cnhkmcp 1.2.9__tar.gz → 1.3.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (25) hide show
  1. {cnhkmcp-1.2.9/cnhkmcp.egg-info → cnhkmcp-1.3.0}/PKG-INFO +1 -1
  2. {cnhkmcp-1.2.9 → cnhkmcp-1.3.0}/cnhkmcp/__init__.py +1 -1
  3. cnhkmcp-1.3.0/cnhkmcp/untracked/BRAIN_Alpha_Test_Requirements_and_Tips.md +202 -0
  4. cnhkmcp-1.3.0/cnhkmcp/untracked/arXiv_API_Tool_Manual.md +490 -0
  5. cnhkmcp-1.3.0/cnhkmcp/untracked/arxiv_api.py +229 -0
  6. {cnhkmcp-1.2.9 → cnhkmcp-1.3.0/cnhkmcp.egg-info}/PKG-INFO +1 -1
  7. {cnhkmcp-1.2.9 → cnhkmcp-1.3.0}/cnhkmcp.egg-info/SOURCES.txt +3 -0
  8. {cnhkmcp-1.2.9 → cnhkmcp-1.3.0}/setup.py +1 -1
  9. {cnhkmcp-1.2.9 → cnhkmcp-1.3.0}/LICENSE +0 -0
  10. {cnhkmcp-1.2.9 → cnhkmcp-1.3.0}/MANIFEST.in +0 -0
  11. {cnhkmcp-1.2.9 → cnhkmcp-1.3.0}/README.md +0 -0
  12. {cnhkmcp-1.2.9 → cnhkmcp-1.3.0}/cnhkmcp/untracked/BRAIN_6_Tips_Datafield_Exploration_Guide.md +0 -0
  13. {cnhkmcp-1.2.9 → cnhkmcp-1.3.0}/cnhkmcp/untracked/Dataset_Exploration_Expert_Manual.md +0 -0
  14. {cnhkmcp-1.2.9 → cnhkmcp-1.3.0}/cnhkmcp/untracked/daily_report_workflow.md +0 -0
  15. {cnhkmcp-1.2.9 → cnhkmcp-1.3.0}/cnhkmcp/untracked/forum_functions.py +0 -0
  16. {cnhkmcp-1.2.9 → cnhkmcp-1.3.0}/cnhkmcp/untracked/platform_functions.py +0 -0
  17. {cnhkmcp-1.2.9 → cnhkmcp-1.3.0}/cnhkmcp/untracked/sample_mcp_config.json +0 -0
  18. {cnhkmcp-1.2.9 → cnhkmcp-1.3.0}/cnhkmcp/untracked/user_config.json +0 -0
  19. {cnhkmcp-1.2.9 → cnhkmcp-1.3.0}/cnhkmcp.egg-info/dependency_links.txt +0 -0
  20. {cnhkmcp-1.2.9 → cnhkmcp-1.3.0}/cnhkmcp.egg-info/entry_points.txt +0 -0
  21. {cnhkmcp-1.2.9 → cnhkmcp-1.3.0}/cnhkmcp.egg-info/not-zip-safe +0 -0
  22. {cnhkmcp-1.2.9 → cnhkmcp-1.3.0}/cnhkmcp.egg-info/requires.txt +0 -0
  23. {cnhkmcp-1.2.9 → cnhkmcp-1.3.0}/cnhkmcp.egg-info/top_level.txt +0 -0
  24. {cnhkmcp-1.2.9 → cnhkmcp-1.3.0}/requirements.txt +0 -0
  25. {cnhkmcp-1.2.9 → cnhkmcp-1.3.0}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: cnhkmcp
3
- Version: 1.2.9
3
+ Version: 1.3.0
4
4
  Summary: A comprehensive Model Context Protocol (MCP) server for quantitative trading platform integration
5
5
  Home-page: https://github.com/cnhk/cnhkmcp
6
6
  Author: CNHK
@@ -50,7 +50,7 @@ from .untracked.forum_functions import (
50
50
  read_full_forum_post
51
51
  )
52
52
 
53
- __version__ = "1.2.9"
53
+ __version__ = "1.3.0"
54
54
  __author__ = "CNHK"
55
55
  __email__ = "cnhk@example.com"
56
56
 
@@ -0,0 +1,202 @@
1
+ # BRAIN Alpha Submission Tests: Requirements and Improvement Tips
2
+
3
+ This document compiles the key requirements for passing alpha submission tests on the WorldQuant BRAIN platform, based on official documentation and community experiences from the forum. I've focused on the main tests (Fitness, Sharpe, Turnover, Weight, Sub-universe, and Self-Correlation). For each, I'll outline the thresholds, explanations, and strategies to improve or pass them, drawing from doc pages like "Clear these tests before submitting an Alpha" and forum searches on specific topics.
4
+
5
+ ## Overview
6
+ ## What is an Alpha?
7
+ An alpha is a mathematical model or signal designed to predict the future movements of financial instruments (e.g., stocks). On BRAIN, alphas are expressed using the platform's FASTEXPR language and simulated against historical data to evaluate performance. Successful alphas can earn payments and contribute to production strategies.
8
+
9
+ ## What Are Alpha Tests?
10
+ Alphas must pass a series of pre-submission checks (e.g., via the `get_submission_check` tool) to ensure they meet quality thresholds. Key tests include:
11
+ - **Fitness and Sharpe Ratio**: Measures risk-adjusted returns. Must be above cutoffs (e.g., IS Sharpe > 1.25 for some universes).
12
+ - **Correlation Checks**: Against self-alphas and production alphas (threshold ~0.7) to avoid redundancy.
13
+ - **Turnover and Drawdown**: Ensures stability (e.g., low turnover < 250%).
14
+ - **Regional/Universe-Specific**: Vary by settings like USA TOP3000 (D1) or GLB TOP3000.
15
+ - **Other Metrics**: PnL, yearly stats, and risk-neutralized metrics (e.g., RAM, Crowding Risk-Neutralized).
16
+
17
+ Failing tests result in errors like "Sub-universe Sharpe NaN is not above cutoff" or low fitness.
18
+
19
+ ## General Guidance on Passing Tests
20
+ - **Start Simple**: Use basic operators like `ts_rank`, `ts_corr`, or `neutralize` on price-volume data.
21
+ - **Optimize Settings**: Choose universes like TOP3000 (USA, D1) for easier testing. Neutralize against MARKET or SUBINDUSTRY to reduce correlation.
22
+ - **Improve Metrics**: Apply `ts_decay_linear` for stability, `scale` for normalization, and check with `check_correlation`.
23
+ - **Common Pitfalls**: Avoid high correlation (use `check_correlation`), ensure non-NaN data (e.g., via `ts_backfill`), and target high IR/Fitness.
24
+ - **Resources**: Review operators (e.g., 102 available like `ts_zscore`), documentation (e.g., "Interpret Results" section), and forum posts.
25
+
26
+ Alphas must pass these in-sample (IS) performance tests to be submitted for out-of-sample (OS) testing. Only submitted alphas contribute to scoring and payments. Tests are run in sequence, and failure messages guide improvements (e.g., "Improve fitness" or "Reduce max correlation").
27
+
28
+ ## Generating and Improving Alpha Ideas: The Conceptual Foundation
29
+ Before diving into metrics and optimizations, strong alphas start with solid ideas rooted in financial theory, market behaviors, or data insights. Improving from an "idea angle" means iterating on the core concept rather than just tweaking parameters—this often leads to more robust alphas that pass tests naturally. Use resources like BRAIN's "Alpha Examples for Beginners" (from Discover BRAIN category) or forum-shared ideas.
30
+
31
+ ### Key Principles
32
+ - **Idea Sources**: Draw from academic papers, economic indicators, or datasets (e.g., sentiment, earnings surprises). Validate ideas with backtests to ensure they generalize.
33
+ - **Iteration**: Start simple, then refine: Add neutralization for correlation, decay for stability, or grouping for diversification.
34
+ - **Avoid Overfitting**: Test ideas across universes/regions; use train/test splits.
35
+ - **Tools**: Explore datasets via Data Explorer; use operators like `ts_rank` for signals.
36
+
37
+ ### Using arXiv for Idea Discovery
38
+ A powerful way to source fresh ideas is through academic papers on arXiv. Use the provided `arxiv_api.py` script (detailed in `arXiv_API_Tool_Manual.md`) to search and download relevant research.
39
+
40
+ - **Search Example**: Run `python arxiv_api.py "quantitative finance momentum strategies"` to find papers on momentum ideas. Download top results for detailed study.
41
+ - **Integration Tip**: Extract concepts like "earnings surprises" from abstracts, then implement in BRAIN (e.g., using sentiment datasets). This helps generate diverse alphas that pass correlation tests.
42
+ - **Why It Helps**: Papers often provide theoretical backing, reducing overfitting risks when adapting to BRAIN simulations.
43
+
44
+ Refer to the manual for interactive mode and advanced queries to streamline your research workflow.
45
+
46
+ ### Avoid Mixing Datasets: The ATOM Principle
47
+ When improving an alpha, prioritize modifications that stay within the same dataset as the original. ATOM (Atomic) alphas are those built from a single dataset (excluding permitted grouping fields like country, sector, etc.), which qualify for relaxed submission criteria—focusing on last 2Y Sharpe instead of full IS Ladder tests.
48
+
49
+ **Why It's Important**:
50
+ - **Robustness**: Mixing datasets can introduce conflicting signals, leading to overfitting and poor out-of-sample performance (forum insights on ATOM alphas).
51
+ - **Submission Benefits**: Single-dataset alphas have easier thresholds (e.g., Delay-1: >1 for last 2Y Sharpe in USA) and may align with themes offering multipliers (up to x1.1 for low-utilization pyramids).
52
+ - **Correlation Control**: ATOM alphas often have lower self-correlation, helping pass tests and diversify your portfolio.
53
+
54
+ **How to Apply**:
55
+ - Check the alpha's data fields via simulation results or code.
56
+ - Search for improvements in the same dataset first (use Data Explorer).
57
+ - If mixing is needed, verify it doesn't disqualify ATOM status and retest thoroughly.
58
+
59
+ This principle, highlighted in BRAIN docs and forums, ensures alphas remain "atomic" and competitive.
60
+
61
+ ### Understanding Datafields Before Improvements
62
+ Before optimizing alphas, thoroughly evaluate the datafields involved to address potential issues like unit mismatches or update frequencies. This prevents common pitfalls in tests (e.g., NaN errors, poor sub-universe performance) and ensures appropriate operators are used. Use these 6 methods from the BRAIN exploration guide (adapted for quick simulation in "None" neutralization, decay 0, test_period P0Y0M):
63
+
64
+ 1. **Basic Coverage**: For example, Simulate `datafield` (or `vec_op(datafield)` for vectors). Insight: % coverage = (Long + Short Count) / Universe Size.
65
+ 2. **Non-Zero Coverage**: For example, Simulate `datafield != 0 ? 1 : 0`. Insight: Actual meaningful data points.
66
+ 3. **Update Frequency**: For example, Simulate `ts_std_dev(datafield, N) != 0 ? 1 : 0` (vary N=5,22,66). Insight: Daily/weekly/monthly/quarterly updates.
67
+ 4. **Data Bounds**: For example, Simulate `abs(datafield) > X` (vary X). Insight: Value ranges and normalization.
68
+ 5. **Central Tendency**: For example, Simulate `ts_median(datafield, 1000) > X` (vary X). Insight: Typical values over time.
69
+ 6. **Distribution**: Simulate `X < scale_down(datafield) && scale_down(datafield) < Y` (vary X/Y between 0-1). Insight: Data spread patterns.
70
+
71
+ Apply insights to choose operators (e.g., ts_backfill for sparse data, scale for unit issues) and fix problems before improvements.
72
+
73
+ ### Examples from Community and Docs (From Alpha Template Sharing Post)
74
+ These examples are sourced from the forum post on sharing unique alpha ideas and implementations, emphasizing templates that generate robust signals for passing submission tests.
75
+
76
+ - **Multi-Smoothing Ranking Signal** (User: JB71859): For earnings data, apply double smoothing with ranking and statistical ops. Example: `ts_mean(ts_rank(earnings_field, decay1), decay2)`. First ts_rank normalizes values over time (pre-processing), then ts_mean smooths for stable signals (main signal). Helps improve fitness and reduce turnover by lowering noise; produced 3 ATOM alphas after 2000 simulations.
77
+ - **Momentum Divergence Factor** (User: YK49234): Capture divergence between short and long-term momentum on the same field. Example: `ts_delta(ts_zscore(field, short_window), short_window) - ts_delta(ts_zscore(field, long_window), long_window)`. Processes data with z-scoring for normalization, then delta/mean for change detection (main signal). Boosts Sharpe by highlighting momentum shifts; yielded 4 submitable alphas from 20k tests with ~5% signal rate.
78
+ - **Network Factor Difference Momentum** (User: JR23144): Compute differences in oth455 PCA factors for 'imbalance' signals, then apply time series ops. Example: `ts_sum(oth455_fact2 - oth455_fact1, 240)`. Math op creates difference (pre-processing), ts op captures persistence (main signal). Enhances correlation passing via unique network insights; effective in EUR for low-fitness but high-margin alphas.
79
+
80
+ These community-shared templates promote diverse, ATOM-friendly ideas that align with test requirements like low correlation and high robustness.
81
+
82
+ ### Official BRAIN Examples
83
+ Draw from BRAIN's structured tutorials for foundational ideas:
84
+
85
+ - **Beginner Level** ([19 Alpha Examples](https://platform.worldquantbrain.com/learn/documentation/create-alphas/19-alpha-examples)): Start with simple price-based signals. Example: `ts_rank(close, 20)` – Ranks closing prices over 20 days to capture momentum. Improve by adding neutralization: `neutralize(ts_rank(close, 20), "MARKET")` to reduce market bias and pass correlation tests.
86
+
87
+ - **Bronze Level** ([Sample Alpha Concepts](https://platform.worldquantbrain.com/learn/documentation/create-alphas/sample-alpha-concepts)): Incorporate multiple data fields. Example: `ts_corr(close, volume, 10)` – Correlation between price and volume over 10 days. Enhance fitness by decaying: `ts_decay_linear(ts_corr(close, volume, 10), 5)` for smoother signals.
88
+
89
+ - **Silver Level** ([Example Expression Alphas](https://platform.worldquantbrain.com/learn/documentation/create-alphas/example-expression-alphas)): Advanced combinations. Example: `scale(ts_rank(ts_delay(vwap, 1) / vwap, 252))` – Normalized 1-year price change. Iterate by adding groups: `group_zscore(scale(ts_rank(ts_delay(vwap, 1) / vwap, 252)), "INDUSTRY")` to improve sub-universe robustness.
90
+
91
+ These examples show how starting with a core idea (e.g., momentum) and layering improvements (e.g., neutralization, decay) can help pass tests like fitness and sub-universe.
92
+
93
+ ## 1. Fitness
94
+ ### Requirements
95
+ - At least "Average": Greater than 1.3 for Delay-0 or Greater than 1 for Delay-1.
96
+ - Fitness = Sharpe * sqrt(abs(Returns) / max(Turnover, 0.125)).
97
+ - Ratings: Spectacular (>2.5 Delay-1 or >3.25 Delay-0), Excellent (>2 or >2.6), etc.
98
+
99
+ ### Explanation
100
+ Fitness balances Sharpe, Returns, and Turnover. High fitness indicates a robust alpha. It's a key metric for alpha quality.
101
+
102
+ ### Tips to Improve
103
+ - **From Docs**: Increase Sharpe/Returns and reduce Turnover. Optimize by balancing these—improving one may hurt another. Aim for upward PnL trends with minimal drawdown.
104
+ - **Forum Experiences** (from searches on "increase fitness alpha"):
105
+ - Use group operators (e.g., with pv13) to boost fitness without overcomplicating expressions.
106
+ - Screen alphas with author_fitness >=2 or similar in competitions like Super Alpha.
107
+ - Manage alphas via databases or tags; query for high-fitness ones (e.g., via API with fitness filters).
108
+ - In hand-crafting alphas, iteratively add operators like left_tail and group to push fitness over thresholds, but watch for overfitting.
109
+ - Community shares: High-fitness alphas (e.g., >2) often come from multi-factor fusions or careful data field selection.
110
+
111
+ ## 2. Sharpe Ratio
112
+ ### Requirements
113
+ - Greater than 2 for Delay-0 or Greater than 1.25 for Delay-1.
114
+ - Sharpe = sqrt(252) * IR, where IR = mean(PnL) / stdev(PnL).
115
+
116
+ ### Explanation
117
+ Measures risk-adjusted returns. Higher Sharpe means more consistent performance. For GLB alphas, additional sub-geography Sharpes (>=1 for AMER, APAC, EMEA).
118
+
119
+ ### Tips to Improve
120
+ - **From Docs**: Focus on consistent PnL with low volatility. Use visualization to ensure upward trends. For sub-geography, incorporate region-specific signals (e.g., earnings for AMER, microstructure for APAC).
121
+ - **Forum Experiences** (from searches on "improve Sharpe ratio alpha"):
122
+ - Decay signals separately for liquid/non-liquid stocks (e.g., ts_decay_linear with rank(volume*close)).
123
+ - Avoid size-related multipliers (e.g., rank(-assets)) that shift weights to illiquid stocks.
124
+ - Check yearly Sharpe data via API and store in databases for analysis.
125
+ - In templates like CCI-based, combine with z-score and delay to stabilize Sharpe.
126
+ - Community tip: Prune low-Sharpe alphas in pools using weighted methods to retain high-Sharpe ones.
127
+ - **Flipping Negative Sharpe**: For non-CHN regions, if an alpha shows negative Sharpe (e.g., -1 to -2), add a minus sign to the expression (e.g., `-original_expression`) to flip it positive. This preserves the signal while improving metrics; verify it doesn't introduce correlation issues.
128
+
129
+ ## 3. Turnover
130
+ ### Requirements
131
+ - 1% < Turnover < 70%.
132
+ - Turnover = Dollar trading volume / Book size.
133
+
134
+ ### Explanation
135
+ Indicates trading frequency. Low turnover reduces costs; extremes fail submission.
136
+
137
+ ### Tips to Improve
138
+ - **From Docs**: Aim for balanced trading—too low means inactive, too high means over-trading.
139
+ - **Forum Experiences**: (Note: Specific turnover searches weren't direct, but tied to fitness/Sharpe improvements)
140
+ - Use decay functions to smooth signals, reducing unnecessary trades.
141
+ - In multi-alpha simulations, filter by turnover thresholds in code to pre-select candidates.
142
+
143
+ ## 4. Weight Test
144
+ ### Requirements
145
+ - Max weight in any stock <10%.
146
+ - Sufficient instruments assigned weight (varies by universe, e.g., TOP3000).
147
+
148
+ ### Explanation
149
+ Ensures diversification; fails if concentrated or too few stocks weighted.
150
+
151
+ ### Tips to Improve
152
+ - **From Docs**: Avoid expressions that overly concentrate weights. Assign weights broadly after simulation start.
153
+ - **Forum Experiences**: (Limited direct posts; inferred from general submission tips)
154
+ - Use neutralization (e.g., market) to distribute weights evenly.
155
+ - Check via simulation stats; adjust with rank or scale operators.
156
+
157
+ ## 5. Sub-universe Test
158
+ ### Requirements
159
+ - Sub-universe Sharpe >= 0.75 * sqrt(subuniverse_size / alpha_universe_size) * alpha_sharpe.
160
+ - Ensures robustness in more liquid sub-universes (e.g., TOP1000 for TOP3000).
161
+
162
+ ### Explanation
163
+ Tests if alpha performs in liquid stocks, avoiding over-reliance on illiquid ones.
164
+
165
+ ### Tips to Improve
166
+ - **From Docs**: Avoid size-related multipliers. Decay liquid/non-liquid parts separately (e.g., ts_decay_linear(signal,5)*rank(volume*close) + ts_decay_linear(signal,10)*(1-rank(volume*close))). From this example, we can see that the signal can be inflated by different weights for different parts of an datafield.
167
+ - Step-by-step improvements; discard non-robust signals.
168
+ - **Forum Experiences**: (From "how to pass submission tests")
169
+ - Improve overall Sharpe first, as it scales the threshold.
170
+ - Use pasteurize to handle NaNs and ensure even distribution.
171
+
172
+ ## 6. Self-Correlation
173
+ ### Requirements
174
+ - <0.7 PnL correlation with own submitted alphas.
175
+ - Or Sharpe at least 10% greater than correlated alphas.
176
+
177
+ ### Explanation
178
+ Promotes diversity; based on 4-year PnL window. Allows improvements if new alpha is significantly better.
179
+
180
+ ### Tips to Improve
181
+ - **From Docs**: Submit diverse ideas. Use correlation table in results to identify issues.
182
+ - **Forum Experiences** (from searches on "reduce correlation self alphas"):
183
+ - Local computation of self-correlation (e.g., via PnL matrices) to pre-filter before submission.
184
+ - Code optimizations: Prune high-correlation alphas, use clustering or weighted pruning (e.g., Sharpe-weighted) to retain diverse sets.
185
+ - Handle negatives: Transform negatively correlated alphas (e.g., in China market) by inversion or adjustments.
186
+ - Scripts for batch checking: Use machine_lib modifications to print correlations and pyramid info.
187
+ - Community shares: Differences between local and platform calculations (e.g., due to NaN handling); align by using full PnL data.
188
+
189
+ ### Evaluating Whole Alpha Quality
190
+ Before final submission, perform these checks on simulation results:
191
+
192
+ - **Yearly Stats Quality Check**: Review yearly statistics. If records are missing for >5 years, it indicates low data quality (e.g., sparse coverage). Fix with ts_backfill, data selection, or alternative fields to ensure robust performance across tests.
193
+
194
+ This complements per-test improvements by validating overall alpha reliability.
195
+
196
+ ## General Advice
197
+ - Start with broad simulations, narrow based on stats.
198
+ - Use tools like check_submission API for pre-checks.
199
+ - Forum consensus: Automate with Python scripts for efficiency (e.g., threading for simulates, databases for alpha management).
200
+ - Risks: Overfitting in manual tweaks; validate with train/test splits.
201
+
202
+ This guide is based on tool-gathered data. For updates, check BRAIN docs or forum.
@@ -0,0 +1,490 @@
1
+ # 🔍 arXiv Paper Search & Download Tool
2
+
3
+ A comprehensive Python tool for searching, analyzing, and downloading research papers from arXiv using their public API. Perfect for researchers, students, and anyone interested in academic papers.
4
+
5
+ ## 📋 Table of Contents
6
+
7
+ - [Features](#-features)
8
+ - [Installation](#-installation)
9
+ - [Quick Start](#-quick-start)
10
+ - [Usage Modes](#-usage-modes)
11
+ - [API Functions](#-api-functions)
12
+ - [Examples](#-examples)
13
+ - [Advanced Usage](#-advanced-usage)
14
+ - [Troubleshooting](#-troubleshooting)
15
+
16
+ ## ✨ Features
17
+
18
+ - **🔍 Smart Search**: Search arXiv papers by title, author, abstract, or any keyword
19
+ - **📥 Smart Download**: Download PDFs with automatic filename renaming to paper titles
20
+ - **📊 Result Parsing**: Automatically extract structured information (title, authors, abstract, ID)
21
+ - **🖥️ Interactive Mode**: Command-line interface for easy searching and downloading
22
+ - **⚡ Batch Operations**: Search multiple papers and download in sequence
23
+ - **📈 Academic Research**: Perfect for literature reviews and research discovery
24
+ - **🔄 Auto-Rename**: Downloaded files are automatically named using paper titles instead of cryptic IDs
25
+
26
+ ## 🚀 Installation
27
+
28
+ ### Prerequisites
29
+ - Python 3.6 or higher
30
+ - Internet connection for API access
31
+
32
+ ### Install Dependencies
33
+ ```bash
34
+ pip install requests
35
+ ```
36
+
37
+ ### Download the Script
38
+ ```bash
39
+ # Clone or download arxiv_api.py to your working directory
40
+ ```
41
+
42
+ ## 🎯 Quick Start
43
+
44
+ ### Basic Search
45
+ ```bash
46
+ python arxiv_api.py "machine learning"
47
+ ```
48
+
49
+ ### Search with Custom Results
50
+ ```bash
51
+ python arxiv_api.py "quantum computing" -n 10
52
+ ```
53
+
54
+ ### Search and Download First Result
55
+ ```bash
56
+ python arxiv_api.py "deep learning" -d
57
+ ```
58
+
59
+ ### Interactive Mode
60
+ ```bash
61
+ python arxiv_api.py -i
62
+ ```
63
+
64
+ ### Download Paper by ID (with auto-rename)
65
+ ```bash
66
+ # In interactive mode:
67
+ # 📚 arxiv> download 2502.05218v1
68
+ # This will automatically rename the file to the paper's title
69
+ ```
70
+
71
+ ## 🎮 Usage Modes
72
+
73
+ ### 1. Command Line Mode
74
+ Direct search queries from the command line.
75
+
76
+ **Syntax:**
77
+ ```bash
78
+ python arxiv_api.py [query] [options]
79
+ ```
80
+
81
+ **Options:**
82
+ - `-n, --max_results`: Maximum number of results (default: 5)
83
+ - `-d, --download`: Download the first result automatically
84
+ - `-i, --interactive`: Start interactive mode
85
+ - `-h, --help`: Show help message
86
+
87
+ ### 2. Interactive Mode
88
+ Interactive command-line interface for multiple operations.
89
+
90
+ **Commands:**
91
+ - `search <query> [max_results]`: Search for papers
92
+ - `download <paper_id>`: Download a specific paper (with auto-rename)
93
+ - `help`: Show available commands
94
+ - `quit/exit`: Exit the program
95
+
96
+ ## 🔧 API Functions
97
+
98
+ ### Core Functions
99
+
100
+ #### `search_arxiv(query, max_results=10)`
101
+ Searches arXiv for papers using the public API.
102
+
103
+ **Parameters:**
104
+ - `query` (str): Search query string
105
+ - `max_results` (int): Maximum number of results (default: 10)
106
+
107
+ **Returns:**
108
+ - `str`: XML response from arXiv API
109
+
110
+ **Example:**
111
+ ```python
112
+ from arxiv_api import search_arxiv
113
+
114
+ results = search_arxiv("artificial intelligence", max_results=5)
115
+ ```
116
+
117
+ #### `get_paper_metadata(paper_id)`
118
+ Fetches paper metadata directly from arXiv API using paper ID.
119
+
120
+ **Parameters:**
121
+ - `paper_id` (str): arXiv paper ID (e.g., "2502.05218v1")
122
+
123
+ **Returns:**
124
+ - `dict`: Paper information dictionary, or `None` if not found
125
+
126
+ **Example:**
127
+ ```python
128
+ from arxiv_api import get_paper_metadata
129
+
130
+ paper_info = get_paper_metadata("2502.05218v1")
131
+ if paper_info:
132
+ print(f"Title: {paper_info['title']}")
133
+ print(f"Authors: {', '.join(paper_info['authors'])}")
134
+ ```
135
+
136
+ #### `download_paper(paper_id, output_dir=".", paper_title=None)`
137
+ Downloads a specific paper by its arXiv ID and automatically renames it to the paper title.
138
+
139
+ **Parameters:**
140
+ - `paper_id` (str): arXiv paper ID (e.g., "2502.05218v1")
141
+ - `output_dir` (str): Output directory (default: current directory)
142
+ - `paper_title` (str): Paper title for filename (optional, will be fetched automatically if not provided)
143
+
144
+ **Returns:**
145
+ - `str`: File path of downloaded PDF, or `None` if failed
146
+
147
+ **Features:**
148
+ - **Auto-rename**: Automatically renames downloaded files to paper titles
149
+ - **Smart cleaning**: Removes special characters and limits filename length
150
+ - **Fallback**: Uses paper ID if title is unavailable
151
+
152
+ **Example:**
153
+ ```python
154
+ from arxiv_api import download_paper
155
+
156
+ # Download with automatic title fetching and renaming
157
+ filepath = download_paper("2502.05218v1")
158
+
159
+ # Download with custom title
160
+ filepath = download_paper("2502.05218v1", paper_title="My Custom Title")
161
+ ```
162
+
163
+ #### `parse_search_results(xml_content)`
164
+ Parses XML search results and extracts structured paper information.
165
+
166
+ **Parameters:**
167
+ - `xml_content` (str): XML response from arXiv API
168
+
169
+ **Returns:**
170
+ - `list`: List of dictionaries containing paper information
171
+
172
+ **Paper Information Structure:**
173
+ ```python
174
+ {
175
+ 'title': 'Paper Title',
176
+ 'authors': ['Author 1', 'Author 2'],
177
+ 'abstract': 'Paper abstract...',
178
+ 'paper_id': '2502.05218v1',
179
+ 'published': '2025-02-05T12:37:15Z'
180
+ }
181
+ ```
182
+
183
+ #### `search_and_download(query, max_results=5, download_first=False)`
184
+ Combined function that searches for papers and optionally downloads the first result.
185
+
186
+ **Parameters:**
187
+ - `query` (str): Search query string
188
+ - `max_results` (int): Maximum number of results (default: 5)
189
+ - `download_first` (bool): Whether to download first result (default: False)
190
+
191
+ **Example:**
192
+ ```python
193
+ from arxiv_api import search_and_download
194
+
195
+ # Search and display results only
196
+ search_and_download("machine learning", max_results=3)
197
+
198
+ # Search and download first result (with auto-rename)
199
+ search_and_download("deep learning", max_results=5, download_first=True)
200
+ ```
201
+
202
+ ### Interactive Mode Functions
203
+
204
+ #### `interactive_mode()`
205
+ Starts the interactive command-line interface.
206
+
207
+ **Features:**
208
+ - Command history
209
+ - Error handling
210
+ - User-friendly prompts
211
+ - Multiple search sessions
212
+ - **Smart download with auto-rename**
213
+
214
+ ## 📚 Examples
215
+
216
+ ### Example 1: Basic Paper Search
217
+ ```bash
218
+ # Search for machine learning papers
219
+ python arxiv_api.py "machine learning"
220
+
221
+ # Output:
222
+ # Searching arXiv for: 'machine learning'
223
+ # --------------------------------------------------
224
+ # Found 5 papers:
225
+ #
226
+ # 1. Title: Introduction to Machine Learning
227
+ # Authors: John Doe, Jane Smith
228
+ # Paper ID: 2103.12345
229
+ # Published: 2021-03-15T10:30:00Z
230
+ # Abstract: This paper introduces...
231
+ ```
232
+
233
+ ### Example 2: Search with Custom Results
234
+ ```bash
235
+ # Get 10 results for quantum computing
236
+ python arxiv_api.py "quantum computing" -n 10
237
+ ```
238
+
239
+ ### Example 3: Search and Download (with auto-rename)
240
+ ```bash
241
+ # Search for papers and download the first one
242
+ python arxiv_api.py "artificial intelligence" -d
243
+ # Downloaded file will be automatically renamed to the paper title
244
+ ```
245
+
246
+ ### Example 4: Interactive Mode with Smart Download
247
+ ```bash
248
+ python arxiv_api.py -i
249
+
250
+ # 📚 arxiv> search blockchain finance 5
251
+ # 📚 arxiv> download 2502.05218v1
252
+ # Fetching paper information for 2502.05218v1...
253
+ # Found paper: FactorGCL: A Hypergraph-Based Factor Model...
254
+ # Downloaded: .\FactorGCL_A_Hypergraph-Based_Factor_Model...pdf
255
+ # 📚 arxiv> help
256
+ # 📚 arxiv> quit
257
+ ```
258
+
259
+ ### Example 5: Python Script Integration
260
+ ```python
261
+ from arxiv_api import search_and_download, download_paper, get_paper_metadata
262
+
263
+ # Search for papers on a specific topic
264
+ search_and_download("quantitative finance China", max_results=3)
265
+
266
+ # Download a specific paper with auto-rename
267
+ download_paper("2502.05218v1")
268
+
269
+ # Get paper metadata
270
+ paper_info = get_paper_metadata("2502.05218v1")
271
+ if paper_info:
272
+ print(f"Title: {paper_info['title']}")
273
+ ```
274
+
275
+ ## 🔍 Advanced Usage
276
+
277
+ ### Smart Download Features
278
+
279
+ #### Automatic Filename Generation
280
+ ```python
281
+ from arxiv_api import download_paper
282
+
283
+ # The tool automatically:
284
+ # 1. Fetches paper metadata
285
+ # 2. Extracts the title
286
+ # 3. Cleans the title for filename use
287
+ # 4. Downloads and renames the file
288
+
289
+ # Example output filename:
290
+ # "FactorGCL_A_Hypergraph-Based_Factor_Model_with_Temporal_Residual_Contrastive_Learning_for_Stock_Returns_Prediction.pdf"
291
+ ```
292
+
293
+ #### Custom Search Queries
294
+
295
+ ##### Field-Specific Searches
296
+ ```bash
297
+ # Search by author
298
+ python arxiv_api.py "au:Yann LeCun"
299
+
300
+ # Search by title
301
+ python arxiv_api.py "ti:deep learning"
302
+
303
+ # Search by abstract
304
+ python arxiv_api.py "abs:neural networks"
305
+
306
+ # Search by category
307
+ python arxiv_api.py "cat:cs.AI"
308
+ ```
309
+
310
+ ##### Complex Queries
311
+ ```bash
312
+ # Multiple terms
313
+ python arxiv_api.py "machine learning AND neural networks"
314
+
315
+ # Exclude terms
316
+ python arxiv_api.py "deep learning NOT reinforcement"
317
+
318
+ # Date range
319
+ python arxiv_api.py "machine learning AND submittedDate:[20230101 TO 20231231]"
320
+ ```
321
+
322
+ ### Batch Operations
323
+
324
+ #### Download Multiple Papers with Auto-Rename
325
+ ```python
326
+ from arxiv_api import search_arxiv, parse_search_results, download_paper
327
+
328
+ # Search for papers
329
+ query = "quantum computing"
330
+ results = search_arxiv(query, max_results=10)
331
+ papers = parse_search_results(results)
332
+
333
+ # Download all papers (each will be automatically renamed)
334
+ for paper in papers:
335
+ paper_id = paper.get('paper_id')
336
+ if paper_id:
337
+ download_paper(paper_id, output_dir="./quantum_papers")
338
+ ```
339
+
340
+ #### Custom Output Formatting
341
+ ```python
342
+ from arxiv_api import search_and_download
343
+
344
+ # Custom display function
345
+ def custom_display(papers):
346
+ for i, paper in enumerate(papers, 1):
347
+ print(f"📄 Paper {i}: {paper['title']}")
348
+ print(f"👥 Authors: {', '.join(paper['authors'])}")
349
+ print(f"🆔 ID: {paper['paper_id']}")
350
+ print(f"📅 Date: {paper['published']}")
351
+ print(f"📝 Abstract: {paper['abstract'][:150]}...")
352
+ print("-" * 80)
353
+
354
+ # Use custom display
355
+ search_and_download("blockchain", max_results=3)
356
+ ```
357
+
358
+ ## 🛠️ Troubleshooting
359
+
360
+ ### Common Issues
361
+
362
+ #### 1. No Results Found
363
+ **Problem:** Search returns no papers
364
+ **Solution:**
365
+ - Check spelling and use broader terms
366
+ - Try different keyword combinations
367
+ - Verify internet connection
368
+
369
+ #### 2. Download Failed
370
+ **Problem:** Paper download fails
371
+ **Solution:**
372
+ - Verify paper ID is correct
373
+ - Check if paper exists on arXiv
374
+ - Ensure write permissions in output directory
375
+
376
+ #### 3. API Rate Limiting
377
+ **Problem:** Too many requests
378
+ **Solution:**
379
+ - Wait between requests
380
+ - Reduce batch size
381
+ - Use interactive mode for multiple searches
382
+
383
+ #### 4. XML Parsing Errors
384
+ **Problem:** Error parsing search results
385
+ **Solution:**
386
+ - Check internet connection
387
+ - Verify API response format
388
+ - Update the script if needed
389
+
390
+ #### 5. Filename Too Long
391
+ **Problem:** Generated filename exceeds system limits
392
+ **Solution:**
393
+ - The tool automatically limits filenames to 100 characters
394
+ - Special characters are automatically cleaned
395
+ - Fallback to paper ID if title is unavailable
396
+
397
+ ### Error Messages
398
+
399
+ ```
400
+ Error: Failed to download paper 2502.05218v1
401
+ ```
402
+ - Paper ID may not exist
403
+ - Network connection issue
404
+ - arXiv server problem
405
+
406
+ ```
407
+ Error parsing XML: ...
408
+ ```
409
+ - Malformed API response
410
+ - Network interruption
411
+ - API format change
412
+
413
+ ```
414
+ Could not find paper information for 2502.05218v1
415
+ ```
416
+ - Paper ID may be invalid
417
+ - arXiv API issue
418
+ - Network connectivity problem
419
+
420
+ ## 📖 API Reference
421
+
422
+ ### arXiv API Endpoints
423
+ - **Search API**: `http://export.arxiv.org/api/query`
424
+ - **Metadata API**: `http://export.arxiv.org/api/query?id_list={paper_id}`
425
+ - **Documentation**: https://arxiv.org/help/api
426
+ - **Rate Limits**: Be respectful, avoid excessive requests
427
+
428
+ ### Data Fields Available
429
+ - **Title**: Paper title
430
+ - **Authors**: List of author names
431
+ - **Abstract**: Paper abstract
432
+ - **Paper ID**: Unique arXiv identifier
433
+ - **Published Date**: Publication timestamp
434
+ - **Categories**: arXiv subject categories
435
+
436
+ ### Paper ID Format
437
+ - **Format**: `YYMM.NNNNNvN`
438
+ - **Example**: `2502.05218v1`
439
+ - **Download URL**: `https://arxiv.org/pdf/{paper_id}.pdf`
440
+
441
+ ### Smart Download Features
442
+ - **Automatic Metadata Fetching**: Gets paper information before download
443
+ - **Intelligent Filename Generation**: Converts paper titles to valid filenames
444
+ - **Character Cleaning**: Removes special characters and spaces
445
+ - **Length Limiting**: Ensures filenames don't exceed system limits
446
+ - **Fallback Naming**: Uses paper ID if title is unavailable
447
+
448
+ ## 🤝 Contributing
449
+
450
+ ### Adding New Features
451
+ 1. Fork the repository
452
+ 2. Create a feature branch
453
+ 3. Implement your changes
454
+ 4. Add tests and documentation
455
+ 5. Submit a pull request
456
+
457
+ ### Reporting Issues
458
+ - Check existing issues first
459
+ - Provide detailed error messages
460
+ - Include system information
461
+ - Describe steps to reproduce
462
+
463
+ ## 📄 License
464
+
465
+ This project is open source and available under the MIT License.
466
+
467
+ ## 🙏 Acknowledgments
468
+
469
+ - **arXiv**: For providing the public API
470
+ - **Python Community**: For excellent libraries and tools
471
+ - **Researchers**: For contributing to open science
472
+
473
+ ## 📞 Support
474
+
475
+ ### Getting Help
476
+ - Check this documentation first
477
+ - Review the examples section
478
+ - Search existing issues
479
+ - Create a new issue for bugs
480
+
481
+ ### Useful Links
482
+ - [arXiv Official Site](https://arxiv.org/)
483
+ - [arXiv API Documentation](https://arxiv.org/help/api)
484
+ - [Python Requests Library](https://requests.readthedocs.io/)
485
+
486
+ ---
487
+
488
+ **Happy Researching! 🎓📚**
489
+
490
+ *This tool makes academic research more accessible and efficient. Use it responsibly and respect arXiv's terms of service.*
@@ -0,0 +1,229 @@
1
+ import requests
2
+ import xml.etree.ElementTree as ET
3
+ import os
4
+ import sys
5
+ import argparse
6
+
7
+ def search_arxiv(query, max_results=10):
8
+ """Search arXiv for papers"""
9
+ base_url = "http://export.arxiv.org/api/query"
10
+ params = {
11
+ 'search_query': query,
12
+ 'start': 0,
13
+ 'max_results': max_results
14
+ }
15
+
16
+ response = requests.get(base_url, params=params)
17
+ return response.text
18
+
19
+ def get_paper_metadata(paper_id):
20
+ """Get paper metadata directly from arXiv API"""
21
+ try:
22
+ # Use the arXiv API to get paper metadata
23
+ metadata_url = f"http://export.arxiv.org/api/query?id_list={paper_id}"
24
+ response = requests.get(metadata_url)
25
+
26
+ if response.status_code == 200:
27
+ papers = parse_search_results(response.text)
28
+ if papers and len(papers) > 0:
29
+ return papers[0]
30
+ return None
31
+ except Exception as e:
32
+ print(f"Error fetching paper metadata: {e}")
33
+ return None
34
+
35
+ def download_paper(paper_id, output_dir=".", paper_title=None):
36
+ """Download a paper by its ID and rename it to the paper title"""
37
+ pdf_url = f"https://arxiv.org/pdf/{paper_id}.pdf"
38
+ response = requests.get(pdf_url)
39
+
40
+ if response.status_code == 200:
41
+ # Create filename from paper title if available, otherwise use paper ID
42
+ if paper_title:
43
+ # Clean the title for filename (remove special characters, limit length)
44
+ clean_title = "".join(c for c in paper_title if c.isalnum() or c in (' ', '-', '_')).rstrip()
45
+ clean_title = clean_title.replace(' ', '_')[:100] # Limit length to 100 chars
46
+ filename = f"{clean_title}.pdf"
47
+ else:
48
+ filename = f"{paper_id}.pdf"
49
+
50
+ filepath = os.path.join(output_dir, filename)
51
+
52
+ with open(filepath, 'wb') as f:
53
+ f.write(response.content)
54
+ print(f"Downloaded: {filepath}")
55
+ return filepath
56
+ else:
57
+ print(f"Failed to download paper {paper_id}")
58
+ return None
59
+
60
+ def parse_search_results(xml_content):
61
+ """Parse XML search results and extract paper information"""
62
+ try:
63
+ root = ET.fromstring(xml_content)
64
+ papers = []
65
+
66
+ # Find all entry elements
67
+ for entry in root.findall('.//{http://www.w3.org/2005/Atom}entry'):
68
+ paper_info = {}
69
+
70
+ # Extract title
71
+ title_elem = entry.find('.//{http://www.w3.org/2005/Atom}title')
72
+ if title_elem is not None:
73
+ paper_info['title'] = title_elem.text.strip()
74
+
75
+ # Extract authors
76
+ authors = []
77
+ for author in entry.findall('.//{http://www.w3.org/2005/Atom}author'):
78
+ name_elem = author.find('.//{http://www.w3.org/2005/Atom}name')
79
+ if name_elem is not None:
80
+ authors.append(name_elem.text.strip())
81
+ paper_info['authors'] = authors
82
+
83
+ # Extract abstract
84
+ summary_elem = entry.find('.//{http://www.w3.org/2005/Atom}summary')
85
+ if summary_elem is not None:
86
+ paper_info['abstract'] = summary_elem.text.strip()
87
+
88
+ # Extract paper ID from the id field
89
+ id_elem = entry.find('.//{http://www.w3.org/2005/Atom}id')
90
+ if id_elem is not None:
91
+ # Extract ID from URL like "http://arxiv.org/abs/2103.12345"
92
+ paper_id = id_elem.text.split('/')[-1]
93
+ paper_info['paper_id'] = paper_id
94
+
95
+ # Extract published date
96
+ published_elem = entry.find('.//{http://www.w3.org/2005/Atom}published')
97
+ if published_elem is not None:
98
+ paper_info['published'] = published_elem.text.strip()
99
+
100
+ papers.append(paper_info)
101
+
102
+ return papers
103
+ except ET.ParseError as e:
104
+ print(f"Error parsing XML: {e}")
105
+ return []
106
+
107
+ def search_and_download(query, max_results=5, download_first=False):
108
+ """Search for papers and optionally download the first result"""
109
+ print(f"Searching arXiv for: '{query}'")
110
+ print("-" * 50)
111
+
112
+ # Search for papers
113
+ results = search_arxiv(query, max_results)
114
+ papers = parse_search_results(results)
115
+
116
+ if not papers:
117
+ print("No papers found.")
118
+ return
119
+
120
+ # Display search results
121
+ print(f"Found {len(papers)} papers:\n")
122
+ for i, paper in enumerate(papers, 1):
123
+ print(f"{i}. Title: {paper.get('title', 'N/A')}")
124
+ print(f" Authors: {', '.join(paper.get('authors', ['N/A']))}")
125
+ print(f" Paper ID: {paper.get('paper_id', 'N/A')}")
126
+ print(f" Published: {paper.get('published', 'N/A')}")
127
+ print(f" Abstract: {paper.get('abstract', 'N/A')[:200]}...")
128
+ print()
129
+
130
+ # Optionally download first paper
131
+ if download_first and papers:
132
+ first_paper = papers[0]
133
+ paper_id = first_paper.get('paper_id')
134
+ paper_title = first_paper.get('title')
135
+ if paper_id:
136
+ print(f"Downloading first paper: {paper_id}")
137
+ download_paper(paper_id, paper_title=paper_title)
138
+ else:
139
+ print("Could not extract paper ID for download")
140
+
141
+ def interactive_mode():
142
+ """Interactive mode for searching arXiv"""
143
+ print("🔍 arXiv Paper Search Tool")
144
+ print("=" * 40)
145
+ print("Commands:")
146
+ print(" search <query> [max_results] - Search for papers")
147
+ print(" download <paper_id> - Download a specific paper")
148
+ print(" help - Show this help message")
149
+ print(" quit/exit - Exit the program")
150
+ print()
151
+
152
+ while True:
153
+ try:
154
+ command = input("📚 arxiv> ").strip()
155
+
156
+ if not command:
157
+ continue
158
+
159
+ parts = command.split()
160
+ cmd = parts[0].lower()
161
+
162
+ if cmd in ['quit', 'exit', 'q']:
163
+ print("Goodbye! 👋")
164
+ break
165
+
166
+ elif cmd == 'help':
167
+ print("Commands:")
168
+ print(" search <query> [max_results] - Search for papers")
169
+ print(" download <paper_id> - Download a specific paper")
170
+ print(" help - Show this help message")
171
+ print(" quit/exit - Exit the program")
172
+ print()
173
+
174
+ elif cmd == 'search':
175
+ if len(parts) < 2:
176
+ print("Usage: search <query> [max_results]")
177
+ continue
178
+
179
+ query = ' '.join(parts[1:-1]) if len(parts) > 2 else parts[1]
180
+ max_results = int(parts[-1]) if len(parts) > 2 and parts[-1].isdigit() else 5
181
+
182
+ search_and_download(query, max_results, download_first=False)
183
+
184
+ elif cmd == 'download':
185
+ if len(parts) < 2:
186
+ print("Usage: download <paper_id>")
187
+ continue
188
+
189
+ paper_id = parts[1]
190
+ # Get paper metadata first
191
+ print(f"Fetching paper information for {paper_id}...")
192
+ paper_info = get_paper_metadata(paper_id)
193
+
194
+ if paper_info and paper_info.get('title'):
195
+ paper_title = paper_info['title']
196
+ print(f"Found paper: {paper_title}")
197
+ download_paper(paper_id, paper_title=paper_title)
198
+ else:
199
+ print(f"Could not find paper information for {paper_id}")
200
+ print("Downloading with paper ID as filename...")
201
+ download_paper(paper_id)
202
+
203
+ else:
204
+ print(f"Unknown command: {cmd}")
205
+ print("Type 'help' for available commands")
206
+
207
+ except KeyboardInterrupt:
208
+ print("\nGoodbye! 👋")
209
+ break
210
+ except Exception as e:
211
+ print(f"Error: {e}")
212
+
213
+ # Example usage
214
+ if __name__ == "__main__":
215
+ parser = argparse.ArgumentParser(description='Search and download papers from arXiv')
216
+ parser.add_argument('query', nargs='?', help='Search query')
217
+ parser.add_argument('-n', '--max_results', type=int, default=5, help='Maximum number of results (default: 5)')
218
+ parser.add_argument('-d', '--download', action='store_true', help='Download the first result')
219
+ parser.add_argument('-i', '--interactive', action='store_true', help='Start interactive mode')
220
+
221
+ args = parser.parse_args()
222
+
223
+ if args.interactive:
224
+ interactive_mode()
225
+ elif args.query:
226
+ search_and_download(args.query, args.max_results, args.download)
227
+ else:
228
+ # Default behavior - start interactive mode
229
+ interactive_mode()
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: cnhkmcp
3
- Version: 1.2.9
3
+ Version: 1.3.0
4
4
  Summary: A comprehensive Model Context Protocol (MCP) server for quantitative trading platform integration
5
5
  Home-page: https://github.com/cnhk/cnhkmcp
6
6
  Author: CNHK
@@ -12,7 +12,10 @@ cnhkmcp.egg-info/not-zip-safe
12
12
  cnhkmcp.egg-info/requires.txt
13
13
  cnhkmcp.egg-info/top_level.txt
14
14
  cnhkmcp/untracked/BRAIN_6_Tips_Datafield_Exploration_Guide.md
15
+ cnhkmcp/untracked/BRAIN_Alpha_Test_Requirements_and_Tips.md
15
16
  cnhkmcp/untracked/Dataset_Exploration_Expert_Manual.md
17
+ cnhkmcp/untracked/arXiv_API_Tool_Manual.md
18
+ cnhkmcp/untracked/arxiv_api.py
16
19
  cnhkmcp/untracked/daily_report_workflow.md
17
20
  cnhkmcp/untracked/forum_functions.py
18
21
  cnhkmcp/untracked/platform_functions.py
@@ -13,7 +13,7 @@ def read_requirements():
13
13
 
14
14
  setup(
15
15
  name="cnhkmcp",
16
- version="1.2.9",
16
+ version="1.3.0",
17
17
  author="CNHK",
18
18
  author_email="cnhk@example.com",
19
19
  description="A comprehensive Model Context Protocol (MCP) server for quantitative trading platform integration",
File without changes
File without changes
File without changes
File without changes
File without changes