combatlearn 1.0.0__tar.gz → 1.1.1__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {combatlearn-1.0.0 → combatlearn-1.1.1}/PKG-INFO +28 -26
- {combatlearn-1.0.0 → combatlearn-1.1.1}/README.md +20 -18
- combatlearn-1.1.1/combatlearn/__init__.py +5 -0
- combatlearn-1.1.1/combatlearn/combat.py +1772 -0
- {combatlearn-1.0.0 → combatlearn-1.1.1}/combatlearn.egg-info/PKG-INFO +28 -26
- {combatlearn-1.0.0 → combatlearn-1.1.1}/combatlearn.egg-info/SOURCES.txt +2 -0
- combatlearn-1.1.1/combatlearn.egg-info/requires.txt +19 -0
- combatlearn-1.1.1/dev_requirements.txt +3 -0
- combatlearn-1.1.1/docs_requirements.txt +5 -0
- {combatlearn-1.0.0 → combatlearn-1.1.1}/pyproject.toml +16 -15
- {combatlearn-1.0.0 → combatlearn-1.1.1}/tests/test_combat.py +148 -41
- combatlearn-1.0.0/combatlearn/__init__.py +0 -5
- combatlearn-1.0.0/combatlearn/combat.py +0 -1046
- combatlearn-1.0.0/combatlearn.egg-info/requires.txt +0 -19
- {combatlearn-1.0.0 → combatlearn-1.1.1}/LICENSE +0 -0
- {combatlearn-1.0.0 → combatlearn-1.1.1}/combatlearn.egg-info/dependency_links.txt +0 -0
- {combatlearn-1.0.0 → combatlearn-1.1.1}/combatlearn.egg-info/top_level.txt +0 -0
- {combatlearn-1.0.0 → combatlearn-1.1.1}/requirements.txt +0 -0
- {combatlearn-1.0.0 → combatlearn-1.1.1}/setup.cfg +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: combatlearn
|
|
3
|
-
Version: 1.
|
|
3
|
+
Version: 1.1.1
|
|
4
4
|
Summary: Batch-effect harmonization for machine learning frameworks.
|
|
5
5
|
Author-email: Ettore Rocchi <ettoreroc@gmail.com>
|
|
6
6
|
License: MIT
|
|
@@ -21,14 +21,14 @@ Requires-Dist: nbformat>=4.2
|
|
|
21
21
|
Requires-Dist: umap-learn>=0.5
|
|
22
22
|
Provides-Extra: dev
|
|
23
23
|
Requires-Dist: pytest>=7; extra == "dev"
|
|
24
|
-
Requires-Dist:
|
|
25
|
-
Requires-Dist:
|
|
26
|
-
Requires-Dist: mypy>=1.0; extra == "dev"
|
|
24
|
+
Requires-Dist: ruff>=0.8; extra == "dev"
|
|
25
|
+
Requires-Dist: pre-commit>=3.0; extra == "dev"
|
|
27
26
|
Provides-Extra: docs
|
|
28
|
-
Requires-Dist:
|
|
29
|
-
Requires-Dist:
|
|
30
|
-
Requires-Dist:
|
|
31
|
-
Requires-Dist:
|
|
27
|
+
Requires-Dist: sphinx>=7.0.0; extra == "docs"
|
|
28
|
+
Requires-Dist: pydata-sphinx-theme>=0.15.0; extra == "docs"
|
|
29
|
+
Requires-Dist: myst-parser>=3.0.0; extra == "docs"
|
|
30
|
+
Requires-Dist: sphinx-copybutton>=0.5.0; extra == "docs"
|
|
31
|
+
Requires-Dist: linkify-it-py>=2.0.0; extra == "docs"
|
|
32
32
|
Dynamic: license-file
|
|
33
33
|
|
|
34
34
|
# **combatlearn**
|
|
@@ -41,7 +41,7 @@ Dynamic: license-file
|
|
|
41
41
|
[](https://github.com/EttoreRocchi/combatlearn/blob/main/LICENSE)
|
|
42
42
|
|
|
43
43
|
<div align="center">
|
|
44
|
-
<p><img src="https://raw.githubusercontent.com/EttoreRocchi/combatlearn/main/docs/logo.png" alt="combatlearn logo" width="350" /></p>
|
|
44
|
+
<p><img src="https://raw.githubusercontent.com/EttoreRocchi/combatlearn/main/docs/source/_static/logo.png" alt="combatlearn logo" width="350" /></p>
|
|
45
45
|
</div>
|
|
46
46
|
|
|
47
47
|
**combatlearn** makes the popular _ComBat_ (and _CovBat_) batch-effect correction algorithm available for use into machine learning frameworks. It lets you harmonise high-dimensional data inside a scikit-learn `Pipeline`, so that cross-validation and grid-search automatically take batch structure into account, **without data leakage**.
|
|
@@ -57,6 +57,14 @@ Dynamic: license-file
|
|
|
57
57
|
pip install combatlearn
|
|
58
58
|
```
|
|
59
59
|
|
|
60
|
+
## Documentation
|
|
61
|
+
|
|
62
|
+
**Full documentation is available at [combatlearn.readthedocs.io](https://combatlearn.readthedocs.io)**
|
|
63
|
+
|
|
64
|
+
The documentation includes:
|
|
65
|
+
- [Methods Guide](https://combatlearn.readthedocs.io/en/latest/methods/)
|
|
66
|
+
- [API Reference](https://combatlearn.readthedocs.io/en/latest/api/)
|
|
67
|
+
|
|
60
68
|
## Quick start
|
|
61
69
|
|
|
62
70
|
```python
|
|
@@ -103,22 +111,11 @@ print("Best parameters:", grid.best_params_)
|
|
|
103
111
|
print(f"Best CV AUROC: {grid.best_score_:.3f}")
|
|
104
112
|
```
|
|
105
113
|
|
|
106
|
-
For a full example of how to use **combatlearn** see the [notebook demo](https://github.com/EttoreRocchi/combatlearn/blob/main/docs/demo/combatlearn_demo.ipynb)
|
|
107
|
-
|
|
108
|
-
## Documentation
|
|
109
|
-
|
|
110
|
-
**Full documentation is available at [combatlearn.readthedocs.io](https://combatlearn.readthedocs.io)**
|
|
111
|
-
|
|
112
|
-
The documentation includes:
|
|
113
|
-
- [Installation Guide](https://combatlearn.readthedocs.io/en/latest/installation/)
|
|
114
|
-
- [Quick Start Tutorial](https://combatlearn.readthedocs.io/en/latest/quickstart/)
|
|
115
|
-
- [User Guide](https://combatlearn.readthedocs.io/en/latest/user-guide/overview/)
|
|
116
|
-
- [API Reference](https://combatlearn.readthedocs.io/en/latest/api/)
|
|
117
|
-
- [Examples](https://combatlearn.readthedocs.io/en/latest/examples/basic-usage/)
|
|
114
|
+
For a full example of how to use **combatlearn** see the [notebook demo](https://github.com/EttoreRocchi/combatlearn/blob/main/docs/source/demo/combatlearn_demo.ipynb)
|
|
118
115
|
|
|
119
116
|
## `ComBat` parameters
|
|
120
117
|
|
|
121
|
-
The following section provides a detailed explanation of all parameters available in the scikit-learn-compatible `ComBat` class.
|
|
118
|
+
The following section provides a detailed explanation of all parameters available in the scikit-learn-compatible `ComBat` class. For complete API documentation, see the [API Reference](https://combatlearn.readthedocs.io/en/latest/api/).
|
|
122
119
|
|
|
123
120
|
### Main Parameters
|
|
124
121
|
|
|
@@ -140,11 +137,17 @@ The following section provides a detailed explanation of all parameters availabl
|
|
|
140
137
|
| `eps` | float | `1e-8` | Small jitter value added to variances to prevent divide-by-zero errors during standardization. |
|
|
141
138
|
|
|
142
139
|
|
|
143
|
-
### Batch Effect Correction Visualization
|
|
140
|
+
### Batch Effect Correction Visualization
|
|
144
141
|
|
|
145
142
|
The `plot_transformation` method allows to visualize the **ComBat** transformation effect using dimensionality reduction, showing the before/after comparison of data transformed by `ComBat` using PCA, t-SNE, or UMAP to reduce dimensions for visualization.
|
|
146
143
|
|
|
147
|
-
For further details see the [notebook demo](https://github.com/EttoreRocchi/combatlearn/blob/main/docs/demo/combatlearn_demo.ipynb).
|
|
144
|
+
For further details see the [API Reference](https://combatlearn.readthedocs.io/en/latest/api/) and the [notebook demo](https://github.com/EttoreRocchi/combatlearn/blob/main/docs/source/demo/combatlearn_demo.ipynb).
|
|
145
|
+
|
|
146
|
+
### Batch Effect Metrics
|
|
147
|
+
|
|
148
|
+
The `compute_batch_metrics` method provides quantitative assessment of batch correction quality. It computes metrics including Silhouette coefficient, Davies-Bouldin index, kBET, LISI, and variance ratio for batch effect quantification, as well as k-NN preservation and distance correlation for structure preservation.
|
|
149
|
+
|
|
150
|
+
For further details see the [API Reference](https://combatlearn.readthedocs.io/en/latest/api/) and the [notebook demo](https://github.com/EttoreRocchi/combatlearn/blob/main/docs/source/demo/combatlearn_demo.ipynb).
|
|
148
151
|
|
|
149
152
|
## Contributing
|
|
150
153
|
|
|
@@ -167,8 +170,7 @@ We gratefully acknowledge:
|
|
|
167
170
|
|
|
168
171
|
## Citation
|
|
169
172
|
|
|
170
|
-
If **combatlearn** is useful in your research, please cite the original
|
|
171
|
-
papers:
|
|
173
|
+
If **combatlearn** is useful in your research, please cite the original papers:
|
|
172
174
|
|
|
173
175
|
- Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. _Biostatistics_. 2007 Jan;8(1):118-27. doi: [10.1093/biostatistics/kxj037](https://doi.org/10.1093/biostatistics/kxj037)
|
|
174
176
|
|
|
@@ -8,7 +8,7 @@
|
|
|
8
8
|
[](https://github.com/EttoreRocchi/combatlearn/blob/main/LICENSE)
|
|
9
9
|
|
|
10
10
|
<div align="center">
|
|
11
|
-
<p><img src="https://raw.githubusercontent.com/EttoreRocchi/combatlearn/main/docs/logo.png" alt="combatlearn logo" width="350" /></p>
|
|
11
|
+
<p><img src="https://raw.githubusercontent.com/EttoreRocchi/combatlearn/main/docs/source/_static/logo.png" alt="combatlearn logo" width="350" /></p>
|
|
12
12
|
</div>
|
|
13
13
|
|
|
14
14
|
**combatlearn** makes the popular _ComBat_ (and _CovBat_) batch-effect correction algorithm available for use into machine learning frameworks. It lets you harmonise high-dimensional data inside a scikit-learn `Pipeline`, so that cross-validation and grid-search automatically take batch structure into account, **without data leakage**.
|
|
@@ -24,6 +24,14 @@
|
|
|
24
24
|
pip install combatlearn
|
|
25
25
|
```
|
|
26
26
|
|
|
27
|
+
## Documentation
|
|
28
|
+
|
|
29
|
+
**Full documentation is available at [combatlearn.readthedocs.io](https://combatlearn.readthedocs.io)**
|
|
30
|
+
|
|
31
|
+
The documentation includes:
|
|
32
|
+
- [Methods Guide](https://combatlearn.readthedocs.io/en/latest/methods/)
|
|
33
|
+
- [API Reference](https://combatlearn.readthedocs.io/en/latest/api/)
|
|
34
|
+
|
|
27
35
|
## Quick start
|
|
28
36
|
|
|
29
37
|
```python
|
|
@@ -70,22 +78,11 @@ print("Best parameters:", grid.best_params_)
|
|
|
70
78
|
print(f"Best CV AUROC: {grid.best_score_:.3f}")
|
|
71
79
|
```
|
|
72
80
|
|
|
73
|
-
For a full example of how to use **combatlearn** see the [notebook demo](https://github.com/EttoreRocchi/combatlearn/blob/main/docs/demo/combatlearn_demo.ipynb)
|
|
74
|
-
|
|
75
|
-
## Documentation
|
|
76
|
-
|
|
77
|
-
**Full documentation is available at [combatlearn.readthedocs.io](https://combatlearn.readthedocs.io)**
|
|
78
|
-
|
|
79
|
-
The documentation includes:
|
|
80
|
-
- [Installation Guide](https://combatlearn.readthedocs.io/en/latest/installation/)
|
|
81
|
-
- [Quick Start Tutorial](https://combatlearn.readthedocs.io/en/latest/quickstart/)
|
|
82
|
-
- [User Guide](https://combatlearn.readthedocs.io/en/latest/user-guide/overview/)
|
|
83
|
-
- [API Reference](https://combatlearn.readthedocs.io/en/latest/api/)
|
|
84
|
-
- [Examples](https://combatlearn.readthedocs.io/en/latest/examples/basic-usage/)
|
|
81
|
+
For a full example of how to use **combatlearn** see the [notebook demo](https://github.com/EttoreRocchi/combatlearn/blob/main/docs/source/demo/combatlearn_demo.ipynb)
|
|
85
82
|
|
|
86
83
|
## `ComBat` parameters
|
|
87
84
|
|
|
88
|
-
The following section provides a detailed explanation of all parameters available in the scikit-learn-compatible `ComBat` class.
|
|
85
|
+
The following section provides a detailed explanation of all parameters available in the scikit-learn-compatible `ComBat` class. For complete API documentation, see the [API Reference](https://combatlearn.readthedocs.io/en/latest/api/).
|
|
89
86
|
|
|
90
87
|
### Main Parameters
|
|
91
88
|
|
|
@@ -107,11 +104,17 @@ The following section provides a detailed explanation of all parameters availabl
|
|
|
107
104
|
| `eps` | float | `1e-8` | Small jitter value added to variances to prevent divide-by-zero errors during standardization. |
|
|
108
105
|
|
|
109
106
|
|
|
110
|
-
### Batch Effect Correction Visualization
|
|
107
|
+
### Batch Effect Correction Visualization
|
|
111
108
|
|
|
112
109
|
The `plot_transformation` method allows to visualize the **ComBat** transformation effect using dimensionality reduction, showing the before/after comparison of data transformed by `ComBat` using PCA, t-SNE, or UMAP to reduce dimensions for visualization.
|
|
113
110
|
|
|
114
|
-
For further details see the [notebook demo](https://github.com/EttoreRocchi/combatlearn/blob/main/docs/demo/combatlearn_demo.ipynb).
|
|
111
|
+
For further details see the [API Reference](https://combatlearn.readthedocs.io/en/latest/api/) and the [notebook demo](https://github.com/EttoreRocchi/combatlearn/blob/main/docs/source/demo/combatlearn_demo.ipynb).
|
|
112
|
+
|
|
113
|
+
### Batch Effect Metrics
|
|
114
|
+
|
|
115
|
+
The `compute_batch_metrics` method provides quantitative assessment of batch correction quality. It computes metrics including Silhouette coefficient, Davies-Bouldin index, kBET, LISI, and variance ratio for batch effect quantification, as well as k-NN preservation and distance correlation for structure preservation.
|
|
116
|
+
|
|
117
|
+
For further details see the [API Reference](https://combatlearn.readthedocs.io/en/latest/api/) and the [notebook demo](https://github.com/EttoreRocchi/combatlearn/blob/main/docs/source/demo/combatlearn_demo.ipynb).
|
|
115
118
|
|
|
116
119
|
## Contributing
|
|
117
120
|
|
|
@@ -134,8 +137,7 @@ We gratefully acknowledge:
|
|
|
134
137
|
|
|
135
138
|
## Citation
|
|
136
139
|
|
|
137
|
-
If **combatlearn** is useful in your research, please cite the original
|
|
138
|
-
papers:
|
|
140
|
+
If **combatlearn** is useful in your research, please cite the original papers:
|
|
139
141
|
|
|
140
142
|
- Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. _Biostatistics_. 2007 Jan;8(1):118-27. doi: [10.1093/biostatistics/kxj037](https://doi.org/10.1093/biostatistics/kxj037)
|
|
141
143
|
|