cmaq-tools 0.1.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- cmaq_tools-0.1.0/.gitignore +10 -0
- cmaq_tools-0.1.0/.python-version +1 -0
- cmaq_tools-0.1.0/LICENSE +21 -0
- cmaq_tools-0.1.0/PKG-INFO +81 -0
- cmaq_tools-0.1.0/README.md +48 -0
- cmaq_tools-0.1.0/cmaq_tools/__init__.py +3 -0
- cmaq_tools-0.1.0/cmaq_tools/aelmo_extractor.py +130 -0
- cmaq_tools-0.1.0/pyproject.toml +50 -0
- cmaq_tools-0.1.0/uv.lock +2924 -0
|
@@ -0,0 +1 @@
|
|
|
1
|
+
3.13
|
cmaq_tools-0.1.0/LICENSE
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
MIT License
|
|
2
|
+
|
|
3
|
+
Copyright (c) 2026 CAMQ Tools Team
|
|
4
|
+
|
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
7
|
+
in the Software without restriction, including without limitation the rights
|
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
10
|
+
furnished to do so, subject to the following conditions:
|
|
11
|
+
|
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
|
13
|
+
copies or substantial portions of the Software.
|
|
14
|
+
|
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
21
|
+
SOFTWARE.
|
|
@@ -0,0 +1,81 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: cmaq-tools
|
|
3
|
+
Version: 0.1.0
|
|
4
|
+
Summary: A Python library for extracting and processing air quality model data from AELMO NetCDF files
|
|
5
|
+
Project-URL: Homepage, https://github.com/zusiven/cmaq_tools
|
|
6
|
+
Project-URL: Repository, https://github.com/zusiven/cmaq_tools.git
|
|
7
|
+
Project-URL: Documentation, https://github.com/zusiven/cmaq_tools
|
|
8
|
+
Author: CMAQ Tools Team
|
|
9
|
+
License-File: LICENSE
|
|
10
|
+
Keywords: aelmo,air-quality,atmospheric-modeling,data-extraction,netcdf
|
|
11
|
+
Classifier: Development Status :: 3 - Alpha
|
|
12
|
+
Classifier: Intended Audience :: Science/Research
|
|
13
|
+
Classifier: License :: OSI Approved :: MIT License
|
|
14
|
+
Classifier: Programming Language :: Python :: 3
|
|
15
|
+
Classifier: Programming Language :: Python :: 3.11
|
|
16
|
+
Classifier: Topic :: Scientific/Engineering :: Atmospheric Science
|
|
17
|
+
Requires-Python: >=3.11
|
|
18
|
+
Requires-Dist: netcdf4
|
|
19
|
+
Requires-Dist: polars>=1.37.1
|
|
20
|
+
Requires-Dist: pyproj
|
|
21
|
+
Requires-Dist: wztools>=2026.1.6
|
|
22
|
+
Requires-Dist: xarray>=2025.4.0
|
|
23
|
+
Provides-Extra: dev
|
|
24
|
+
Requires-Dist: jupyter>=1.0.0; extra == 'dev'
|
|
25
|
+
Requires-Dist: matplotlib>=3.5.0; extra == 'dev'
|
|
26
|
+
Requires-Dist: pytest-cov>=4.0.0; extra == 'dev'
|
|
27
|
+
Requires-Dist: pytest>=7.0.0; extra == 'dev'
|
|
28
|
+
Requires-Dist: twine>=6.2.0; extra == 'dev'
|
|
29
|
+
Provides-Extra: examples
|
|
30
|
+
Requires-Dist: jupyter>=1.0.0; extra == 'examples'
|
|
31
|
+
Requires-Dist: matplotlib>=3.5.0; extra == 'examples'
|
|
32
|
+
Description-Content-Type: text/markdown
|
|
33
|
+
|
|
34
|
+
# CMAQ Tools
|
|
35
|
+
|
|
36
|
+
一个用于从 AELMO NetCDF 文件中提取和处理空气质量模型数据的 Python 库。
|
|
37
|
+
|
|
38
|
+
## 安装
|
|
39
|
+
|
|
40
|
+
```bash
|
|
41
|
+
pip install git+https://github.com/zusiven/cmaq_tools.git
|
|
42
|
+
```
|
|
43
|
+
|
|
44
|
+
## 使用方法
|
|
45
|
+
|
|
46
|
+
```python
|
|
47
|
+
from cmaq_tools import AelmoExtractor
|
|
48
|
+
from pathlib import Path
|
|
49
|
+
|
|
50
|
+
# 初始化提取器
|
|
51
|
+
extractor = AelmoExtractor(
|
|
52
|
+
aelmo_path=Path("path/to/CCTM_AELMO_d01.nc"),
|
|
53
|
+
cro2d_path=Path("path/to/GRIDCRO2D_d01.nc")
|
|
54
|
+
)
|
|
55
|
+
|
|
56
|
+
# 提取所有数据
|
|
57
|
+
df = extractor.extract_data()
|
|
58
|
+
print(df)
|
|
59
|
+
|
|
60
|
+
# 根据经纬度提取特定位置的数据
|
|
61
|
+
df_point = extractor.extract_data_by_lonlat(lon=114.0, lat=38.0)
|
|
62
|
+
print(df_point)
|
|
63
|
+
```
|
|
64
|
+
|
|
65
|
+
## 支持的污染物
|
|
66
|
+
|
|
67
|
+
- O3 (臭氧)
|
|
68
|
+
- PM2.5 (细颗粒物)
|
|
69
|
+
- PM10 (可吸入颗粒物)
|
|
70
|
+
- NO2 (二氧化氮)
|
|
71
|
+
- CO (一氧化碳)
|
|
72
|
+
- NO (一氧化氮)
|
|
73
|
+
- SO2 (二氧化硫)
|
|
74
|
+
|
|
75
|
+
## 依赖
|
|
76
|
+
|
|
77
|
+
- polars
|
|
78
|
+
- xarray
|
|
79
|
+
- netcdf4
|
|
80
|
+
- pyproj
|
|
81
|
+
- wztools
|
|
@@ -0,0 +1,48 @@
|
|
|
1
|
+
# CMAQ Tools
|
|
2
|
+
|
|
3
|
+
一个用于从 AELMO NetCDF 文件中提取和处理空气质量模型数据的 Python 库。
|
|
4
|
+
|
|
5
|
+
## 安装
|
|
6
|
+
|
|
7
|
+
```bash
|
|
8
|
+
pip install git+https://github.com/zusiven/cmaq_tools.git
|
|
9
|
+
```
|
|
10
|
+
|
|
11
|
+
## 使用方法
|
|
12
|
+
|
|
13
|
+
```python
|
|
14
|
+
from cmaq_tools import AelmoExtractor
|
|
15
|
+
from pathlib import Path
|
|
16
|
+
|
|
17
|
+
# 初始化提取器
|
|
18
|
+
extractor = AelmoExtractor(
|
|
19
|
+
aelmo_path=Path("path/to/CCTM_AELMO_d01.nc"),
|
|
20
|
+
cro2d_path=Path("path/to/GRIDCRO2D_d01.nc")
|
|
21
|
+
)
|
|
22
|
+
|
|
23
|
+
# 提取所有数据
|
|
24
|
+
df = extractor.extract_data()
|
|
25
|
+
print(df)
|
|
26
|
+
|
|
27
|
+
# 根据经纬度提取特定位置的数据
|
|
28
|
+
df_point = extractor.extract_data_by_lonlat(lon=114.0, lat=38.0)
|
|
29
|
+
print(df_point)
|
|
30
|
+
```
|
|
31
|
+
|
|
32
|
+
## 支持的污染物
|
|
33
|
+
|
|
34
|
+
- O3 (臭氧)
|
|
35
|
+
- PM2.5 (细颗粒物)
|
|
36
|
+
- PM10 (可吸入颗粒物)
|
|
37
|
+
- NO2 (二氧化氮)
|
|
38
|
+
- CO (一氧化碳)
|
|
39
|
+
- NO (一氧化氮)
|
|
40
|
+
- SO2 (二氧化硫)
|
|
41
|
+
|
|
42
|
+
## 依赖
|
|
43
|
+
|
|
44
|
+
- polars
|
|
45
|
+
- xarray
|
|
46
|
+
- netcdf4
|
|
47
|
+
- pyproj
|
|
48
|
+
- wztools
|
|
@@ -0,0 +1,130 @@
|
|
|
1
|
+
|
|
2
|
+
import polars as pl
|
|
3
|
+
import xarray as xr
|
|
4
|
+
import datetime as dt
|
|
5
|
+
import numpy as np
|
|
6
|
+
|
|
7
|
+
from pyproj import Proj
|
|
8
|
+
from pathlib import Path
|
|
9
|
+
from wztools import fetch_nearest_point
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
class AelmoExtractor:
|
|
13
|
+
def __init__(self, aelmo_path: Path|str, cro2d_path: Path|str) -> None:
|
|
14
|
+
"""
|
|
15
|
+
>>> aermo_extractor = AelmoExtractor(aelmo_path, cro2d_path)
|
|
16
|
+
>>> # 提取某点数据
|
|
17
|
+
>>> df = aermo_extractor.extract_data_by_lonlat(lon, lat)
|
|
18
|
+
>>>
|
|
19
|
+
>>> # 提起网格数据
|
|
20
|
+
>>> df_grid = aermo_extractor.extract_data()
|
|
21
|
+
"""
|
|
22
|
+
self.aelmo_path = Path(aelmo_path)
|
|
23
|
+
self.cro2d_path = Path(cro2d_path)
|
|
24
|
+
|
|
25
|
+
def extract_data(self) -> pl.DataFrame:
|
|
26
|
+
ds = xr.open_dataset(self.aelmo_path, engine="netcdf4")
|
|
27
|
+
|
|
28
|
+
# 加载地理信息文件
|
|
29
|
+
ds_grid = xr.open_dataset(self.cro2d_path)
|
|
30
|
+
# 获取经纬度 (通常是二维数组)
|
|
31
|
+
lons = ds_grid['LON'].squeeze().values
|
|
32
|
+
lats = ds_grid['LAT'].squeeze().values
|
|
33
|
+
|
|
34
|
+
# 2. 从属性获取时间元数据
|
|
35
|
+
sdate = int(ds.attrs['SDATE']) # YYYYDDD
|
|
36
|
+
stime = int(ds.attrs['STIME']) # HHMMSS
|
|
37
|
+
tstep = int(ds.attrs['TSTEP']) # HHMMSS
|
|
38
|
+
|
|
39
|
+
# 3. 解析起始时间
|
|
40
|
+
start_dt = dt.datetime.strptime(str(sdate), '%Y%j')
|
|
41
|
+
# 补全 6 位时间格式 (例如 51802 -> 051802)
|
|
42
|
+
s_str = str(stime).zfill(6)
|
|
43
|
+
start_dt += dt.timedelta(hours=int(s_str[:2]), minutes=int(s_str[2:4]), seconds=int(s_str[4:6]))
|
|
44
|
+
|
|
45
|
+
# 4. 解析步长 (TSTEP)
|
|
46
|
+
ts_str = str(tstep).zfill(6)
|
|
47
|
+
tstep_delta = dt.timedelta(hours=int(ts_str[:2]), minutes=int(ts_str[2:4]), seconds=int(ts_str[4:6]))
|
|
48
|
+
|
|
49
|
+
# 5. 生成时间序列(修复 FutureWarning)
|
|
50
|
+
# 使用 ds.sizes 代替 ds.dims
|
|
51
|
+
num_steps = ds.sizes['TSTEP']
|
|
52
|
+
time_values = [start_dt + i * tstep_delta for i in range(num_steps)]
|
|
53
|
+
time_values = [t + dt.timedelta(hours=8) for t in time_values]
|
|
54
|
+
|
|
55
|
+
# 6. 重新定义坐标
|
|
56
|
+
ds = ds.assign_coords(time=('TSTEP', time_values)).swap_dims({'TSTEP': 'time'})
|
|
57
|
+
|
|
58
|
+
O3_data = ds.variables["O3"][:] * 1963
|
|
59
|
+
NO2_data = ds.variables["NO2"][:] * 1881
|
|
60
|
+
NO_data = ds.variables["NO"][:] * 1227
|
|
61
|
+
PM10_data = ds.variables["PM10"][:]
|
|
62
|
+
PM25_data = ds.variables["PM25"][:]
|
|
63
|
+
CO_data = ds.variables["CO"][:] * 1.144
|
|
64
|
+
SO2_data = ds.variables["SO2"][:] * 2619.6
|
|
65
|
+
|
|
66
|
+
# lons = lons.values
|
|
67
|
+
# lats = lats.values
|
|
68
|
+
|
|
69
|
+
dfs = []
|
|
70
|
+
nx = ds.sizes['COL']
|
|
71
|
+
ny = ds.sizes['ROW']
|
|
72
|
+
|
|
73
|
+
for index, t in enumerate(time_values):
|
|
74
|
+
_O3_data = O3_data[index][0].values
|
|
75
|
+
_PM10_data = PM10_data[index][0].values
|
|
76
|
+
_PM25_data = PM25_data[index][0].values
|
|
77
|
+
_NO_data = NO_data[index][0].values
|
|
78
|
+
_NO2_data = NO2_data[index][0].values
|
|
79
|
+
_CO_data = CO_data[index][0].values
|
|
80
|
+
_SO2_data = SO2_data[index][0].values
|
|
81
|
+
|
|
82
|
+
df_t = pl.DataFrame({
|
|
83
|
+
"time": [t] * nx * ny,
|
|
84
|
+
"lon": lons.flatten(),
|
|
85
|
+
"lat": lats.flatten(),
|
|
86
|
+
"O3": _O3_data.flatten(),
|
|
87
|
+
"PM10": _PM10_data.flatten(),
|
|
88
|
+
"PM25": _PM25_data.flatten(),
|
|
89
|
+
"NO2": _NO2_data.flatten(),
|
|
90
|
+
"CO": _CO_data.flatten(),
|
|
91
|
+
"NO": _NO_data.flatten(),
|
|
92
|
+
"SO2": _SO2_data.flatten(),
|
|
93
|
+
})
|
|
94
|
+
dfs.append(df_t)
|
|
95
|
+
# print(O3_data.shape)
|
|
96
|
+
# print(len(time_values))
|
|
97
|
+
df = pl.concat(dfs)
|
|
98
|
+
df = df.with_columns(
|
|
99
|
+
*[pl.col(col).cast(pl.Float64).round(4) for col in df.columns if col not in ["time"]]
|
|
100
|
+
)
|
|
101
|
+
|
|
102
|
+
return df
|
|
103
|
+
|
|
104
|
+
def extract_data_by_lonlat(self, lon, lat) -> pl.DataFrame:
|
|
105
|
+
df = self.extract_data()
|
|
106
|
+
|
|
107
|
+
nerest_lon, nearest_lat = fetch_nearest_point(df, tar_lon=lon, tar_lat=lat)
|
|
108
|
+
df = df.filter(
|
|
109
|
+
(pl.col("lon") == nerest_lon)
|
|
110
|
+
&
|
|
111
|
+
(pl.col("lat") == nearest_lat)
|
|
112
|
+
).sort("time")
|
|
113
|
+
|
|
114
|
+
df = df.rename({"time": "datetime"})
|
|
115
|
+
return df
|
|
116
|
+
|
|
117
|
+
|
|
118
|
+
|
|
119
|
+
if __name__ == "__main__":
|
|
120
|
+
file_path = Path(r"C:\Users\Administrator\Desktop\tmp\CCTM_AELMO_d01_yixing2.nc")
|
|
121
|
+
cro2d_path = Path(r"C:\Users\Administrator\Desktop\tmp\GRIDCRO2D_d01_yixing2.nc")
|
|
122
|
+
|
|
123
|
+
lon = 114
|
|
124
|
+
lat = 38
|
|
125
|
+
|
|
126
|
+
aermo_extractor = AelmoExtractor(file_path, cro2d_path)
|
|
127
|
+
|
|
128
|
+
aermo_extractor.extract_data()
|
|
129
|
+
df = aermo_extractor.extract_data_by_lonlat(lon, lat)
|
|
130
|
+
print(df)
|
|
@@ -0,0 +1,50 @@
|
|
|
1
|
+
[project]
|
|
2
|
+
name = "cmaq-tools"
|
|
3
|
+
version = "0.1.0"
|
|
4
|
+
description = "A Python library for extracting and processing air quality model data from AELMO NetCDF files"
|
|
5
|
+
readme = "README.md"
|
|
6
|
+
requires-python = ">=3.11"
|
|
7
|
+
authors = [
|
|
8
|
+
{name = "CMAQ Tools Team"}
|
|
9
|
+
]
|
|
10
|
+
keywords = ["air-quality", "atmospheric-modeling", "netcdf", "data-extraction", "aelmo"]
|
|
11
|
+
classifiers = [
|
|
12
|
+
"Development Status :: 3 - Alpha",
|
|
13
|
+
"Intended Audience :: Science/Research",
|
|
14
|
+
"License :: OSI Approved :: MIT License",
|
|
15
|
+
"Programming Language :: Python :: 3",
|
|
16
|
+
"Programming Language :: Python :: 3.11",
|
|
17
|
+
"Topic :: Scientific/Engineering :: Atmospheric Science",
|
|
18
|
+
]
|
|
19
|
+
dependencies = [
|
|
20
|
+
"netcdf4",
|
|
21
|
+
"polars>=1.37.1",
|
|
22
|
+
"pyproj",
|
|
23
|
+
"wztools>=2026.1.6",
|
|
24
|
+
"xarray>=2025.4.0",
|
|
25
|
+
]
|
|
26
|
+
|
|
27
|
+
[project.optional-dependencies]
|
|
28
|
+
dev = [
|
|
29
|
+
"pytest>=7.0.0",
|
|
30
|
+
"pytest-cov>=4.0.0",
|
|
31
|
+
"matplotlib>=3.5.0",
|
|
32
|
+
"jupyter>=1.0.0",
|
|
33
|
+
"twine>=6.2.0"
|
|
34
|
+
]
|
|
35
|
+
examples = [
|
|
36
|
+
"matplotlib>=3.5.0",
|
|
37
|
+
"jupyter>=1.0.0",
|
|
38
|
+
]
|
|
39
|
+
|
|
40
|
+
[project.urls]
|
|
41
|
+
Homepage = "https://github.com/zusiven/cmaq_tools"
|
|
42
|
+
Repository = "https://github.com/zusiven/cmaq_tools.git"
|
|
43
|
+
Documentation = "https://github.com/zusiven/cmaq_tools"
|
|
44
|
+
|
|
45
|
+
[build-system]
|
|
46
|
+
requires = ["hatchling"]
|
|
47
|
+
build-backend = "hatchling.build"
|
|
48
|
+
|
|
49
|
+
[tool.hatch.build.targets.wheel]
|
|
50
|
+
packages = ["cmaq_tools"]
|