cnhkmcp 2.1.8__tar.gz → 2.2.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (267) hide show
  1. {cnhkmcp-2.1.8/cnhkmcp.egg-info → cnhkmcp-2.2.0}/PKG-INFO +1 -1
  2. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/__init__.py +1 -1
  3. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/211/223/345/267/245/344/272/272/BRAIN_AI/346/211/223/345/267/245/344/272/272Mac_Linux/347/211/210/346/234/254.zip +0 -0
  4. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/211/223/345/267/245/344/272/272//345/217/214/345/207/273/345/256/211/350/243/205AI/346/211/223/345/267/245/344/272/272_Windows/347/211/210/346/234/254.exe +0 -0
  5. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/config.json +1 -1
  6. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/vector_db/chroma.sqlite3 +0 -0
  7. cnhkmcp-2.2.0/cnhkmcp/untracked/skills/brain-data-feature-engineering/OUTPUT_TEMPLATE.md +325 -0
  8. cnhkmcp-2.2.0/cnhkmcp/untracked/skills/brain-data-feature-engineering/SKILL.md +263 -0
  9. cnhkmcp-2.2.0/cnhkmcp/untracked/skills/brain-data-feature-engineering/examples.md +244 -0
  10. cnhkmcp-2.2.0/cnhkmcp/untracked/skills/brain-data-feature-engineering/reference.md +493 -0
  11. cnhkmcp-2.2.0/cnhkmcp/untracked/skills/brain-feature-implementation/SKILL.md +87 -0
  12. cnhkmcp-2.2.0/cnhkmcp/untracked/skills/brain-feature-implementation/config.json +6 -0
  13. cnhkmcp-2.2.0/cnhkmcp/untracked/skills/brain-feature-implementation/data/analyst15_GLB_delay1/analyst15_GLB_delay1.csv +289 -0
  14. cnhkmcp-2.2.0/cnhkmcp/untracked/skills/brain-feature-implementation/data/analyst15_GLB_delay1/final_expressions.json +410 -0
  15. cnhkmcp-2.2.0/cnhkmcp/untracked/skills/brain-feature-implementation/data/analyst15_GLB_delay1/idea_1768588244.json +4 -0
  16. cnhkmcp-2.2.0/cnhkmcp/untracked/skills/brain-feature-implementation/data/analyst15_GLB_delay1/idea_1768588251.json +20 -0
  17. cnhkmcp-2.2.0/cnhkmcp/untracked/skills/brain-feature-implementation/data/analyst15_GLB_delay1/idea_1768588273.json +23 -0
  18. cnhkmcp-2.2.0/cnhkmcp/untracked/skills/brain-feature-implementation/data/analyst15_GLB_delay1/idea_1768588293.json +23 -0
  19. cnhkmcp-2.2.0/cnhkmcp/untracked/skills/brain-feature-implementation/data/analyst15_GLB_delay1/idea_1768588319.json +23 -0
  20. cnhkmcp-2.2.0/cnhkmcp/untracked/skills/brain-feature-implementation/data/analyst15_GLB_delay1/idea_1768588322.json +14 -0
  21. cnhkmcp-2.2.0/cnhkmcp/untracked/skills/brain-feature-implementation/data/analyst15_GLB_delay1/idea_1768588325.json +20 -0
  22. cnhkmcp-2.2.0/cnhkmcp/untracked/skills/brain-feature-implementation/data/analyst15_GLB_delay1/idea_1768588328.json +23 -0
  23. cnhkmcp-2.2.0/cnhkmcp/untracked/skills/brain-feature-implementation/data/analyst15_GLB_delay1/idea_1768588354.json +23 -0
  24. cnhkmcp-2.2.0/cnhkmcp/untracked/skills/brain-feature-implementation/data/analyst15_GLB_delay1/idea_1768588357.json +23 -0
  25. cnhkmcp-2.2.0/cnhkmcp/untracked/skills/brain-feature-implementation/data/analyst15_GLB_delay1/idea_1768588361.json +23 -0
  26. cnhkmcp-2.2.0/cnhkmcp/untracked/skills/brain-feature-implementation/data/analyst15_GLB_delay1/idea_1768588364.json +23 -0
  27. cnhkmcp-2.2.0/cnhkmcp/untracked/skills/brain-feature-implementation/data/analyst15_GLB_delay1/idea_1768588368.json +23 -0
  28. cnhkmcp-2.2.0/cnhkmcp/untracked/skills/brain-feature-implementation/data/analyst15_GLB_delay1/idea_1768588391.json +14 -0
  29. cnhkmcp-2.2.0/cnhkmcp/untracked/skills/brain-feature-implementation/data/analyst15_GLB_delay1/idea_1768588394.json +23 -0
  30. cnhkmcp-2.2.0/cnhkmcp/untracked/skills/brain-feature-implementation/data/analyst15_GLB_delay1/idea_1768588397.json +59 -0
  31. cnhkmcp-2.2.0/cnhkmcp/untracked/skills/brain-feature-implementation/data/analyst15_GLB_delay1/idea_1768588400.json +35 -0
  32. cnhkmcp-2.2.0/cnhkmcp/untracked/skills/brain-feature-implementation/data/analyst15_GLB_delay1/idea_1768588403.json +20 -0
  33. cnhkmcp-2.2.0/cnhkmcp/untracked/skills/brain-feature-implementation/data/analyst15_GLB_delay1/idea_1768588428.json +23 -0
  34. cnhkmcp-2.2.0/cnhkmcp/untracked/skills/brain-feature-implementation/data/analyst15_GLB_delay1/idea_1768588431.json +32 -0
  35. cnhkmcp-2.2.0/cnhkmcp/untracked/skills/brain-feature-implementation/data/analyst15_GLB_delay1/idea_1768588434.json +20 -0
  36. cnhkmcp-2.2.0/cnhkmcp/untracked/skills/brain-feature-implementation/data/analyst15_GLB_delay1/idea_1768588438.json +20 -0
  37. cnhkmcp-2.2.0/cnhkmcp/untracked/skills/brain-feature-implementation/data/analyst15_GLB_delay1/idea_1768588441.json +14 -0
  38. cnhkmcp-2.2.0/cnhkmcp/untracked/skills/brain-feature-implementation/data/analyst15_GLB_delay1/idea_1768588468.json +20 -0
  39. cnhkmcp-2.2.0/cnhkmcp/untracked/skills/brain-feature-implementation/scripts/ace_lib.py +1514 -0
  40. cnhkmcp-2.2.0/cnhkmcp/untracked/skills/brain-feature-implementation/scripts/fetch_dataset.py +107 -0
  41. cnhkmcp-2.2.0/cnhkmcp/untracked/skills/brain-feature-implementation/scripts/helpful_functions.py +180 -0
  42. cnhkmcp-2.2.0/cnhkmcp/untracked/skills/brain-feature-implementation/scripts/implement_idea.py +164 -0
  43. cnhkmcp-2.2.0/cnhkmcp/untracked/skills/brain-feature-implementation/scripts/merge_expression_list.py +88 -0
  44. cnhkmcp-2.2.0/cnhkmcp/untracked/skills/planning-with-files/SKILL.md +211 -0
  45. cnhkmcp-2.2.0/cnhkmcp/untracked/skills/planning-with-files/examples.md +202 -0
  46. cnhkmcp-2.2.0/cnhkmcp/untracked/skills/planning-with-files/reference.md +218 -0
  47. cnhkmcp-2.2.0/cnhkmcp/untracked/skills/planning-with-files/scripts/check-complete.sh +44 -0
  48. cnhkmcp-2.2.0/cnhkmcp/untracked/skills/planning-with-files/scripts/init-session.sh +120 -0
  49. cnhkmcp-2.2.0/cnhkmcp/untracked/skills/planning-with-files/templates/findings.md +95 -0
  50. cnhkmcp-2.2.0/cnhkmcp/untracked/skills/planning-with-files/templates/progress.md +114 -0
  51. cnhkmcp-2.2.0/cnhkmcp/untracked/skills/planning-with-files/templates/task_plan.md +132 -0
  52. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0/cnhkmcp.egg-info}/PKG-INFO +1 -1
  53. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp.egg-info/SOURCES.txt +45 -0
  54. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/setup.py +1 -1
  55. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/LICENSE +0 -0
  56. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/MANIFEST.in +0 -0
  57. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/README.md +0 -0
  58. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/README.md" +0 -0
  59. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/ace.log" +0 -0
  60. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/get_knowledgeBase_tool/ace_lib.py" +0 -0
  61. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/get_knowledgeBase_tool/fetch_all_datasets.py" +0 -0
  62. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/get_knowledgeBase_tool/fetch_all_documentation.py" +0 -0
  63. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/get_knowledgeBase_tool/fetch_all_operators.py" +0 -0
  64. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/get_knowledgeBase_tool/helpful_functions.py" +0 -0
  65. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/icon.ico" +0 -0
  66. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/icon.png" +0 -0
  67. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/001_10_Steps_to_Start_on_BRAIN_documentation.json" +0 -0
  68. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/001_Intermediate_Pack_-_Improve_your_Alpha_2_2_documentation.json" +0 -0
  69. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/001_Intermediate_Pack_-_Understand_Results_1_2_documentation.json" +0 -0
  70. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/001_Introduction_to_Alphas_documentation.json" +0 -0
  71. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/001_Introduction_to_BRAIN_Expression_Language_documentation.json" +0 -0
  72. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/001_WorldQuant_Challenge_documentation.json" +0 -0
  73. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/001__Read_this_First_-_Starter_Pack_documentation.json" +0 -0
  74. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/002_How_to_choose_the_Simulation_Settings_documentation.json" +0 -0
  75. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/002_Simulate_your_first_Alpha_documentation.json" +0 -0
  76. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/002__Alpha_Examples_for_Beginners_documentation.json" +0 -0
  77. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/002__Alpha_Examples_for_Bronze_Users_documentation.json" +0 -0
  78. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/002__Alpha_Examples_for_Silver_Users_documentation.json" +0 -0
  79. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/002__How_BRAIN_works_documentation.json" +0 -0
  80. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/003_Clear_these_tests_before_submitting_an_Alpha_documentation.json" +0 -0
  81. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/003_Parameters_in_the_Simulation_results_documentation.json" +0 -0
  82. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/004_Group_Data_Fields_documentation.json" +0 -0
  83. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/004_How_to_use_the_Data_Explorer_documentation.json" +0 -0
  84. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/004_Model77_dataset_documentation.json" +0 -0
  85. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/004_Sentiment1_dataset_documentation.json" +0 -0
  86. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/004_Understanding_Data_in_BRAIN_Key_Concepts_and_Tips_documentation.json" +0 -0
  87. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/004_Vector_Data_Fields_documentation.json" +0 -0
  88. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/005_Crowding_Risk-Neutralized_Alphas_documentation.json" +0 -0
  89. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/005_D0_documentation.json" +0 -0
  90. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/005_Double_Neutralization_documentation.json" +0 -0
  91. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/005_Fast_D1_Documentation_documentation.json" +0 -0
  92. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/005_Investability_Constrained_Metrics_documentation.json" +0 -0
  93. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/005_Must-read_posts_How_to_improve_your_Alphas_documentation.json" +0 -0
  94. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/005_Neutralization_documentation.json" +0 -0
  95. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/005_RAM_Risk-Neutralized_Alphas_documentation.json" +0 -0
  96. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/005_Risk_Neutralization_Default_setting_documentation.json" +0 -0
  97. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/005_Risk_Neutralized_Alphas_documentation.json" +0 -0
  98. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/005_Statistical_Risk-Neutralized_Alphas_documentation.json" +0 -0
  99. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/006_EUR_TOP2500_Universe_documentation.json" +0 -0
  100. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/006_GLB_TOPDIV3000_Universe_documentation.json" +0 -0
  101. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/006_Getting_Started_China_Research_for_Consultants_Gold_documentation.json" +0 -0
  102. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/006_Getting_started_on_Illiquid_Universes_Gold_documentation.json" +0 -0
  103. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/006_Getting_started_with_USA_TOPSP500_universe_Gold_documentation.json" +0 -0
  104. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/006_Global_Alphas_Gold_documentation.json" +0 -0
  105. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/006_India_Alphas_documentation.json" +0 -0
  106. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/007_Consultant_Dos_and_Don_ts_documentation.json" +0 -0
  107. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/007_Consultant_Features_documentation.json" +0 -0
  108. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/007_Consultant_Simulation_Features_documentation.json" +0 -0
  109. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/007_Consultant_Submission_Tests_documentation.json" +0 -0
  110. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/007_Finding_Consultant_Alphas_documentation.json" +0 -0
  111. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/007_Power_Pool_Alphas_documentation.json" +0 -0
  112. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/007_Research_Advisory_Program_documentation.json" +0 -0
  113. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/007_Starting_Guide_for_Research_Consultants_documentation.json" +0 -0
  114. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/007_Visualization_Tool_documentation.json" +0 -0
  115. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/007_Your_Advisor_-_Kunqi_Jiang_documentation.json" +0 -0
  116. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/007__Brain_Genius_documentation.json" +0 -0
  117. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/007__Single_Dataset_Alphas_documentation.json" +0 -0
  118. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/008_Advisory_Theme_Calendar_documentation.json" +0 -0
  119. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/008_Multiplier_Rules_documentation.json" +0 -0
  120. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/008_Overview_of_Themes_documentation.json" +0 -0
  121. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/008_Theme_Calendar_documentation.json" +0 -0
  122. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/009_Combo_Expression_documentation.json" +0 -0
  123. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/009_Global_SuperAlphas_documentation.json" +0 -0
  124. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/009_Helpful_Tips_documentation.json" +0 -0
  125. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/009_Selection_Expression_documentation.json" +0 -0
  126. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/009_SuperAlpha_Operators_documentation.json" +0 -0
  127. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/009_SuperAlpha_Results_documentation.json" +0 -0
  128. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/009_What_is_a_SuperAlpha_documentation.json" +0 -0
  129. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/010_BRAIN_API_documentation.json" +0 -0
  130. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/010_Documentation_for_ACE_API_Library_Gold_documentation.json" +0 -0
  131. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/010__Understanding_simulation_limits_documentation.json" +0 -0
  132. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/arithmetic_operators.json" +0 -0
  133. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/cross_sectional_operators.json" +0 -0
  134. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/group_operators.json" +0 -0
  135. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/logical_operators.json" +0 -0
  136. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/reduce_operators.json" +0 -0
  137. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/special_operators.json" +0 -0
  138. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/test.txt" +0 -0
  139. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/time_series_operators.json" +0 -0
  140. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/transformational_operators.json" +0 -0
  141. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/knowledge/vector_operators.json" +0 -0
  142. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/main.py" +0 -0
  143. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/process_knowledge_base.py" +0 -0
  144. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/rag_engine.py" +0 -0
  145. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/requirements.txt" +0 -0
  146. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/run.bat" +0 -0
  147. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/vector_db/_manifest.json" +0 -0
  148. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266/vector_db/_meta.json" +0 -0
  149. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/AI/346/241/214/351/235/242/346/217/222/344/273/266//351/246/226/346/254/241/350/277/220/350/241/214/346/211/223/345/274/200/346/210/221.py" +0 -0
  150. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/.gitignore +0 -0
  151. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/MODULAR_STRUCTURE.md +0 -0
  152. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/README.md +0 -0
  153. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/Tranformer/Transformer.py +0 -0
  154. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/Tranformer/ace_lib.py +0 -0
  155. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/Tranformer/helpful_functions.py +0 -0
  156. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/Tranformer/output/Alpha_candidates.json +0 -0
  157. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/Tranformer/output/Alpha_candidates_/347/244/272/344/276/213.json" +0 -0
  158. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/Tranformer/output/Alpha_generated_expressions_error.json +0 -0
  159. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/Tranformer/output/Alpha_generated_expressions_success.json +0 -0
  160. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/Tranformer/output/Alpha_generated_expressions_/347/244/272/344/276/213/345/217/257/347/233/264/346/216/245/350/275/275/345/205/245Machine_lib.json" +0 -0
  161. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/Tranformer/template_summary.txt +0 -0
  162. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/Tranformer/transformer_config.json +0 -0
  163. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/Tranformer/validator.py +0 -0
  164. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/ace.log +0 -0
  165. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/ace_lib.py +0 -0
  166. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/blueprints/__init__.py +0 -0
  167. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/blueprints/feature_engineering.py +0 -0
  168. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/blueprints/idea_house.py +0 -0
  169. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/blueprints/inspiration_house.py +0 -0
  170. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/blueprints/paper_analysis.py +0 -0
  171. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/custom_templates/templates.json +0 -0
  172. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/give_me_idea/BRAIN_Alpha_Template_Expert_SystemPrompt.md +0 -0
  173. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/give_me_idea/ace_lib.py +0 -0
  174. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/give_me_idea/alpha_data_specific_template_master.py +0 -0
  175. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/give_me_idea/fetch_all_datasets.py +0 -0
  176. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/give_me_idea/fetch_all_operators.py +0 -0
  177. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/give_me_idea/helpful_functions.py +0 -0
  178. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/give_me_idea/what_is_Alpha_template.md +0 -0
  179. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/helpful_functions.py +0 -0
  180. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/hkSimulator/ace_lib.py +0 -0
  181. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/hkSimulator/autosimulator.py +0 -0
  182. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/hkSimulator/helpful_functions.py +0 -0
  183. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/mirror_config.txt +0 -0
  184. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/operaters.csv +0 -0
  185. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/requirements.txt +0 -0
  186. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/run_app.bat +0 -0
  187. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/run_app.sh +0 -0
  188. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/setup_tsinghua.bat +0 -0
  189. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/setup_tsinghua.sh +0 -0
  190. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/simulator/alpha_submitter.py +0 -0
  191. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/simulator/simulator_wqb.py +0 -0
  192. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/ssrn-3332513.pdf +0 -0
  193. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/static/brain.js +0 -0
  194. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/static/decoder.js +0 -0
  195. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/static/feature_engineering.js +0 -0
  196. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/static/idea_house.js +0 -0
  197. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/static/inspiration.js +0 -0
  198. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/static/inspiration_house.js +0 -0
  199. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/static/paper_analysis.js +0 -0
  200. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/static/script.js +0 -0
  201. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/static/simulator.js +0 -0
  202. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/static/styles.css +0 -0
  203. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/static/usage_widget.js +0 -0
  204. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/templates/alpha_inspector.html +0 -0
  205. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/templates/feature_engineering.html +0 -0
  206. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/templates/idea_house.html +0 -0
  207. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/templates/index.html +0 -0
  208. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/templates/inspiration_house.html +0 -0
  209. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/templates/paper_analysis.html +0 -0
  210. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/templates/simulator.html +0 -0
  211. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/templates/transformer_web.html +0 -0
  212. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP/usage.md +0 -0
  213. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP//347/274/230/345/210/206/344/270/200/351/201/223/346/241/245/ace_lib.py" +0 -0
  214. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP//347/274/230/345/210/206/344/270/200/351/201/223/346/241/245/brain_alpha_inspector.py" +0 -0
  215. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP//347/274/230/345/210/206/344/270/200/351/201/223/346/241/245/helpful_functions.py" +0 -0
  216. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/APP//350/277/220/350/241/214/346/211/223/345/274/200/346/210/221.py" +0 -0
  217. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/__init__.py +0 -0
  218. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/arXiv_API_Tool_Manual.md +0 -0
  219. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/arxiv_api.py +0 -0
  220. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/back_up/forum_functions.py +0 -0
  221. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/back_up/platform_functions.py +0 -0
  222. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/brain-consultant.md +0 -0
  223. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/forum_functions.py +0 -0
  224. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/mcp/346/226/207/344/273/266/350/256/272/345/235/233/347/211/2102_/345/246/202/346/236/234/345/216/237/347/211/210/345/220/257/345/212/250/344/270/215/344/272/206/346/265/217/350/247/210/345/231/250/345/260/261/350/257/225/350/277/231/344/270/252/forum_functions.py" +0 -0
  225. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/mcp/346/226/207/344/273/266/350/256/272/345/235/233/347/211/2102_/345/246/202/346/236/234/345/216/237/347/211/210/345/220/257/345/212/250/344/270/215/344/272/206/346/265/217/350/247/210/345/231/250/345/260/261/350/257/225/350/277/231/344/270/252/platform_functions.py" +0 -0
  226. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/mcp/346/226/207/344/273/266/350/256/272/345/235/233/347/211/2102_/345/246/202/346/236/234/345/216/237/347/211/210/345/220/257/345/212/250/344/270/215/344/272/206/346/265/217/350/247/210/345/231/250/345/260/261/350/257/225/350/277/231/344/270/252/user_config.json" +0 -0
  227. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/mcp/346/226/207/344/273/266/350/256/272/345/235/233/347/211/2102_/345/246/202/346/236/234/345/216/237/347/211/210/345/220/257/345/212/250/344/270/215/344/272/206/346/265/217/350/247/210/345/231/250/345/260/261/350/257/225/350/277/231/344/270/252//350/256/251AI/350/257/273/350/277/231/344/270/252/346/226/207/346/241/243/346/235/245/345/255/246/344/274/232/344/270/213/350/275/275/346/265/217/350/247/210/345/231/250.md" +0 -0
  228. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/mcp/346/226/207/344/273/266/350/256/272/345/235/233/347/211/2102_/345/246/202/346/236/234/345/216/237/347/211/210/345/220/257/345/212/250/344/270/215/344/272/206/346/265/217/350/247/210/345/231/250/345/260/261/350/257/225/350/277/231/344/270/252//351/205/215/347/275/256/345/211/215/350/277/220/350/241/214/346/210/221_/345/256/211/350/243/205/345/277/205/350/246/201/344/276/235/350/265/226/345/214/205.py" +0 -0
  229. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/platform_functions.py +0 -0
  230. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/sample_mcp_config.json +0 -0
  231. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/skills/Claude_Skill_Creation_Guide.md +0 -0
  232. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/skills/brain-calculate-alpha-selfcorrQuick/SKILL.md +0 -0
  233. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/skills/brain-calculate-alpha-selfcorrQuick/reference.md +0 -0
  234. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/skills/brain-calculate-alpha-selfcorrQuick/scripts/requirements.txt +0 -0
  235. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/skills/brain-calculate-alpha-selfcorrQuick/scripts/skill.py +0 -0
  236. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/skills/brain-datafield-exploration-general/SKILL.md +0 -0
  237. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/skills/brain-datafield-exploration-general/reference.md +0 -0
  238. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/skills/brain-dataset-exploration-general/SKILL.md +0 -0
  239. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/skills/brain-dataset-exploration-general/reference.md +0 -0
  240. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/skills/brain-explain-alphas/SKILL.md +0 -0
  241. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/skills/brain-explain-alphas/reference.md +0 -0
  242. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/skills/brain-how-to-pass-AlphaTest/SKILL.md +0 -0
  243. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/skills/brain-how-to-pass-AlphaTest/reference.md +0 -0
  244. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/skills/brain-improve-alpha-performance/SKILL.md +0 -0
  245. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/skills/brain-improve-alpha-performance/reference.md +0 -0
  246. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/skills/brain-nextMove-analysis/SKILL.md +0 -0
  247. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/skills/brain-nextMove-analysis/reference.md +0 -0
  248. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/skills/expression_verifier/SKILL.md +0 -0
  249. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/skills/expression_verifier/scripts/validator.py +0 -0
  250. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/skills/expression_verifier/scripts/verify_expr.py +0 -0
  251. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/skills/pull_BRAINSkill/SKILL.md +0 -0
  252. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/skills/pull_BRAINSkill/scripts/pull_skills.py +0 -0
  253. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked/user_config.json +0 -0
  254. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked//347/244/272/344/276/213/345/217/202/350/200/203/346/226/207/346/241/243_BRAIN_Alpha_Test_Requirements_and_Tips.md" +0 -0
  255. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked//347/244/272/344/276/213/345/267/245/344/275/234/346/265/201_Alpha_explaination_workflow.md" +0 -0
  256. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked//347/244/272/344/276/213/345/267/245/344/275/234/346/265/201_BRAIN_6_Tips_Datafield_Exploration_Guide.md" +0 -0
  257. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked//347/244/272/344/276/213/345/267/245/344/275/234/346/265/201_BRAIN_Alpha_Improvement_Workflow.md" +0 -0
  258. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked//347/244/272/344/276/213/345/267/245/344/275/234/346/265/201_Dataset_Exploration_Expert_Manual.md" +0 -0
  259. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked//347/244/272/344/276/213/345/267/245/344/275/234/346/265/201_daily_report_workflow.md" +0 -0
  260. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp/untracked//351/205/215/347/275/256/345/211/215/350/277/220/350/241/214/346/210/221_/345/256/211/350/243/205/345/277/205/350/246/201/344/276/235/350/265/226/345/214/205.py" +0 -0
  261. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp.egg-info/dependency_links.txt +0 -0
  262. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp.egg-info/entry_points.txt +0 -0
  263. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp.egg-info/not-zip-safe +0 -0
  264. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp.egg-info/requires.txt +0 -0
  265. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/cnhkmcp.egg-info/top_level.txt +0 -0
  266. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/requirements.txt +0 -0
  267. {cnhkmcp-2.1.8 → cnhkmcp-2.2.0}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: cnhkmcp
3
- Version: 2.1.8
3
+ Version: 2.2.0
4
4
  Summary: A comprehensive Model Context Protocol (MCP) server for quantitative trading platform integration
5
5
  Home-page: https://github.com/cnhk/cnhkmcp
6
6
  Author: CNHK
@@ -50,7 +50,7 @@ from .untracked.forum_functions import (
50
50
  read_full_forum_post
51
51
  )
52
52
 
53
- __version__ = "2.1.8"
53
+ __version__ = "2.2.0"
54
54
  __author__ = "CNHK"
55
55
  __email__ = "cnhk@example.com"
56
56
 
@@ -1,5 +1,5 @@
1
1
  {
2
- "api_key": "sk-lCfgrezCmn15J4VNkQb4n7pHYH2lKDQ82lj5Ehu6tOWoecPc",
2
+ "api_key": "sk-xxxxxxx",
3
3
  "base_url": "https://api.moonshot.cn/v1",
4
4
  "model": "kimi-latest",
5
5
  "system_prompt": "You are a WorldQuant BRAIN platform expert and Consultant. Your goal is to assist users with Alpha development, BRAIN API usage, and maximizing consultant income.\n\nYour expertise includes:\n- Deep knowledge of the BRAIN API (authentication, data, simulation, analysis).\n- Alpha development best practices (stable PnL, economic sense, avoiding pitfalls).\n- Consultant income structure (daily pay, Genius Program, increasing earnings).\n\nGuidelines:\n- Always refer to the BRAIN_Consultant_Starter_Handbook.md for guidance.\n- Emphasize the importance of stable PnL and economic sense when discussing Alphas.\n- Follow the handbook's workflow for API usage.\n- Explain income components clearly when asked.\n- IMPORTANT: You cannot directly interact with the platform. You must guide the user step-by-step on what actions to take (e.g., 'Copy this code', 'Go to the Simulation page').\n- Always suggest the specific next operation the user should perform.\n\nKey Concepts:\n1. Pyramid:\n - Definition: Combination of Region + Delay + Data Category. 'Lit' when 3+ Alphas are submitted in that combo.\n - Purpose: Measures diversity; affects promotions and QualityFactor.\n - Tips: Target underfilled pyramids; use grouping fields; track via MCP.\n\n2. Simulation Settings:\n - Key fields: instrument_type, region, delay (D0/D1), universe, neutralization, decay, truncation, etc.\n - Best Practices: Preprocess (winsorize -> zscore) -> Neutralize. Validate exposures.\n - Neutralization: Use regression_neut or group_neutralize. Consider CROWDING or RAM options.\n - Universes: Choose based on investability (e.g., TOP3000, TOPSP500).\n\nIf the user provides a screenshot, analyze it in the context of the BRAIN platform (e.g., Alpha code, simulation results, error messages). Answer in Chinese."
@@ -0,0 +1,325 @@
1
+ # {dataset_name} Feature Engineering Analysis Report
2
+
3
+ **Dataset**: {dataset_id}
4
+ **Category**: {category}
5
+ **Region**: {region}
6
+ **Analysis Date**: {analysis_date}
7
+ **Fields Analyzed**: {field_count}
8
+
9
+ ---
10
+
11
+ ## Executive Summary
12
+
13
+ **Primary Question Answered by Dataset**: What does this dataset fundamentally measure?
14
+
15
+ **Key Insights from Analysis**:
16
+ - {insight_1}
17
+ - {insight_2}
18
+ - {insight_3}
19
+
20
+ **Critical Field Relationships Identified**:
21
+ - {relationship_1}
22
+ - {relationship_2}
23
+
24
+ **Most Promising Feature Concepts**:
25
+ 1. {top_feature_1} - because {reason_1}
26
+ 2. {top_feature_2} - because {reason_2}
27
+ 3. {top_feature_3} - because {reason_3}
28
+
29
+ ---
30
+
31
+ ## Dataset Deep Understanding
32
+
33
+ ### Dataset Description
34
+ {dataset_description}
35
+
36
+ ### Field Inventory
37
+ | Field ID | Description | Data Type | Update Frequency | Coverage |
38
+ |----------|-------------|-----------|------------------|----------|
39
+ | {field_1_id} | {field_1_desc} | {type_1} | {freq_1} | {coverage_1}% |
40
+ | {field_2_id} | {field_2_desc} | {type_2} | {freq_2} | {coverage_2}% |
41
+ | {field_3_id} | {field_3_desc} | {type_3} | {freq_3} | {coverage_3}% |
42
+
43
+ *(Additional fields as needed)*
44
+
45
+ ### Field Deconstruction Analysis
46
+
47
+ #### {field_1_id}: {field_1_name}
48
+ - **What is being measured?**: {measurement_object_1}
49
+ - **How is it measured?**: {measurement_method_1}
50
+ - **Time dimension**: {time_dimension_1}
51
+ - **Business context**: {business_context_1}
52
+ - **Generation logic**: {generation_logic_1}
53
+ - **Reliability considerations**: {reliability_1}
54
+
55
+ #### {field_2_id}: {field_2_name}
56
+ - **What is being measured?**: {measurement_object_2}
57
+ - **How is it measured?**: {measurement_method_2}
58
+ - **Time dimension**: {time_dimension_2}
59
+ - **Business context**: {business_context_2}
60
+ - **Generation logic**: {generation_logic_2}
61
+ - **Reliability considerations**: {reliability_2}
62
+
63
+ *(Additional fields as needed)*
64
+
65
+ ### Field Relationship Mapping
66
+
67
+ **The Story This Data Tells**:
68
+ {story_description}
69
+
70
+ **Key Relationships Identified**:
71
+ 1. {relationship_1_desc}
72
+ 2. {relationship_2_desc}
73
+ 3. {relationship_3_desc}
74
+
75
+ **Missing Pieces That Would Complete the Picture**:
76
+ - {missing_1}
77
+ - {missing_2}
78
+
79
+ ---
80
+
81
+ ## Feature Concepts by Question Type
82
+
83
+ ### Q1: "What is stable?" (Invariance Features)
84
+
85
+ **Concept**: {stability_feature_1_name}
86
+ - **Fields Used**: {fields_used_1}
87
+ - **Definition**: {definition_1}
88
+ - **Why This Feature**: {why_1}
89
+ - **Logical Meaning**: {logical_meaning_1}
90
+ - **Directionality**: {directionality_1}
91
+ - **Boundary Conditions**: {boundaries_1}
92
+ - **Implementation Example**: `{implementation_1}`
93
+
94
+ **Concept**: {stability_feature_2_name}
95
+ - **Fields Used**: {fields_used_2}
96
+ - **Definition**: {definition_2}
97
+ - **Why This Feature**: {why_2}
98
+ - **Logical Meaning**: {logical_meaning_2}
99
+ - **Directionality**: {directionality_2}
100
+ - **Boundary Conditions**: {boundaries_2}
101
+ - **Implementation Example**: `{implementation_2}`
102
+
103
+ ---
104
+
105
+ ### Q2: "What is changing?" (Dynamics Features)
106
+
107
+ **Concept**: {dynamics_feature_1_name}
108
+ - **Fields Used**: {fields_used_3}
109
+ - **Definition**: {definition_3}
110
+ - **Why This Feature**: {why_3}
111
+ - **Logical Meaning**: {logical_meaning_3}
112
+ - **Directionality**: {directionality_3}
113
+ - **Boundary Conditions**: {boundaries_3}
114
+ - **Implementation Example**: `{implementation_3}`
115
+
116
+ **Concept**: {dynamics_feature_2_name}
117
+ - **Fields Used**: {fields_used_4}
118
+ - **Definition**: {definition_4}
119
+ - **Why This Feature**: {why_4}
120
+ - **Logical Meaning**: {logical_meaning_4}
121
+ - **Directionality**: {directionality_4}
122
+ - **Boundary Conditions**: {boundaries_4}
123
+ - **Implementation Example**: `{implementation_4}`
124
+
125
+ ---
126
+
127
+ ### Q3: "What is anomalous?" (Deviation Features)
128
+
129
+ **Concept**: {anomaly_feature_1_name}
130
+ - **Fields Used**: {fields_used_5}
131
+ - **Definition**: {definition_5}
132
+ - **Why This Feature**: {why_5}
133
+ - **Logical Meaning**: {logical_meaning_5}
134
+ - **Directionality**: {directionality_5}
135
+ - **Boundary Conditions**: {boundaries_5}
136
+ - **Implementation Example**: `{implementation_5}`
137
+
138
+ **Concept**: {anomaly_feature_2_name}
139
+ - **Fields Used**: {fields_used_6}
140
+ - **Definition**: {definition_6}
141
+ - **Why This Feature**: {why_6}
142
+ - **Logical Meaning**: {logical_meaning_6}
143
+ - **Directionality**: {directionality_6}
144
+ - **Boundary Conditions**: {boundaries_6}
145
+ - **Implementation Example**: `{implementation_6}`
146
+
147
+ ---
148
+
149
+ ### Q4: "What is combined?" (Interaction Features)
150
+
151
+ **Concept**: {interaction_feature_1_name}
152
+ - **Fields Used**: {fields_used_7}
153
+ - **Definition**: {definition_7}
154
+ - **Why This Feature**: {why_7}
155
+ - **Logical Meaning**: {logical_meaning_7}
156
+ - **Directionality**: {directionality_7}
157
+ - **Boundary Conditions**: {boundaries_7}
158
+ - **Implementation Example**: `{implementation_7}`
159
+
160
+ **Concept**: {interaction_feature_2_name}
161
+ - **Fields Used**: {fields_used_8}
162
+ - **Definition**: {definition_8}
163
+ - **Why This Feature**: {why_8}
164
+ - **Logical Meaning**: {logical_meaning_8}
165
+ - **Directionality**: {directionality_8}
166
+ - **Boundary Conditions**: {boundaries_8}
167
+ - **Implementation Example**: `{implementation_8}`
168
+
169
+ ---
170
+
171
+ ### Q5: "What is structural?" (Composition Features)
172
+
173
+ **Concept**: {structure_feature_1_name}
174
+ - **Fields Used**: {fields_used_9}
175
+ - **Definition**: {definition_9}
176
+ - **Why This Feature**: {why_9}
177
+ - **Logical Meaning**: {logical_meaning_9}
178
+ - **Directionality**: {directionality_9}
179
+ - **Boundary Conditions**: {boundaries_9}
180
+ - **Implementation Example**: `{implementation_9}`
181
+
182
+ **Concept**: {structure_feature_2_name}
183
+ - **Fields Used**: {fields_used_10}
184
+ - **Definition**: {definition_10}
185
+ - **Why This Feature**: {why_10}
186
+ - **Logical Meaning**: {logical_meaning_10}
187
+ - **Directionality**: {directionality_10}
188
+ - **Boundary Conditions**: {boundaries_10}
189
+ - **Implementation Example**: `{implementation_10}`
190
+
191
+ ---
192
+
193
+ ### Q6: "What is cumulative?" (Accumulation Features)
194
+
195
+ **Concept**: {accumulation_feature_1_name}
196
+ - **Fields Used**: {fields_used_11}
197
+ - **Definition**: {definition_11}
198
+ - **Why This Feature**: {why_11}
199
+ - **Logical Meaning**: {logical_meaning_11}
200
+ - **Directionality**: {directionality_11}
201
+ - **Boundary Conditions**: {boundaries_11}
202
+ - **Implementation Example**: `{implementation_11}`
203
+
204
+ **Concept**: {accumulation_feature_2_name}
205
+ - **Fields Used**: {fields_used_12}
206
+ - **Definition**: {definition_12}
207
+ - **Why This Feature**: {why_12}
208
+ - **Logical Meaning**: {logical_meaning_12}
209
+ - **Directionality**: {directionality_12}
210
+ - **Boundary Conditions**: {boundaries_12}
211
+ - **Implementation Example**: `{implementation_12}`
212
+
213
+ ---
214
+
215
+ ### Q7: "What is relative?" (Comparison Features)
216
+
217
+ **Concept**: {relative_feature_1_name}
218
+ - **Fields Used**: {fields_used_13}
219
+ - **Definition**: {definition_13}
220
+ - **Why This Feature**: {why_13}
221
+ - **Logical Meaning**: {logical_meaning_13}
222
+ - **Directionality**: {directionality_13}
223
+ - **Boundary Conditions**: {boundaries_13}
224
+ - **Implementation Example**: `{implementation_13}`
225
+
226
+ **Concept**: {relative_feature_2_name}
227
+ - **Fields Used**: {fields_used_14}
228
+ - **Definition**: {definition_14}
229
+ - **Why This Feature**: {why_14}
230
+ - **Logical Meaning**: {logical_meaning_14}
231
+ - **Directionality**: {directionality_14}
232
+ - **Boundary Conditions**: {boundaries_14}
233
+ - **Implementation Example**: `{implementation_14}`
234
+
235
+ ---
236
+
237
+ ### Q8: "What is essential?" (Essence Features)
238
+
239
+ **Concept**: {essence_feature_1_name}
240
+ - **Fields Used**: {fields_used_15}
241
+ - **Definition**: {definition_15}
242
+ - **Why This Feature**: {why_15}
243
+ - **Logical Meaning**: {logical_meaning_15}
244
+ - **Directionality**: {directionality_15}
245
+ - **Boundary Conditions**: {boundaries_15}
246
+ - **Implementation Example**: `{implementation_15}`
247
+
248
+ **Concept**: {essence_feature_2_name}
249
+ - **Fields Used**: {fields_used_16}
250
+ - **Definition**: {definition_16}
251
+ - **Why This Feature**: {why_16}
252
+ - **Logical Meaning**: {logical_meaning_16}
253
+ - **Directionality**: {directionality_16}
254
+ - **Boundary Conditions**: {boundaries_16}
255
+ - **Implementation Example**: `{implementation_16}`
256
+
257
+ ---
258
+
259
+ ## Implementation Considerations
260
+
261
+ ### Data Quality Notes
262
+ - **Coverage**: {coverage_note}
263
+ - **Timeliness**: {timeliness_note}
264
+ - **Accuracy**: {accuracy_note}
265
+ - **Potential Biases**: {bias_note}
266
+
267
+ ### Computational Complexity
268
+ - **Lightweight features**: {simple_features}
269
+ - **Medium complexity**: {medium_features}
270
+ - **Heavy computation**: {complex_features}
271
+
272
+ ### Recommended Prioritization
273
+
274
+ **Tier 1 (Immediate Implementation)**:
275
+ 1. {priority_1_feature} - {priority_1_reason}
276
+ 2. {priority_2_feature} - {priority_2_reason}
277
+ 3. {priority_3_feature} - {priority_3_reason}
278
+
279
+ **Tier 2 (Secondary Priority)**:
280
+ 1. {priority_4_feature} - {priority_4_reason}
281
+ 2. {priority_5_feature} - {priority_5_reason}
282
+
283
+ **Tier 3 (Requires Further Validation)**:
284
+ 1. {priority_6_feature} - {priority_6_reason}
285
+
286
+ ---
287
+
288
+ ## Critical Questions for Further Exploration
289
+
290
+ ### Unanswered Questions:
291
+ 1. {unanswered_question_1}
292
+ 2. {unanswered_question_2}
293
+ 3. {unanswered_question_3}
294
+
295
+ ### Recommended Additional Data:
296
+ - {additional_data_1}
297
+ - {additional_data_2}
298
+ - {additional_data_3}
299
+
300
+ ### Assumptions to Challenge:
301
+ - {assumption_1}
302
+ - {assumption_2}
303
+ - {assumption_3}
304
+
305
+ ---
306
+
307
+ ## Methodology Notes
308
+
309
+ **Analysis Approach**: This report was generated by:
310
+ 1. Deep field deconstruction to understand data essence
311
+ 2. Question-driven feature generation (8 fundamental questions)
312
+ 3. Logical validation of each feature concept
313
+ 4. Transparent documentation of reasoning
314
+
315
+ **Design Principles**:
316
+ - Focus on logical meaning over conventional patterns
317
+ - Every feature must answer a specific question
318
+ - Clear documentation of "why" for each suggestion
319
+ - Emphasis on data understanding over prediction
320
+
321
+ ---
322
+
323
+ *Report generated: {generation_timestamp}*
324
+ *Analysis depth: Comprehensive field deconstruction + 8-question framework*
325
+ *Next steps: Implement Tier 1 features, validate assumptions, gather additional data as needed*
@@ -0,0 +1,263 @@
1
+ ---
2
+ name: brain-data-feature-engineering
3
+ description: >-
4
+ Automatically analyzes BRAIN dataset fields and generates feature engineering ideas for alpha creation.
5
+ Input: data category, delay, region parameters; Output: markdown document with deep feature engineering suggestions.
6
+ The skill performs autonomous analysis based on dataset and field information, proposing meaningful feature concepts.
7
+ allowed-tools:
8
+ - Read
9
+ - Grep
10
+ - Glob
11
+ - Write
12
+ - mcp__brain-mcp__get_datasets
13
+ - mcp__brain-mcp__get_datafields
14
+ - mcp__brain-mcp__get_dataset_details
15
+ ---
16
+
17
+ # BRAIN Data Feature Engineering Workflow
18
+
19
+ **Purpose**: Automatically transform BRAIN dataset fields into deep, meaningful feature engineering ideas.
20
+
21
+ **For Detailed Mindset Patterns**: See `reference.md` for feature engineering philosophy.
22
+ **For Implementation Examples**: See `examples.md` for case studies.
23
+
24
+ ## Input Requirements
25
+
26
+ ### Required Parameters:
27
+ - **data_category**: Dataset category (e.g., "fundamental", "analyst", "news", "model")
28
+ - **delay**: Data delay setting (0 or 1)
29
+ - **region**: Market region (e.g., "USA", "EUR", "ASI")
30
+
31
+ ### Optional Parameters:
32
+ - **universe**: Trading universe (default: "TOP3000")
33
+ - **dataset_id**: Specific dataset ID (if known, skips discovery phase)
34
+
35
+ ## Workflow Overview
36
+
37
+ ### Step 1: Dataset Discovery
38
+ **Autonomous Action:**
39
+ - Call `mcp__brain-mcp__get_datasets` with parameters (category, delay, region, universe)
40
+ - If dataset_id provided: Validate and use it
41
+ - If dataset_id not provided: Select the most relevant dataset based on metadata analysis
42
+ - **Output**: Locked dataset_id for analysis
43
+
44
+ ### Step 2: Field Extraction and Deconstruction
45
+ **Autonomous Action:**
46
+ - Call `mcp__brain-mcp__get_datafields` for the selected dataset
47
+ - For each field, extract: id, description, dataType, update frequency, coverage
48
+ - **Deconstruct each field's meaning**:
49
+ * What is being measured? (the entity/concept)
50
+ * How is it measured? (collection/calculation method)
51
+ * Time dimension? (instantaneous, cumulative, rate of change)
52
+ * Business context? (why does this field exist?)
53
+ * Generation logic? (reliability considerations)
54
+ - **Build field profiles**: Structured understanding of each field's essence
55
+
56
+ ### Step 3: Autonomous Thinking and Analysis
57
+ **The skill performs deep analysis based on collected information:**
58
+
59
+ **A. Field Relationship Mapping**
60
+ - Analyze logical connections between fields
61
+ - Identify: independent fields, related fields, complementary fields
62
+ - Map the "story" the dataset tells
63
+ - **Key question**: What relationships are implied by these fields?
64
+
65
+ **B. Question-Driven Feature Generation (Internal Process)**
66
+ The skill asks itself these questions and generates feature concepts:
67
+
68
+ 1. **"What is stable?"** → Look for invariants
69
+ - Which fields or combinations remain relatively constant?
70
+ - What stability measures make sense?
71
+
72
+ 2. **"What is changing?"** → Analyze change patterns
73
+ - Rate of change, acceleration, volatility
74
+ - Trend vs. noise separation
75
+
76
+ 3. **"What is anomalous?"** → Identify deviations
77
+ - Outliers, unusual patterns, breaks from normal
78
+ - Deviation magnitude and significance
79
+
80
+ 4. **"What is combined?"** → Examine interactions
81
+ - How fields interact, amplify, or offset each other
82
+ - Synthesis creates new meaning
83
+
84
+ 5. **"What is structural?"** → Study compositions
85
+ - Constituent parts, proportional relationships
86
+ - Structural changes over time
87
+
88
+ 6. **"What is cumulative?"** → Explore accumulation effects
89
+ - Building up over time, decay effects
90
+ - Memory and persistence in data
91
+
92
+ 7. **"What is relative?"** → Make comparisons
93
+ - Relative positioning, ranking, normalization
94
+ - Context within dataset
95
+
96
+ 8. **"What is essential?"** → Distill to core meaning
97
+ - First principles thinking
98
+ - Strip away assumptions, get to essence
99
+
100
+ **C. Feature Concept Generation**
101
+ For each relevant question-field combination:
102
+ - Formulate feature concept that answers the question
103
+ - Define the concept clearly
104
+ - Identify the logical meaning
105
+ - Consider directionality (what high/low values mean)
106
+ - Identify boundary conditions
107
+ - Note potential issues/limitations
108
+
109
+ ### Step 4: Feature Documentation
110
+ **For each generated feature concept, document:**
111
+ - **Concept Name**: Clear, descriptive name
112
+ - **Definition**: One-sentence definition
113
+ - **Logical Meaning**: What phenomenon/concept does it represent?
114
+ - **Why It's Meaningful**: Why does this feature make sense?
115
+ - **Directionality**: Interpretation of high vs. low values
116
+ - **Boundary Conditions**: What extremes indicate
117
+ - **Data Requirements**: What fields are used and any constraints
118
+ - **Potential Issues**: Known limitations or concerns
119
+
120
+ ### Step 5: Output Generation
121
+ **Generate structured markdown report including:**
122
+
123
+ 0. **Write the report to ./output_report/region_delay_datasetID_ideas.md** in the following format:
124
+
125
+ 1. **Dataset Understanding**
126
+ - Dataset description and characteristics
127
+ - Field inventory (count, types, update patterns)
128
+ - Key observations about data structure
129
+
130
+ 2. **Field Deconstruction Analysis**
131
+ - For each field: what it truly measures and why
132
+ - Logical relationships between fields
133
+ - "Story" the data tells
134
+
135
+ 3. **Feature Engineering Suggestions by Question Type**
136
+
137
+ **3.1 Stability Features**
138
+ - Concepts for measuring stability/invariance
139
+ - Why stability matters in this dataset
140
+ - Example implementations
141
+
142
+ **3.2 Change Features**
143
+ - Concepts for capturing change patterns
144
+ - Rate, acceleration, volatility measures
145
+ - Temporal dynamics
146
+
147
+ **3.3 Anomaly Features**
148
+ - Deviation and outlier detection concepts
149
+ - Normal vs. abnormal identification
150
+ - Significance measures
151
+
152
+ **3.4 Interaction Features**
153
+ - Cross-field interaction concepts
154
+ - Amplification, offset, synthesis effects
155
+ - Combined meaning creation
156
+
157
+ **3.5 Structure Features**
158
+ - Composition and relationship concepts
159
+ - Proportional analysis
160
+ - Structural change detection
161
+
162
+ **3.6 Cumulative Features**
163
+ - Accumulation and decay concepts
164
+ - Memory/persistence measures
165
+ - Time-weighted effects
166
+
167
+ **3.7 Relative Features**
168
+ - Comparison and normalization concepts
169
+ - Ranking and percentile measures
170
+ - Context-relative positioning
171
+
172
+ **3.8 Essential Features**
173
+ - First-principles derived concepts
174
+ - Core meaning extraction
175
+ - Fundamental measures
176
+
177
+ 4. **Implementation Considerations**
178
+ - Data quality notes
179
+ - Coverage considerations
180
+ - Computational complexity
181
+ - Potential improvements/extensions
182
+
183
+ 5. **Critical Questions for Further Exploration**
184
+ - What aspects weren't covered?
185
+ - What additional data would be helpful?
186
+ - What assumptions should be challenged?
187
+
188
+
189
+ ## Core Analysis Principles
190
+
191
+ 1. **From Data Essence**: Start with what data truly means, not what it's traditionally used for
192
+ 2. **Autonomous Reasoning**: Skill performs all thinking, no user input required
193
+ 3. **Question-Driven**: Internal question bank guides feature generation
194
+ 4. **Meaning Over Patterns**: Prioritize logical meaning over conventional combinations
195
+ 5. **Transparency**: Show reasoning process in output
196
+
197
+ ## Example Output Structure
198
+
199
+ When analyzing dataset 'BEME' (Balance Sheet and Market Data), the output would include:
200
+
201
+ ### Dataset Understanding
202
+ **Fields Analyzed**: book_value, market_cap, book_to_market, etc.
203
+ **Key Observations**: Dataset compares accounting values with market valuations
204
+
205
+ ### Field Deconstruction
206
+ - **book_value**: Accountant's calculation of net asset value (quarterly, audited, historical cost-based)
207
+ - **market_cap**: Market participants' valuation (continuous, forward-looking, sentiment-influenced)
208
+ - **book_to_market**: Ratio comparing these two valuation perspectives
209
+
210
+ ### Feature Concepts Generated
211
+
212
+ **From "What is stable?"**
213
+ - "Market reevaluation stability": Rolling coefficient of variation of book_to_market
214
+ - **Logic**: Measures whether market opinion is stable or volatile
215
+ - **Meaning**: Stable values suggest consensus, volatile values suggest disagreement/uncertainty
216
+
217
+ **From "What is changing?"**
218
+ - "Value creation vs. market reevaluation decomposition": Separate book_value growth from market_cap growth
219
+ - **Logic**: Distinguish fundamental value creation from market sentiment changes
220
+ - **Meaning**: Which component drives changes in book_to_market?
221
+
222
+ **From "What is combined?"**
223
+ - "Intangible value proportion": (market_cap - book_value) / enterprise_value
224
+ - **Logic**: Quantify proportion of value from intangibles (brand, growth, etc.)
225
+ - **Meaning**: What percentage of valuation isn't captured on the balance sheet?
226
+
227
+ **(Additional question-based features would follow...)**
228
+
229
+ ## Implementation Notes
230
+
231
+ ### The skill should:
232
+ 1. **Analyze first, then generate**: Fully understand dataset before proposing features
233
+ 2. **Show reasoning**: Explain why each feature concept makes sense
234
+ 3. **Be specific**: Reference actual field names and their characteristics
235
+ 4. **Be critical**: Question assumptions and identify limitations
236
+ 5. **Be creative**: Look beyond traditional financial metrics
237
+
238
+ ### The skill should NOT:
239
+ 1. **Ask users to think**: All thinking is internal to the skill
240
+ 2. **Provide generic templates**: Each analysis should be specific to the dataset
241
+ 3. **Rely on conventional wisdom**: Challenge traditional approaches
242
+ 4. **Output patterns without meaning**: Every suggestion must have clear logic
243
+
244
+ ## Quality Assurance
245
+
246
+ **Self-Check Process:**
247
+ - [ ] All fields analyzed, not just skimmed
248
+ - [ ] Field meanings understood beyond descriptions
249
+ - [ ] Multiple question types explored
250
+ - [ ] Each feature has clear logical meaning
251
+ - [ ] Reasoning is explicit, not implicit
252
+ - [ ] Limitations are acknowledged
253
+ - [ ] Output is dataset-specific, not generic
254
+
255
+ **Validation Questions:**
256
+ - Would this analysis help someone truly understand the data?
257
+ - Are feature concepts novel yet meaningful?
258
+ - Is the reasoning process transparent?
259
+ - Does it avoid conventional thinking traps?
260
+
261
+ ---
262
+
263
+ *This skill performs autonomous deep analysis of BRAIN datasets, generating meaningful feature engineering concepts based on data essence and logical reasoning.*