chat-console 0.2.9__tar.gz → 0.2.98__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (31) hide show
  1. {chat_console-0.2.9 → chat_console-0.2.98}/PKG-INFO +1 -1
  2. {chat_console-0.2.9 → chat_console-0.2.98}/app/__init__.py +1 -1
  3. chat_console-0.2.98/app/api/anthropic.py +222 -0
  4. {chat_console-0.2.9 → chat_console-0.2.98}/app/api/base.py +43 -0
  5. {chat_console-0.2.9 → chat_console-0.2.98}/app/api/ollama.py +193 -40
  6. {chat_console-0.2.9 → chat_console-0.2.98}/app/api/openai.py +45 -3
  7. {chat_console-0.2.9 → chat_console-0.2.98}/app/config.py +53 -7
  8. {chat_console-0.2.9 → chat_console-0.2.98}/app/main.py +480 -96
  9. {chat_console-0.2.9 → chat_console-0.2.98}/app/ui/chat_interface.py +35 -19
  10. {chat_console-0.2.9 → chat_console-0.2.98}/app/ui/model_browser.py +405 -45
  11. {chat_console-0.2.9 → chat_console-0.2.98}/app/ui/model_selector.py +77 -19
  12. chat_console-0.2.98/app/utils.py +528 -0
  13. {chat_console-0.2.9 → chat_console-0.2.98}/chat_console.egg-info/PKG-INFO +1 -1
  14. chat_console-0.2.9/app/api/anthropic.py +0 -92
  15. chat_console-0.2.9/app/utils.py +0 -256
  16. {chat_console-0.2.9 → chat_console-0.2.98}/LICENSE +0 -0
  17. {chat_console-0.2.9 → chat_console-0.2.98}/README.md +0 -0
  18. {chat_console-0.2.9 → chat_console-0.2.98}/app/api/__init__.py +0 -0
  19. {chat_console-0.2.9 → chat_console-0.2.98}/app/database.py +0 -0
  20. {chat_console-0.2.9 → chat_console-0.2.98}/app/models.py +0 -0
  21. {chat_console-0.2.9 → chat_console-0.2.98}/app/ui/__init__.py +0 -0
  22. {chat_console-0.2.9 → chat_console-0.2.98}/app/ui/chat_list.py +0 -0
  23. {chat_console-0.2.9 → chat_console-0.2.98}/app/ui/search.py +0 -0
  24. {chat_console-0.2.9 → chat_console-0.2.98}/app/ui/styles.py +0 -0
  25. {chat_console-0.2.9 → chat_console-0.2.98}/chat_console.egg-info/SOURCES.txt +0 -0
  26. {chat_console-0.2.9 → chat_console-0.2.98}/chat_console.egg-info/dependency_links.txt +0 -0
  27. {chat_console-0.2.9 → chat_console-0.2.98}/chat_console.egg-info/entry_points.txt +0 -0
  28. {chat_console-0.2.9 → chat_console-0.2.98}/chat_console.egg-info/requires.txt +0 -0
  29. {chat_console-0.2.9 → chat_console-0.2.98}/chat_console.egg-info/top_level.txt +0 -0
  30. {chat_console-0.2.9 → chat_console-0.2.98}/setup.cfg +0 -0
  31. {chat_console-0.2.9 → chat_console-0.2.98}/setup.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: chat-console
3
- Version: 0.2.9
3
+ Version: 0.2.98
4
4
  Summary: A command-line interface for chatting with LLMs, storing chats and (future) rag interactions
5
5
  Home-page: https://github.com/wazacraftrfid/chat-console
6
6
  Author: Johnathan Greenaway
@@ -3,4 +3,4 @@ Chat CLI
3
3
  A command-line interface for chatting with various LLM providers like ChatGPT and Claude.
4
4
  """
5
5
 
6
- __version__ = "0.2.9"
6
+ __version__ = "0.2.98"
@@ -0,0 +1,222 @@
1
+ import anthropic
2
+ import asyncio # Add missing import
3
+ from typing import List, Dict, Any, Optional, Generator, AsyncGenerator
4
+ from .base import BaseModelClient
5
+ from ..config import ANTHROPIC_API_KEY
6
+ from ..utils import resolve_model_id # Import the resolve_model_id function
7
+
8
+ class AnthropicClient(BaseModelClient):
9
+ def __init__(self):
10
+ self.client = anthropic.AsyncAnthropic(api_key=ANTHROPIC_API_KEY)
11
+
12
+ def _prepare_messages(self, messages: List[Dict[str, str]], style: Optional[str] = None) -> List[Dict[str, str]]:
13
+ """Prepare messages for Claude API"""
14
+ # Anthropic expects role to be 'user' or 'assistant'
15
+ processed_messages = []
16
+
17
+ for msg in messages:
18
+ role = msg["role"]
19
+ if role == "system":
20
+ # For Claude, we'll convert system messages to user messages with a special prefix
21
+ processed_messages.append({
22
+ "role": "user",
23
+ "content": f"<system>\n{msg['content']}\n</system>"
24
+ })
25
+ else:
26
+ processed_messages.append(msg)
27
+
28
+ # Add style instructions if provided
29
+ if style and style != "default":
30
+ # Find first non-system message to attach style to
31
+ for i, msg in enumerate(processed_messages):
32
+ if msg["role"] == "user":
33
+ content = msg["content"]
34
+ if "<userStyle>" not in content:
35
+ style_instructions = self._get_style_instructions(style)
36
+ msg["content"] = f"<userStyle>{style_instructions}</userStyle>\n\n{content}"
37
+ break
38
+
39
+ return processed_messages
40
+
41
+ def _get_style_instructions(self, style: str) -> str:
42
+ """Get formatting instructions for different styles"""
43
+ styles = {
44
+ "concise": "Be extremely concise and to the point. Use short sentences and paragraphs. Avoid unnecessary details.",
45
+ "detailed": "Be comprehensive and thorough in your responses. Provide detailed explanations, examples, and cover all relevant aspects of the topic.",
46
+ "technical": "Use precise technical language and terminology. Be formal and focus on accuracy and technical details.",
47
+ "friendly": "Be warm, approachable and conversational. Use casual language, personal examples, and a friendly tone.",
48
+ }
49
+
50
+ return styles.get(style, "")
51
+
52
+ async def generate_completion(self, messages: List[Dict[str, str]],
53
+ model: str,
54
+ style: Optional[str] = None,
55
+ temperature: float = 0.7,
56
+ max_tokens: Optional[int] = None) -> str:
57
+ """Generate a text completion using Claude"""
58
+ try:
59
+ from app.main import debug_log
60
+ except ImportError:
61
+ debug_log = lambda msg: None
62
+
63
+ # Resolve the model ID right before making the API call
64
+ original_model = model
65
+ resolved_model = resolve_model_id(model)
66
+ debug_log(f"Anthropic: Original model ID '{original_model}' resolved to '{resolved_model}' in generate_completion")
67
+
68
+ processed_messages = self._prepare_messages(messages, style)
69
+
70
+ response = await self.client.messages.create(
71
+ model=resolved_model, # Use the resolved model ID
72
+ messages=processed_messages,
73
+ temperature=temperature,
74
+ max_tokens=max_tokens or 1024,
75
+ )
76
+
77
+ return response.content[0].text
78
+
79
+ async def generate_stream(self, messages: List[Dict[str, str]],
80
+ model: str,
81
+ style: Optional[str] = None,
82
+ temperature: float = 0.7,
83
+ max_tokens: Optional[int] = None) -> AsyncGenerator[str, None]:
84
+ """Generate a streaming text completion using Claude"""
85
+ try:
86
+ from app.main import debug_log # Import debug logging if available
87
+ except ImportError:
88
+ # If debug_log not available, create a no-op function
89
+ debug_log = lambda msg: None
90
+
91
+ # Resolve the model ID right before making the API call
92
+ original_model = model
93
+ resolved_model = resolve_model_id(model)
94
+ debug_log(f"Anthropic: Original model ID '{original_model}' resolved to '{resolved_model}'")
95
+ debug_log(f"Anthropic: starting streaming generation with model: {resolved_model}")
96
+
97
+ processed_messages = self._prepare_messages(messages, style)
98
+
99
+ try:
100
+ debug_log(f"Anthropic: requesting stream with {len(processed_messages)} messages")
101
+ # Remove await from this line - it returns the context manager, not an awaitable
102
+ stream = self.client.messages.stream(
103
+ model=resolved_model, # Use the resolved model ID
104
+ messages=processed_messages,
105
+ temperature=temperature,
106
+ max_tokens=max_tokens or 1024,
107
+ )
108
+
109
+ debug_log("Anthropic: stream created successfully, processing chunks using async with")
110
+ async with stream as stream_context: # Use async with
111
+ async for chunk in stream_context: # Iterate over the context
112
+ try:
113
+ if chunk.type == "content_block_delta": # Check for delta type
114
+ # Ensure we always return a string
115
+ if chunk.delta.text is None:
116
+ debug_log("Anthropic: skipping empty text delta chunk")
117
+ continue
118
+
119
+ text = str(chunk.delta.text) # Get text from delta
120
+ debug_log(f"Anthropic: yielding chunk of length: {len(text)}")
121
+ yield text
122
+ else:
123
+ debug_log(f"Anthropic: skipping non-content_delta chunk of type: {chunk.type}")
124
+ except Exception as chunk_error: # Restore the except block for chunk processing
125
+ debug_log(f"Anthropic: error processing chunk: {str(chunk_error)}")
126
+ # Skip problematic chunks but continue processing
127
+ continue # This continue is now correctly inside the loop and except block
128
+
129
+ except Exception as e:
130
+ debug_log(f"Anthropic: error in generate_stream: {str(e)}")
131
+ raise Exception(f"Anthropic streaming error: {str(e)}")
132
+
133
+ async def _fetch_models_from_api(self) -> List[Dict[str, Any]]:
134
+ """Fetch available models directly from the Anthropic API."""
135
+ try:
136
+ from app.main import debug_log
137
+ except ImportError:
138
+ debug_log = lambda msg: None
139
+
140
+ try:
141
+ debug_log("Anthropic: Fetching models from API...")
142
+ # The Anthropic Python SDK might not have a direct high-level method for listing models yet.
143
+ # We might need to use the underlying HTTP client or make a direct request.
144
+ # Let's assume for now the SDK client *does* have a way, like self.client.models.list()
145
+ # If this fails, we'd need to implement a direct HTTP GET request.
146
+ # response = await self.client.models.list() # Hypothetical SDK method
147
+
148
+ # --- Alternative: Direct HTTP Request using httpx (if client exposes it) ---
149
+ # Check if the client has an internal http_client we can use
150
+ if hasattr(self.client, '_client') and hasattr(self.client._client, 'get'):
151
+ response = await self.client._client.get(
152
+ "/v1/models",
153
+ headers={"anthropic-version": "2023-06-01"} # Add required version header
154
+ )
155
+ response.raise_for_status() # Raise HTTP errors
156
+ models_data = response.json()
157
+ debug_log(f"Anthropic: API response received: {models_data}")
158
+ if 'data' in models_data and isinstance(models_data['data'], list):
159
+ # Format the response as expected: list of {"id": ..., "name": ...}
160
+ formatted_models = [
161
+ {"id": model.get("id"), "name": model.get("display_name", model.get("id"))}
162
+ for model in models_data['data']
163
+ if model.get("id") # Ensure model has an ID
164
+ ]
165
+ # Log each model ID clearly for debugging
166
+ debug_log(f"Anthropic: Available models from API:")
167
+ for model in formatted_models:
168
+ debug_log(f" - ID: {model.get('id')}, Name: {model.get('name')}")
169
+ return formatted_models
170
+ else:
171
+ debug_log("Anthropic: Unexpected API response format for models.")
172
+ return []
173
+ else:
174
+ debug_log("Anthropic: Client does not expose HTTP client for model listing. Returning empty list.")
175
+ return [] # Cannot fetch dynamically
176
+
177
+ except Exception as e:
178
+ debug_log(f"Anthropic: Failed to fetch models from API: {str(e)}")
179
+ # Fallback to a minimal hardcoded list in case of API error
180
+ # Include Claude 3.7 Sonnet with the correct full ID
181
+ fallback_models = [
182
+ {"id": "claude-3-opus-20240229", "name": "Claude 3 Opus"},
183
+ {"id": "claude-3-sonnet-20240229", "name": "Claude 3 Sonnet"},
184
+ {"id": "claude-3-haiku-20240307", "name": "Claude 3 Haiku"},
185
+ {"id": "claude-3-5-sonnet-20240620", "name": "Claude 3.5 Sonnet"},
186
+ {"id": "claude-3-7-sonnet-20250219", "name": "Claude 3.7 Sonnet"}, # Add Claude 3.7 Sonnet
187
+ ]
188
+ debug_log("Anthropic: Using fallback model list:")
189
+ for model in fallback_models:
190
+ debug_log(f" - ID: {model['id']}, Name: {model['name']}")
191
+ return fallback_models
192
+
193
+ # Keep this synchronous for now, but make it call the async fetcher
194
+ # Note: This is slightly awkward. Ideally, config loading would be async.
195
+ # For now, we'll run the async fetcher within the sync method using asyncio.run()
196
+ # This is NOT ideal for performance but avoids larger refactoring of config loading.
197
+ def get_available_models(self) -> List[Dict[str, Any]]:
198
+ """Get list of available Claude models by fetching from API."""
199
+ try:
200
+ # Run the async fetcher method synchronously
201
+ models = asyncio.run(self._fetch_models_from_api())
202
+ return models
203
+ except RuntimeError as e:
204
+ # Handle cases where asyncio.run can't be called (e.g., already in an event loop)
205
+ # This might happen during app runtime if called again. Fallback needed.
206
+ try:
207
+ from app.main import debug_log
208
+ except ImportError:
209
+ debug_log = lambda msg: None
210
+ debug_log(f"Anthropic: Cannot run async model fetch synchronously ({e}). Falling back to hardcoded list.")
211
+ # Use the same fallback list as in _fetch_models_from_api
212
+ fallback_models = [
213
+ {"id": "claude-3-opus-20240229", "name": "Claude 3 Opus"},
214
+ {"id": "claude-3-sonnet-20240229", "name": "Claude 3 Sonnet"},
215
+ {"id": "claude-3-haiku-20240307", "name": "Claude 3 Haiku"},
216
+ {"id": "claude-3-5-sonnet-20240620", "name": "Claude 3.5 Sonnet"},
217
+ {"id": "claude-3-7-sonnet-20250219", "name": "Claude 3.7 Sonnet"}, # Add Claude 3.7 Sonnet
218
+ ]
219
+ debug_log("Anthropic: Using fallback model list in get_available_models:")
220
+ for model in fallback_models:
221
+ debug_log(f" - ID: {model['id']}, Name: {model['name']}")
222
+ return fallback_models
@@ -27,6 +27,49 @@ class BaseModelClient(ABC):
27
27
  """Get list of available models from this provider"""
28
28
  pass
29
29
 
30
+ @staticmethod
31
+ def get_client_type_for_model(model_name: str) -> type:
32
+ """Get the client class for a model without instantiating it"""
33
+ from ..config import CONFIG, AVAILABLE_PROVIDERS
34
+ from .anthropic import AnthropicClient
35
+ from .openai import OpenAIClient
36
+ from .ollama import OllamaClient
37
+ import logging
38
+
39
+ logger = logging.getLogger(__name__)
40
+
41
+ # Get model info and provider
42
+ model_info = CONFIG["available_models"].get(model_name)
43
+ model_name_lower = model_name.lower()
44
+
45
+ # If model is in config, use its provider
46
+ if model_info:
47
+ provider = model_info["provider"]
48
+ # For custom models, try to infer provider
49
+ else:
50
+ # First try Ollama for known model names or if selected from Ollama UI
51
+ if (any(name in model_name_lower for name in ["llama", "mistral", "codellama", "gemma"]) or
52
+ model_name in [m["id"] for m in CONFIG.get("ollama_models", [])]):
53
+ provider = "ollama"
54
+ # Then try other providers
55
+ elif any(name in model_name_lower for name in ["gpt", "text-", "davinci"]):
56
+ provider = "openai"
57
+ elif any(name in model_name_lower for name in ["claude", "anthropic"]):
58
+ provider = "anthropic"
59
+ else:
60
+ # Default to Ollama for unknown models
61
+ provider = "ollama"
62
+
63
+ # Return appropriate client class
64
+ if provider == "ollama":
65
+ return OllamaClient
66
+ elif provider == "openai":
67
+ return OpenAIClient
68
+ elif provider == "anthropic":
69
+ return AnthropicClient
70
+ else:
71
+ return None
72
+
30
73
  @staticmethod
31
74
  def get_client_for_model(model_name: str) -> 'BaseModelClient':
32
75
  """Factory method to get appropriate client for model"""
@@ -34,17 +34,62 @@ class OllamaClient(BaseModelClient):
34
34
 
35
35
  def _prepare_messages(self, messages: List[Dict[str, str]], style: Optional[str] = None) -> str:
36
36
  """Convert chat messages to Ollama format"""
37
+ try:
38
+ from app.main import debug_log # Import debug logging
39
+ debug_log(f"_prepare_messages called with {len(messages)} messages and style: {style}")
40
+ except ImportError:
41
+ # If debug_log not available, create a no-op function
42
+ debug_log = lambda msg: None
43
+
37
44
  # Start with any style instructions
38
45
  formatted_messages = []
39
46
  if style and style != "default":
40
- formatted_messages.append(self._get_style_instructions(style))
41
-
47
+ style_instructions = self._get_style_instructions(style)
48
+ debug_log(f"Adding style instructions: {style_instructions[:50]}...")
49
+ formatted_messages.append(style_instructions)
50
+
42
51
  # Add message content, preserving conversation flow
43
- for msg in messages:
44
- formatted_messages.append(msg["content"])
45
-
52
+ for i, msg in enumerate(messages):
53
+ try:
54
+ debug_log(f"Processing message {i}: role={msg.get('role', 'unknown')}, content length={len(msg.get('content', ''))}")
55
+
56
+ # Safely extract content with fallback
57
+ if "content" in msg and msg["content"] is not None:
58
+ content = msg["content"]
59
+ formatted_messages.append(content)
60
+ else:
61
+ debug_log(f"Message {i} has no valid content key, using fallback")
62
+ # Try to get content from alternative sources
63
+ if isinstance(msg, dict):
64
+ # Try to convert the whole message to string as last resort
65
+ content = str(msg)
66
+ debug_log(f"Using fallback content: {content[:50]}...")
67
+ formatted_messages.append(content)
68
+ else:
69
+ debug_log(f"Message {i} is not a dict, skipping")
70
+
71
+ except KeyError as e:
72
+ debug_log(f"KeyError processing message {i}: {e}, message: {msg}")
73
+ # Handle missing key more gracefully
74
+ content = msg.get('content', '')
75
+ if content:
76
+ formatted_messages.append(content)
77
+ else:
78
+ debug_log(f"Warning: Message {i} has no content, skipping")
79
+ except Exception as e:
80
+ debug_log(f"Error processing message {i}: {e}")
81
+ # Continue processing other messages
82
+ continue
83
+
84
+ # Defensive check to ensure we have something to return
85
+ if not formatted_messages:
86
+ debug_log("Warning: No formatted messages were created, using fallback")
87
+ formatted_messages = ["Please provide some input for the model to respond to."]
88
+
46
89
  # Join with double newlines for better readability
47
- return "\n\n".join(formatted_messages)
90
+ result = "\n\n".join(formatted_messages)
91
+ debug_log(f"Final formatted prompt length: {len(result)}")
92
+ return result
48
93
 
49
94
  def _get_style_instructions(self, style: str) -> str:
50
95
  """Get formatting instructions for different styles"""
@@ -168,7 +213,49 @@ class OllamaClient(BaseModelClient):
168
213
  max_tokens: Optional[int] = None) -> AsyncGenerator[str, None]:
169
214
  """Generate a streaming text completion using Ollama"""
170
215
  logger.info(f"Starting streaming generation with model: {model}")
171
- prompt = self._prepare_messages(messages, style)
216
+ try:
217
+ from app.main import debug_log # Import debug logging if available
218
+ debug_log(f"Starting streaming generation with model: {model}")
219
+ except ImportError:
220
+ # If debug_log not available, create a no-op function
221
+ debug_log = lambda msg: None
222
+
223
+ debug_log(f"generate_stream called with model: {model}, {len(messages)} messages")
224
+
225
+ # At the beginning of the method, check messages format
226
+ if not messages:
227
+ debug_log("Error: messages is empty")
228
+ raise ValueError("Messages list is empty")
229
+
230
+ for i, msg in enumerate(messages):
231
+ try:
232
+ if not isinstance(msg, dict):
233
+ debug_log(f"Error: message {i} is not a dict: {type(msg)}")
234
+ raise ValueError(f"Message {i} is not a dictionary")
235
+ if 'role' not in msg:
236
+ debug_log(f"Error: message {i} missing 'role' key, using default")
237
+ msg['role'] = 'user'
238
+ if 'content' not in msg:
239
+ debug_log(f"Error: message {i} missing 'content' key, using default")
240
+ msg['content'] = ''
241
+ except Exception as e:
242
+ debug_log(f"Error validating message {i}: {str(e)}")
243
+
244
+ # Now prepare the messages with our robust _prepare_messages method
245
+ try:
246
+ debug_log("Calling _prepare_messages to format prompt")
247
+ prompt = self._prepare_messages(messages, style)
248
+ debug_log(f"Prompt prepared, length: {len(prompt)}")
249
+ except Exception as prep_error:
250
+ debug_log(f"Error preparing messages: {str(prep_error)}")
251
+ # Create a simple fallback prompt
252
+ if len(messages) > 0 and isinstance(messages[-1], dict) and 'content' in messages[-1]:
253
+ prompt = messages[-1]['content']
254
+ debug_log(f"Using last message content as fallback prompt: {prompt[:100]}...")
255
+ else:
256
+ prompt = "Please respond to the user's query."
257
+ debug_log("Using generic fallback prompt")
258
+
172
259
  retries = 2
173
260
  last_error = None
174
261
  self._active_stream_session = None # Track the active session
@@ -179,36 +266,63 @@ class OllamaClient(BaseModelClient):
179
266
  async with aiohttp.ClientSession() as session:
180
267
  try:
181
268
  logger.info("Testing model availability...")
182
- async with session.post(
183
- f"{self.base_url}/api/generate",
184
- json={
185
- "model": model,
269
+ debug_log("Testing model availability...")
270
+ # Build test payload with careful error handling
271
+ try:
272
+ test_payload = {
273
+ "model": str(model) if model is not None else "gemma:2b",
186
274
  "prompt": "test",
187
- "temperature": temperature,
275
+ "temperature": float(temperature) if temperature is not None else 0.7,
188
276
  "stream": False
189
- },
277
+ }
278
+ debug_log(f"Prepared test payload: {test_payload}")
279
+ except Exception as payload_error:
280
+ debug_log(f"Error preparing test payload: {str(payload_error)}, using defaults")
281
+ test_payload = {
282
+ "model": "gemma:2b", # Safe default
283
+ "prompt": "test",
284
+ "temperature": 0.7,
285
+ "stream": False
286
+ }
287
+
288
+ async with session.post(
289
+ f"{self.base_url}/api/generate",
290
+ json=test_payload,
190
291
  timeout=2
191
292
  ) as response:
192
293
  if response.status != 200:
193
294
  logger.warning(f"Model test request failed with status {response.status}")
295
+ debug_log(f"Model test request failed with status {response.status}")
194
296
  raise aiohttp.ClientError("Model not ready")
195
297
  except (aiohttp.ClientError, asyncio.TimeoutError) as e:
196
298
  logger.info(f"Model cold start detected: {str(e)}")
299
+ debug_log(f"Model cold start detected: {str(e)}")
197
300
  # Set model loading flag
198
301
  self._model_loading = True
199
302
  logger.info("Setting model_loading state to True")
303
+ debug_log("Setting model_loading state to True")
200
304
 
201
305
  # Model might need loading, try pulling it
306
+ # Prepare pull payload safely
307
+ try:
308
+ pull_payload = {"name": str(model) if model is not None else "gemma:2b"}
309
+ debug_log(f"Prepared pull payload: {pull_payload}")
310
+ except Exception as pull_err:
311
+ debug_log(f"Error preparing pull payload: {str(pull_err)}, using default")
312
+ pull_payload = {"name": "gemma:2b"} # Safe default
313
+
202
314
  async with session.post(
203
315
  f"{self.base_url}/api/pull",
204
- json={"name": model},
316
+ json=pull_payload,
205
317
  timeout=60
206
318
  ) as pull_response:
207
319
  if pull_response.status != 200:
208
320
  logger.error("Failed to pull model")
321
+ debug_log("Failed to pull model")
209
322
  self._model_loading = False # Reset flag on failure
210
323
  raise Exception("Failed to pull model")
211
324
  logger.info("Model pulled successfully")
325
+ debug_log("Model pulled successfully")
212
326
  self._model_loading = False # Reset flag after successful pull
213
327
 
214
328
  # Now proceed with actual generation
@@ -217,67 +331,106 @@ class OllamaClient(BaseModelClient):
217
331
 
218
332
  try:
219
333
  logger.debug(f"Sending streaming request to {self.base_url}/api/generate")
334
+ debug_log(f"Sending streaming request to {self.base_url}/api/generate with model: {model}")
335
+ debug_log(f"Request payload: model={model}, prompt_length={len(prompt) if prompt else 0}, temperature={temperature}")
336
+
337
+ # Build request payload with careful error handling
338
+ try:
339
+ request_payload = {
340
+ "model": str(model) if model is not None else "gemma:2b", # Default if model is None
341
+ "prompt": str(prompt) if prompt is not None else "Please respond to the user's query.",
342
+ "temperature": float(temperature) if temperature is not None else 0.7,
343
+ "stream": True
344
+ }
345
+ debug_log(f"Prepared request payload successfully")
346
+ except Exception as payload_error:
347
+ debug_log(f"Error preparing payload: {str(payload_error)}, using defaults")
348
+ request_payload = {
349
+ "model": "gemma:2b", # Safe default
350
+ "prompt": "Please respond to the user's query.",
351
+ "temperature": 0.7,
352
+ "stream": True
353
+ }
354
+
355
+ debug_log(f"Sending request to Ollama API")
220
356
  response = await session.post(
221
357
  f"{self.base_url}/api/generate",
222
- json={
223
- "model": model,
224
- "prompt": prompt,
225
- "temperature": temperature,
226
- "stream": True
227
- },
358
+ json=request_payload,
228
359
  timeout=60 # Longer timeout for actual generation
229
360
  )
230
361
  response.raise_for_status()
362
+ debug_log(f"Response status: {response.status}")
231
363
 
232
- # Process the response stream
233
- while True:
234
- if not self._active_stream_session:
235
- logger.info("Stream session was closed externally")
364
+ # Use a simpler async iteration pattern that's less error-prone
365
+ debug_log("Starting to process response stream")
366
+ async for line in response.content:
367
+ # Check cancellation periodically
368
+ if self._active_stream_session is None:
369
+ debug_log("Stream session closed, stopping stream processing")
236
370
  break
237
371
 
238
372
  try:
239
- line = await asyncio.wait_for(response.content.readline(), timeout=0.5)
240
- if not line: # End of stream
241
- break
242
-
243
- chunk = line.decode().strip()
244
- try:
245
- data = json.loads(chunk)
246
- if "response" in data:
247
- yield data["response"]
248
- except json.JSONDecodeError:
373
+ # Process the chunk
374
+ if line:
375
+ chunk = line.decode().strip()
376
+ chunk_str = line.decode().strip()
377
+ # Check if it looks like JSON before trying to parse
378
+ if chunk_str.startswith('{') and chunk_str.endswith('}'):
379
+ try:
380
+ data = json.loads(chunk_str)
381
+ if isinstance(data, dict) and "response" in data:
382
+ chunk_length = len(data["response"]) if data["response"] else 0
383
+ debug_log(f"Yielding chunk of length: {chunk_length}")
384
+ yield data["response"]
385
+ else:
386
+ debug_log(f"JSON chunk missing 'response' key: {chunk_str}")
387
+ except json.JSONDecodeError:
388
+ debug_log(f"JSON decode error for chunk: {chunk_str}")
389
+ else:
390
+ # Log unexpected non-JSON lines but don't process them
391
+ if chunk_str: # Avoid logging empty lines
392
+ debug_log(f"Received unexpected non-JSON line: {chunk_str}")
393
+ # Continue processing next line regardless of parsing success/failure of current line
249
394
  continue
250
- except asyncio.TimeoutError:
251
- # This allows checking for cancellation regularly
395
+ except Exception as chunk_err:
396
+ debug_log(f"Error processing chunk: {str(chunk_err)}")
397
+ # Continue instead of breaking to try processing more chunks
252
398
  continue
253
- except asyncio.CancelledError:
254
- logger.info("Stream processing was cancelled")
255
- raise
256
-
399
+
257
400
  logger.info("Streaming completed successfully")
401
+ debug_log("Streaming completed successfully")
258
402
  return
259
403
  finally:
260
404
  self._active_stream_session = None # Clear reference when done
261
405
  await session.close() # Ensure session is closed
406
+ debug_log("Stream session closed")
262
407
 
263
408
  except aiohttp.ClientConnectorError:
264
409
  last_error = "Could not connect to Ollama server. Make sure Ollama is running and accessible at " + self.base_url
410
+ debug_log(f"ClientConnectorError: {last_error}")
265
411
  except aiohttp.ClientResponseError as e:
266
412
  last_error = f"Ollama API error: {e.status} - {e.message}"
413
+ debug_log(f"ClientResponseError: {last_error}")
267
414
  except aiohttp.ClientTimeout:
268
415
  last_error = "Request to Ollama server timed out"
416
+ debug_log(f"ClientTimeout: {last_error}")
269
417
  except asyncio.CancelledError:
270
418
  logger.info("Streaming cancelled by client")
419
+ debug_log("CancelledError: Streaming cancelled by client")
271
420
  raise # Propagate cancellation
272
421
  except Exception as e:
273
422
  last_error = f"Error streaming completion: {str(e)}"
423
+ debug_log(f"General exception: {last_error}")
274
424
 
275
425
  logger.error(f"Streaming attempt failed: {last_error}")
426
+ debug_log(f"Streaming attempt failed: {last_error}")
276
427
  retries -= 1
277
428
  if retries >= 0:
278
429
  logger.info(f"Retrying stream... {retries} attempts remaining")
430
+ debug_log(f"Retrying stream... {retries} attempts remaining")
279
431
  await asyncio.sleep(1)
280
432
 
433
+ debug_log(f"All retries failed. Last error: {last_error}")
281
434
  raise Exception(last_error)
282
435
 
283
436
  async def cancel_stream(self) -> None: