classy-szfast 0.0.25.post10__tar.gz → 0.0.25.post12__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {classy_szfast-0.0.25.post10 → classy_szfast-0.0.25.post12}/PKG-INFO +4 -4
- {classy_szfast-0.0.25.post10 → classy_szfast-0.0.25.post12}/classy_szfast/classy_szfast.py +4 -4
- classy_szfast-0.0.25.post12/classy_szfast/utils.py +222 -0
- {classy_szfast-0.0.25.post10 → classy_szfast-0.0.25.post12}/classy_szfast.egg-info/PKG-INFO +4 -4
- classy_szfast-0.0.25.post12/classy_szfast.egg-info/requires.txt +7 -0
- {classy_szfast-0.0.25.post10 → classy_szfast-0.0.25.post12}/classy_szfast.egg-info/top_level.txt +1 -0
- {classy_szfast-0.0.25.post10 → classy_szfast-0.0.25.post12}/pyproject.toml +9 -5
- classy_szfast-0.0.25.post10/classy_szfast/utils.py +0 -73
- classy_szfast-0.0.25.post10/classy_szfast.egg-info/requires.txt +0 -7
- {classy_szfast-0.0.25.post10 → classy_szfast-0.0.25.post12}/README.md +0 -0
- {classy_szfast-0.0.25.post10 → classy_szfast-0.0.25.post12}/classy_szfast/__init__.py +0 -0
- {classy_szfast-0.0.25.post10 → classy_szfast-0.0.25.post12}/classy_szfast/classy_sz.py +0 -0
- {classy_szfast-0.0.25.post10 → classy_szfast-0.0.25.post12}/classy_szfast/config.py +0 -0
- {classy_szfast-0.0.25.post10 → classy_szfast-0.0.25.post12}/classy_szfast/cosmopower.py +0 -0
- {classy_szfast-0.0.25.post10 → classy_szfast-0.0.25.post12}/classy_szfast/cosmopower_jax.py +0 -0
- {classy_szfast-0.0.25.post10 → classy_szfast-0.0.25.post12}/classy_szfast/cosmosis_classy_szfast_interface.py +0 -0
- {classy_szfast-0.0.25.post10 → classy_szfast-0.0.25.post12}/classy_szfast/custom_bias/__init__.py +0 -0
- {classy_szfast-0.0.25.post10 → classy_szfast-0.0.25.post12}/classy_szfast/custom_bias/custom_bias.py +0 -0
- {classy_szfast-0.0.25.post10 → classy_szfast-0.0.25.post12}/classy_szfast/custom_profiles/__init__.py +0 -0
- {classy_szfast-0.0.25.post10 → classy_szfast-0.0.25.post12}/classy_szfast/custom_profiles/custom_profiles.py +0 -0
- {classy_szfast-0.0.25.post10 → classy_szfast-0.0.25.post12}/classy_szfast/emulators_meta_data.py +0 -0
- {classy_szfast-0.0.25.post10 → classy_szfast-0.0.25.post12}/classy_szfast/pks_and_sigmas.py +0 -0
- {classy_szfast-0.0.25.post10 → classy_szfast-0.0.25.post12}/classy_szfast/restore_nn.py +0 -0
- {classy_szfast-0.0.25.post10 → classy_szfast-0.0.25.post12}/classy_szfast/suppress_warnings.py +0 -0
- {classy_szfast-0.0.25.post10 → classy_szfast-0.0.25.post12}/classy_szfast.egg-info/SOURCES.txt +0 -0
- {classy_szfast-0.0.25.post10 → classy_szfast-0.0.25.post12}/classy_szfast.egg-info/dependency_links.txt +0 -0
- {classy_szfast-0.0.25.post10 → classy_szfast-0.0.25.post12}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: classy_szfast
|
3
|
-
Version: 0.0.25.
|
3
|
+
Version: 0.0.25.post12
|
4
4
|
Summary: The accelerator of the class_sz code from https://github.com/CLASS-SZ
|
5
5
|
Maintainer-email: Boris Bolliet <bb667@cam.ac.uk>
|
6
6
|
License: MIT
|
@@ -10,7 +10,7 @@ Description-Content-Type: text/markdown
|
|
10
10
|
Requires-Dist: numpy>=1.19.0
|
11
11
|
Requires-Dist: Cython>=0.29.21
|
12
12
|
Requires-Dist: tensorflow
|
13
|
-
Requires-Dist: mcfit
|
14
|
-
Requires-Dist: get_cosmopower_emus
|
15
|
-
Requires-Dist: class_sz_data
|
13
|
+
Requires-Dist: mcfit>=0.0.22
|
14
|
+
Requires-Dist: get_cosmopower_emus>=0.0.15
|
15
|
+
Requires-Dist: class_sz_data>=0.0.13
|
16
16
|
Requires-Dist: cosmopower-jax
|
@@ -1,5 +1,5 @@
|
|
1
1
|
from .utils import *
|
2
|
-
from .utils import Const
|
2
|
+
from .utils import Const, jax_gradient
|
3
3
|
from .config import *
|
4
4
|
import numpy as np
|
5
5
|
from .emulators_meta_data import emulator_dict, dofftlog_alphas, cp_l_max_scalars, cosmo_model_list
|
@@ -133,7 +133,7 @@ class Class_szfast(object):
|
|
133
133
|
self.geomspace = jnp.geomspace
|
134
134
|
self.arange = jnp.arange
|
135
135
|
self.zeros = jnp.zeros
|
136
|
-
self.gradient =
|
136
|
+
self.gradient = jax_gradient
|
137
137
|
|
138
138
|
|
139
139
|
else:
|
@@ -591,8 +591,8 @@ class Class_szfast(object):
|
|
591
591
|
|
592
592
|
R, var[:,iz] = TophatVar(k, lowring=True)(P[:,iz], extrap=True)
|
593
593
|
|
594
|
-
|
595
|
-
_, dvar[:,iz] = TophatVar(k, lowring=True, deriv=1)(P[:,iz]*k, extrap=True) # new form
|
594
|
+
dvar[:,iz] = self.gradient(var[:,iz], R) ## old form with jax gradient from inigo zubeldia if needed.
|
595
|
+
# _, dvar[:,iz] = TophatVar(k, lowring=True, deriv=1)(P[:,iz]*k, extrap=True) # new form doesnt seem to work accurately
|
596
596
|
|
597
597
|
# dvar = dvar/(2.*np.sqrt(var))
|
598
598
|
# print(dvar_grads/dvar)
|
@@ -0,0 +1,222 @@
|
|
1
|
+
import numpy as np
|
2
|
+
from datetime import datetime
|
3
|
+
import multiprocessing
|
4
|
+
import time
|
5
|
+
import functools
|
6
|
+
import re
|
7
|
+
from pkg_resources import resource_filename
|
8
|
+
import os
|
9
|
+
from scipy import optimize
|
10
|
+
from scipy.integrate import quad
|
11
|
+
from scipy.interpolate import interp1d
|
12
|
+
import math
|
13
|
+
from numpy import linalg as LA
|
14
|
+
import mcfit
|
15
|
+
from mcfit import P2xi
|
16
|
+
import jax
|
17
|
+
import jax.numpy as jnp
|
18
|
+
# import cosmopower
|
19
|
+
# import classy_sz as csz
|
20
|
+
|
21
|
+
|
22
|
+
|
23
|
+
from scipy.interpolate import LinearNDInterpolator
|
24
|
+
from scipy.interpolate import CloughTocher2DInterpolator
|
25
|
+
|
26
|
+
kb = 1.38064852e-23 #m2 kg s-2 K-1
|
27
|
+
clight = 299792458. #m/s
|
28
|
+
hplanck=6.62607004e-34 #m2 kg / s
|
29
|
+
firas_T0 = 2.728 #pivot temperature used in the Max Lkl Analysis
|
30
|
+
firas_T0_bf = 2.725 #best-fitting temperature
|
31
|
+
|
32
|
+
Tcmb_uk = 2.7255e6
|
33
|
+
|
34
|
+
G_newton = 6.674e-11
|
35
|
+
rho_crit_over_h2_in_GeV_per_cm3 = 1.0537e-5
|
36
|
+
|
37
|
+
|
38
|
+
nu_21_cm_in_GHz = 1./21.1*clight*1.e2/1.e9
|
39
|
+
x_21_cm = hplanck*nu_21_cm_in_GHz/kb/firas_T0_bf*1.e9
|
40
|
+
|
41
|
+
kappa_c = 2.1419 # 4M_2-3M_c see below eq. 9b of https://arxiv.org/pdf/1506.06582.pdf
|
42
|
+
|
43
|
+
beta_mu = 2.1923
|
44
|
+
|
45
|
+
G1 = np.pi**2./6
|
46
|
+
G2 = 2.4041
|
47
|
+
G3 = np.pi**4/15.
|
48
|
+
a_rho = G2/G3
|
49
|
+
alpha_mu = 2.*G1/3./G2 # = 1/beta_mu = π^2/18ζ(3) see eq. 4.15 CUSO lectures.
|
50
|
+
|
51
|
+
z_mu_era = 3e5
|
52
|
+
z_y_era = 5e4
|
53
|
+
z_reio_min = 6
|
54
|
+
z_reio_max = 25
|
55
|
+
z_recombination_min = 800
|
56
|
+
z_recombination_max = 1500
|
57
|
+
|
58
|
+
# Physical constants
|
59
|
+
# ------------------
|
60
|
+
# Light speed
|
61
|
+
class Const:
|
62
|
+
c_km_s = 299792.458 # speed of light
|
63
|
+
h_J_s = 6.626070040e-34 # Planck's constant
|
64
|
+
kB_J_K = 1.38064852e-23 # Boltzmann constant
|
65
|
+
|
66
|
+
_c_ = 2.99792458e8 # c in m/s
|
67
|
+
_Mpc_over_m_ = 3.085677581282e22 # conversion factor from meters to megaparsecs
|
68
|
+
_Gyr_over_Mpc_ = 3.06601394e2 # conversion factor from megaparsecs to gigayears
|
69
|
+
_G_ = 6.67428e-11 # Newton constant in m^3/Kg/s^2
|
70
|
+
_eV_ = 1.602176487e-19 # 1 eV expressed in J
|
71
|
+
|
72
|
+
# parameters entering in Stefan-Boltzmann constant sigma_B
|
73
|
+
_k_B_ = 1.3806504e-23
|
74
|
+
_h_P_ = 6.62606896e-34
|
75
|
+
_M_sun_ = 1.98855e30 # solar mass in kg
|
76
|
+
|
77
|
+
|
78
|
+
|
79
|
+
def jax_gradient(f, *varargs, axis=None, edge_order=1):
|
80
|
+
f = jnp.asarray(f)
|
81
|
+
N = f.ndim # number of dimensions
|
82
|
+
if axis is None:
|
83
|
+
axes = tuple(range(N))
|
84
|
+
else:
|
85
|
+
axes = jax.numpy._normalize_axis_index(axis, N)
|
86
|
+
len_axes = len(axes)
|
87
|
+
n = len(varargs)
|
88
|
+
if n == 0:
|
89
|
+
# no spacing argument - use 1 in all axes
|
90
|
+
dx = [1.0] * len_axes
|
91
|
+
elif n == 1 and jnp.ndim(varargs[0]) == 0:
|
92
|
+
# single scalar for all axes
|
93
|
+
dx = varargs * len_axes
|
94
|
+
elif n == len_axes:
|
95
|
+
# scalar or 1d array for each axis
|
96
|
+
dx = list(varargs)
|
97
|
+
for i, distances in enumerate(dx):
|
98
|
+
distances = jnp.asarray(distances)
|
99
|
+
if distances.ndim == 0:
|
100
|
+
continue
|
101
|
+
elif distances.ndim != 1:
|
102
|
+
raise ValueError("distances must be either scalars or 1D")
|
103
|
+
if len(distances) != f.shape[axes[i]]:
|
104
|
+
raise ValueError("when 1D, distances must match "
|
105
|
+
"the length of the corresponding dimension")
|
106
|
+
if jnp.issubdtype(distances.dtype, jnp.integer):
|
107
|
+
# Convert jax integer types to float64 to avoid modular
|
108
|
+
# arithmetic in np.diff(distances).
|
109
|
+
distances = distances.astype(jnp.float64)
|
110
|
+
diffx = jnp.diff(distances)
|
111
|
+
# if distances are constant reduce to the scalar case
|
112
|
+
# since it brings a consistent speedup
|
113
|
+
if (diffx == diffx[0]).all():
|
114
|
+
diffx = diffx[0]
|
115
|
+
dx[i] = diffx
|
116
|
+
else:
|
117
|
+
raise TypeError("invalid number of arguments")
|
118
|
+
if edge_order > 2:
|
119
|
+
raise ValueError("'edge_order' greater than 2 not supported")
|
120
|
+
outvals = []
|
121
|
+
slice1 = [slice(None)] * N
|
122
|
+
slice2 = [slice(None)] * N
|
123
|
+
slice3 = [slice(None)] * N
|
124
|
+
slice4 = [slice(None)] * N
|
125
|
+
otype = f.dtype
|
126
|
+
# All other types convert to floating point.
|
127
|
+
if jnp.issubdtype(otype, jnp.integer):
|
128
|
+
f = f.astype(jnp.float64)
|
129
|
+
otype = jnp.float64
|
130
|
+
for axis, ax_dx in zip(axes, dx):
|
131
|
+
if f.shape[axis] < edge_order + 1:
|
132
|
+
raise ValueError(
|
133
|
+
"Shape of array too small to calculate a numerical gradient, "
|
134
|
+
"at least (edge_order + 1) elements are required.")
|
135
|
+
# result allocation
|
136
|
+
out = jnp.empty_like(f, dtype=otype)
|
137
|
+
uniform_spacing = jnp.ndim(ax_dx) == 0
|
138
|
+
# Numerical differentiation: 2nd order interior
|
139
|
+
slice1[axis] = slice(1, -1)
|
140
|
+
slice2[axis] = slice(None, -2)
|
141
|
+
slice3[axis] = slice(1, -1)
|
142
|
+
slice4[axis] = slice(2, None)
|
143
|
+
if uniform_spacing:
|
144
|
+
out = out.at[tuple(slice1)].set(
|
145
|
+
(f[tuple(slice4)] - f[tuple(slice2)]) / (2.0 * ax_dx)
|
146
|
+
)
|
147
|
+
else:
|
148
|
+
dx1 = ax_dx[:-1]
|
149
|
+
dx2 = ax_dx[1:]
|
150
|
+
a = -(dx2) / (dx1 * (dx1 + dx2))
|
151
|
+
b = (dx2 - dx1) / (dx1 * dx2)
|
152
|
+
c = dx1 / (dx2 * (dx1 + dx2))
|
153
|
+
shape = [1] * N
|
154
|
+
shape[axis] = -1
|
155
|
+
a = a.reshape(shape)
|
156
|
+
b = b.reshape(shape)
|
157
|
+
c = c.reshape(shape)
|
158
|
+
out = out.at[tuple(slice1)].set(
|
159
|
+
a * f[tuple(slice2)] + b * f[tuple(slice3)] + c * f[tuple(slice4)]
|
160
|
+
)
|
161
|
+
# Numerical differentiation: 1st order edges
|
162
|
+
if edge_order == 1:
|
163
|
+
slice1[axis] = 0
|
164
|
+
slice2[axis] = 1
|
165
|
+
slice3[axis] = 0
|
166
|
+
dx_0 = ax_dx if uniform_spacing else ax_dx[0]
|
167
|
+
out = out.at[tuple(slice1)].set(
|
168
|
+
(f[tuple(slice2)] - f[tuple(slice3)]) / dx_0
|
169
|
+
)
|
170
|
+
slice1[axis] = -1
|
171
|
+
slice2[axis] = -1
|
172
|
+
slice3[axis] = -2
|
173
|
+
dx_n = ax_dx if uniform_spacing else ax_dx[-1]
|
174
|
+
out = out.at[tuple(slice1)].set(
|
175
|
+
(f[tuple(slice2)] - f[tuple(slice3)]) / dx_n
|
176
|
+
)
|
177
|
+
# Numerical differentiation: 2nd order edges
|
178
|
+
else:
|
179
|
+
slice1[axis] = 0
|
180
|
+
slice2[axis] = 0
|
181
|
+
slice3[axis] = 1
|
182
|
+
slice4[axis] = 2
|
183
|
+
if uniform_spacing:
|
184
|
+
a = -1.5 / ax_dx
|
185
|
+
b = 2. / ax_dx
|
186
|
+
c = -0.5 / ax_dx
|
187
|
+
else:
|
188
|
+
dx1 = ax_dx[0]
|
189
|
+
dx2 = ax_dx[1]
|
190
|
+
a = -(2. * dx1 + dx2) / (dx1 * (dx1 + dx2))
|
191
|
+
b = (dx1 + dx2) / (dx1 * dx2)
|
192
|
+
c = -dx1 / (dx2 * (dx1 + dx2))
|
193
|
+
out = out.at[tuple(slice1)].set(
|
194
|
+
a * f[tuple(slice2)] + b * f[tuple(slice3)] + c * f[tuple(slice4)]
|
195
|
+
)
|
196
|
+
slice1[axis] = -1
|
197
|
+
slice2[axis] = -3
|
198
|
+
slice3[axis] = -2
|
199
|
+
slice4[axis] = -1
|
200
|
+
if uniform_spacing:
|
201
|
+
a = 0.5 / ax_dx
|
202
|
+
b = -2. / ax_dx
|
203
|
+
c = 1.5 / ax_dx
|
204
|
+
else:
|
205
|
+
dx1 = ax_dx[-2]
|
206
|
+
dx2 = ax_dx[-1]
|
207
|
+
a = dx2 / (dx1 * (dx1 + dx2))
|
208
|
+
b = -(dx2 + dx1) / (dx1 * dx2)
|
209
|
+
c = (2. * dx2 + dx1) / (dx2 * (dx1 + dx2))
|
210
|
+
out = out.at[tuple(slice1)].set(
|
211
|
+
a * f[tuple(slice2)] + b * f[tuple(slice3)] + c * f[tuple(slice4)]
|
212
|
+
)
|
213
|
+
outvals.append(out)
|
214
|
+
# reset the slice object in this dimension to ":"
|
215
|
+
slice1[axis] = slice(None)
|
216
|
+
slice2[axis] = slice(None)
|
217
|
+
slice3[axis] = slice(None)
|
218
|
+
slice4[axis] = slice(None)
|
219
|
+
if len_axes == 1:
|
220
|
+
return outvals[0]
|
221
|
+
ret = tuple(outvals)
|
222
|
+
print("return",ret)
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: classy_szfast
|
3
|
-
Version: 0.0.25.
|
3
|
+
Version: 0.0.25.post12
|
4
4
|
Summary: The accelerator of the class_sz code from https://github.com/CLASS-SZ
|
5
5
|
Maintainer-email: Boris Bolliet <bb667@cam.ac.uk>
|
6
6
|
License: MIT
|
@@ -10,7 +10,7 @@ Description-Content-Type: text/markdown
|
|
10
10
|
Requires-Dist: numpy>=1.19.0
|
11
11
|
Requires-Dist: Cython>=0.29.21
|
12
12
|
Requires-Dist: tensorflow
|
13
|
-
Requires-Dist: mcfit
|
14
|
-
Requires-Dist: get_cosmopower_emus
|
15
|
-
Requires-Dist: class_sz_data
|
13
|
+
Requires-Dist: mcfit>=0.0.22
|
14
|
+
Requires-Dist: get_cosmopower_emus>=0.0.15
|
15
|
+
Requires-Dist: class_sz_data>=0.0.13
|
16
16
|
Requires-Dist: cosmopower-jax
|
@@ -3,7 +3,7 @@ requires = ["setuptools", "wheel"]
|
|
3
3
|
build-backend = "setuptools.build_meta"
|
4
4
|
|
5
5
|
[project]
|
6
|
-
version = "0.0.25.
|
6
|
+
version = "0.0.25.post12"
|
7
7
|
license = { text = "MIT" }
|
8
8
|
name = "classy_szfast"
|
9
9
|
maintainers = [{name = "Boris Bolliet",email="bb667@cam.ac.uk"}]
|
@@ -13,12 +13,16 @@ dependencies = [
|
|
13
13
|
"numpy>=1.19.0",
|
14
14
|
"Cython>=0.29.21",
|
15
15
|
"tensorflow",
|
16
|
-
"mcfit",
|
17
|
-
"get_cosmopower_emus
|
18
|
-
"class_sz_data",
|
16
|
+
"mcfit>=0.0.22",
|
17
|
+
"get_cosmopower_emus>=0.0.15",
|
18
|
+
"class_sz_data>=0.0.13",
|
19
19
|
"cosmopower-jax"
|
20
20
|
]
|
21
21
|
|
22
22
|
[project.urls]
|
23
23
|
Homepage = "https://github.com/CLASS-SZ"
|
24
|
-
GitHub = "https://github.com/CLASS-SZ"
|
24
|
+
GitHub = "https://github.com/CLASS-SZ"
|
25
|
+
|
26
|
+
|
27
|
+
[tool.setuptools.packages.find]
|
28
|
+
where = ["."]
|
@@ -1,73 +0,0 @@
|
|
1
|
-
import numpy as np
|
2
|
-
from datetime import datetime
|
3
|
-
import multiprocessing
|
4
|
-
import time
|
5
|
-
import functools
|
6
|
-
import re
|
7
|
-
from pkg_resources import resource_filename
|
8
|
-
import os
|
9
|
-
from scipy import optimize
|
10
|
-
from scipy.integrate import quad
|
11
|
-
from scipy.interpolate import interp1d
|
12
|
-
import math
|
13
|
-
from numpy import linalg as LA
|
14
|
-
import mcfit
|
15
|
-
from mcfit import P2xi
|
16
|
-
# import cosmopower
|
17
|
-
# import classy_sz as csz
|
18
|
-
|
19
|
-
|
20
|
-
|
21
|
-
from scipy.interpolate import LinearNDInterpolator
|
22
|
-
from scipy.interpolate import CloughTocher2DInterpolator
|
23
|
-
|
24
|
-
kb = 1.38064852e-23 #m2 kg s-2 K-1
|
25
|
-
clight = 299792458. #m/s
|
26
|
-
hplanck=6.62607004e-34 #m2 kg / s
|
27
|
-
firas_T0 = 2.728 #pivot temperature used in the Max Lkl Analysis
|
28
|
-
firas_T0_bf = 2.725 #best-fitting temperature
|
29
|
-
|
30
|
-
Tcmb_uk = 2.7255e6
|
31
|
-
|
32
|
-
G_newton = 6.674e-11
|
33
|
-
rho_crit_over_h2_in_GeV_per_cm3 = 1.0537e-5
|
34
|
-
|
35
|
-
|
36
|
-
nu_21_cm_in_GHz = 1./21.1*clight*1.e2/1.e9
|
37
|
-
x_21_cm = hplanck*nu_21_cm_in_GHz/kb/firas_T0_bf*1.e9
|
38
|
-
|
39
|
-
kappa_c = 2.1419 # 4M_2-3M_c see below eq. 9b of https://arxiv.org/pdf/1506.06582.pdf
|
40
|
-
|
41
|
-
beta_mu = 2.1923
|
42
|
-
|
43
|
-
G1 = np.pi**2./6
|
44
|
-
G2 = 2.4041
|
45
|
-
G3 = np.pi**4/15.
|
46
|
-
a_rho = G2/G3
|
47
|
-
alpha_mu = 2.*G1/3./G2 # = 1/beta_mu = π^2/18ζ(3) see eq. 4.15 CUSO lectures.
|
48
|
-
|
49
|
-
z_mu_era = 3e5
|
50
|
-
z_y_era = 5e4
|
51
|
-
z_reio_min = 6
|
52
|
-
z_reio_max = 25
|
53
|
-
z_recombination_min = 800
|
54
|
-
z_recombination_max = 1500
|
55
|
-
|
56
|
-
# Physical constants
|
57
|
-
# ------------------
|
58
|
-
# Light speed
|
59
|
-
class Const:
|
60
|
-
c_km_s = 299792.458 # speed of light
|
61
|
-
h_J_s = 6.626070040e-34 # Planck's constant
|
62
|
-
kB_J_K = 1.38064852e-23 # Boltzmann constant
|
63
|
-
|
64
|
-
_c_ = 2.99792458e8 # c in m/s
|
65
|
-
_Mpc_over_m_ = 3.085677581282e22 # conversion factor from meters to megaparsecs
|
66
|
-
_Gyr_over_Mpc_ = 3.06601394e2 # conversion factor from megaparsecs to gigayears
|
67
|
-
_G_ = 6.67428e-11 # Newton constant in m^3/Kg/s^2
|
68
|
-
_eV_ = 1.602176487e-19 # 1 eV expressed in J
|
69
|
-
|
70
|
-
# parameters entering in Stefan-Boltzmann constant sigma_B
|
71
|
-
_k_B_ = 1.3806504e-23
|
72
|
-
_h_P_ = 6.62606896e-34
|
73
|
-
_M_sun_ = 1.98855e30 # solar mass in kg
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
{classy_szfast-0.0.25.post10 → classy_szfast-0.0.25.post12}/classy_szfast/custom_bias/__init__.py
RENAMED
File without changes
|
{classy_szfast-0.0.25.post10 → classy_szfast-0.0.25.post12}/classy_szfast/custom_bias/custom_bias.py
RENAMED
File without changes
|
File without changes
|
File without changes
|
{classy_szfast-0.0.25.post10 → classy_szfast-0.0.25.post12}/classy_szfast/emulators_meta_data.py
RENAMED
File without changes
|
File without changes
|
File without changes
|
{classy_szfast-0.0.25.post10 → classy_szfast-0.0.25.post12}/classy_szfast/suppress_warnings.py
RENAMED
File without changes
|
{classy_szfast-0.0.25.post10 → classy_szfast-0.0.25.post12}/classy_szfast.egg-info/SOURCES.txt
RENAMED
File without changes
|
File without changes
|
File without changes
|