning frameworks. It lets you harmonise high-dimensional data inside a scikit-learn `Pipeline`, so that cross-validation and grid-search automatically take batch structure into account, **without data leakage**.
@@ -29,16 +28,11 @@ pip install combatlearn
29
28
  **Full documentation is available at [combatlearn.readthedocs.io](https://combatlearn.readthedocs.io)**
30
29
 
31
30
  The documentation includes:
32
- - [Installation Guide](https://combatlearn.readthedocs.io/en/latest/installation/)
33
- - [Quick Start Tutorial](https://combatlearn.readthedocs.io/en/latest/quickstart/)
34
- - [User Guide](https://combatlearn.readthedocs.io/en/latest/user-guide/overview/)
31
+ - [Methods Guide](https://combatlearn.readthedocs.io/en/latest/methods/)
35
32
  - [API Reference](https://combatlearn.readthedocs.io/en/latest/api/)
36
- - [Examples](https://combatlearn.readthedocs.io/en/latest/examples/basic-usage/)
37
33
 
38
34
  ## Quick start
39
35
 
40
- For more details, see the [Quick Start Tutorial](https://combatlearn.readthedocs.io/en/latest/quickstart/).
41
-
42
36
  ```python
43
37
  import pandas as pd
44
38
  from sklearn.pipeline import Pipeline
@@ -83,7 +77,7 @@ print("Best parameters:", grid.best_params_)
83
77
  print(f"Best CV AUROC: {grid.best_score_:.3f}")
84
78
  ```
85
79
 
86
- For a full example of how to use **combatlearn** see the [notebook demo](https://github.com/EttoreRocchi/combatlearn/blob/main/docs/demo/combatlearn_demo.ipynb)
80
+ For a full example of how to use **combatlearn** see the [notebook demo](https://github.com/EttoreRocchi/combatlearn/blob/main/docs/source/demo/combatlearn_demo.ipynb)
87
81
 
88
82
  ## `ComBat` parameters
89
83
 
@@ -113,13 +107,13 @@ The following section provides a detailed explanation of all parameters availabl
113
107
 
114
108
  The `plot_transformation` method allows to visualize the **ComBat** transformation effect using dimensionality reduction, showing the before/after comparison of data transformed by `ComBat` using PCA, t-SNE, or UMAP to reduce dimensions for visualization.
115
109
 
116
- For further details see the [Visualization Guide](https://combatlearn.readthedocs.io/en/latest/user-guide/visualization/) and the [notebook demo](https://github.com/EttoreRocchi/combatlearn/blob/main/docs/demo/combatlearn_demo.ipynb).
110
+ For further details see the [API Reference](https://combatlearn.readthedocs.io/en/latest/api/) and the [notebook demo](https://github.com/EttoreRocchi/combatlearn/blob/main/docs/source/demo/combatlearn_demo.ipynb).
117
111
 
118
112
  ### Batch Effect Metrics
119
113
 
120
114
  The `compute_batch_metrics` method provides quantitative assessment of batch correction quality. It computes metrics including Silhouette coefficient, Davies-Bouldin index, kBET, LISI, and variance ratio for batch effect quantification, as well as k-NN preservation and distance correlation for structure preservation.
121
115
 
122
- For further details see the [Metrics Guide](https://combatlearn.readthedocs.io/en/latest/user-guide/metrics/) and the [notebook demo](https://github.com/EttoreRocchi/combatlearn/blob/main/docs/demo/combatlearn_demo.ipynb).
116
+ For further details see the [API Reference](https://combatlearn.readthedocs.io/en/latest/api/) and the [notebook demo](https://github.com/EttoreRocchi/combatlearn/blob/main/docs/source/demo/combatlearn_demo.ipynb).
123
117
 
124
118
  ## Contributing
125
119
 
@@ -0,0 +1,5 @@
1
+ from .combat import ComBat
2
+
3
+ __all__ = ["ComBat"]
4
+ __version__ = "1.1.2"
5
+ __author__ = "Ettore Rocchi"