chartengineer 0.1.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- chartengineer-0.1.0/PKG-INFO +174 -0
- chartengineer-0.1.0/README.md +153 -0
- chartengineer-0.1.0/chartengineer/__init__.py +1 -0
- chartengineer-0.1.0/chartengineer/core.py +931 -0
- chartengineer-0.1.0/chartengineer/utils.py +141 -0
- chartengineer-0.1.0/chartengineer.egg-info/PKG-INFO +174 -0
- chartengineer-0.1.0/chartengineer.egg-info/SOURCES.txt +11 -0
- chartengineer-0.1.0/chartengineer.egg-info/dependency_links.txt +1 -0
- chartengineer-0.1.0/chartengineer.egg-info/requires.txt +8 -0
- chartengineer-0.1.0/chartengineer.egg-info/top_level.txt +1 -0
- chartengineer-0.1.0/pyproject.toml +0 -0
- chartengineer-0.1.0/setup.cfg +4 -0
- chartengineer-0.1.0/setup.py +29 -0
|
@@ -0,0 +1,174 @@
|
|
|
1
|
+
Metadata-Version: 2.1
|
|
2
|
+
Name: chartengineer
|
|
3
|
+
Version: 0.1.0
|
|
4
|
+
Summary: Library for quick and modern chart building.
|
|
5
|
+
Home-page:
|
|
6
|
+
Author: Brandyn Hamilton
|
|
7
|
+
Author-email: brandynham1120@gmail.com
|
|
8
|
+
Classifier: Programming Language :: Python :: 3
|
|
9
|
+
Classifier: License :: OSI Approved :: MIT License
|
|
10
|
+
Classifier: Operating System :: OS Independent
|
|
11
|
+
Requires-Python: >=3.7
|
|
12
|
+
Description-Content-Type: text/markdown
|
|
13
|
+
Requires-Dist: pandas
|
|
14
|
+
Requires-Dist: numpy
|
|
15
|
+
Requires-Dist: dotenv
|
|
16
|
+
Requires-Dist: plotly
|
|
17
|
+
Requires-Dist: matplotlib
|
|
18
|
+
Requires-Dist: colorcet
|
|
19
|
+
Requires-Dist: nbformat>=4.2.0
|
|
20
|
+
Requires-Dist: kaleido==0.1.0.post1
|
|
21
|
+
|
|
22
|
+
# `chartengineer` Documentation
|
|
23
|
+
|
|
24
|
+
**chartengineer** is a lightweight Python package for building publication-ready, highly customizable Plotly charts from pandas DataFrames.
|
|
25
|
+
|
|
26
|
+
It supports a flexible API for pie charts, grouped bar charts, heatmaps, time series, and area/line plots, with robust formatting, annotations, and layout tools.
|
|
27
|
+
|
|
28
|
+
---
|
|
29
|
+
|
|
30
|
+
## Installation
|
|
31
|
+
|
|
32
|
+
```bash
|
|
33
|
+
pip install chartengineer
|
|
34
|
+
```
|
|
35
|
+
|
|
36
|
+
Or install from source:
|
|
37
|
+
|
|
38
|
+
```bash
|
|
39
|
+
git clone https://github.com/your-org/chartengineer
|
|
40
|
+
cd chartengineer
|
|
41
|
+
pip install -e .
|
|
42
|
+
```
|
|
43
|
+
|
|
44
|
+
---
|
|
45
|
+
|
|
46
|
+
## Quickstart
|
|
47
|
+
|
|
48
|
+
```python
|
|
49
|
+
from chartengineer import ChartMaker
|
|
50
|
+
|
|
51
|
+
cm = ChartMaker(shuffle_colors=True)
|
|
52
|
+
cm.build(
|
|
53
|
+
df=my_df,
|
|
54
|
+
groupby_col="CHAIN",
|
|
55
|
+
num_col="TOTAL_VOLUME",
|
|
56
|
+
title="Bridge Volume by Chain",
|
|
57
|
+
chart_type="pie",
|
|
58
|
+
options={
|
|
59
|
+
"tickprefix": {"y1": "$"},
|
|
60
|
+
"annotations": True,
|
|
61
|
+
"texttemplate": "%{label}<br>%{percent}"
|
|
62
|
+
}
|
|
63
|
+
)
|
|
64
|
+
cm.add_title(subtitle="As of 2025-04-01")
|
|
65
|
+
cm.show_fig()
|
|
66
|
+
```
|
|
67
|
+
|
|
68
|
+
---
|
|
69
|
+
|
|
70
|
+
## Supported Chart Types
|
|
71
|
+
|
|
72
|
+
- `"line"` (default)
|
|
73
|
+
- `"bar"`
|
|
74
|
+
- `"area"`
|
|
75
|
+
- `"pie"`
|
|
76
|
+
- `"heatmap"`
|
|
77
|
+
|
|
78
|
+
You can use a string or dictionary:
|
|
79
|
+
|
|
80
|
+
```python
|
|
81
|
+
chart_type = "bar" # applies to both y1/y2
|
|
82
|
+
chart_type = {"y1": "line", "y2": "bar"} # axis-specific
|
|
83
|
+
```
|
|
84
|
+
|
|
85
|
+
---
|
|
86
|
+
|
|
87
|
+
## Main Methods
|
|
88
|
+
|
|
89
|
+
### `ChartMaker.build(...)`
|
|
90
|
+
|
|
91
|
+
Build a chart.
|
|
92
|
+
|
|
93
|
+
**Arguments**
|
|
94
|
+
|
|
95
|
+
- `df`: pandas DataFrame
|
|
96
|
+
- `title`: Chart title
|
|
97
|
+
- `chart_type`: string or dict
|
|
98
|
+
- `groupby_col`, `num_col`: for grouped series or pie/bar
|
|
99
|
+
- `axes_data`: e.g. `{"x": "DATE", "y1": ["TVL"]}`
|
|
100
|
+
- `options`: plot style and behavior options
|
|
101
|
+
|
|
102
|
+
---
|
|
103
|
+
|
|
104
|
+
### `ChartMaker.show_fig()`
|
|
105
|
+
|
|
106
|
+
Render the current chart inline (Jupyter) or open in browser.
|
|
107
|
+
|
|
108
|
+
### `ChartMaker.save_fig(path, filetype='png')`
|
|
109
|
+
|
|
110
|
+
Save the chart as `.png`, `.svg`, or `.html`.
|
|
111
|
+
|
|
112
|
+
### ChartMaker.add_annotations(max_annotation=True, custom_annotations=None, annotation_placement=dict(x=0.5,y=0.5))
|
|
113
|
+
|
|
114
|
+
If called and the chart is plotting timeseries data, this automatically adds annotations for the first and last data points. If max_annotation is True, it dynamically calculates the max value in the dataset and annotates it. Note that this is meant for plotting single-series timeseries data.
|
|
115
|
+
|
|
116
|
+
If the chart is a Pie chart, the annotation_placement parameter enables moving the location of where the annotation is placed.
|
|
117
|
+
|
|
118
|
+
### ChartMaker.add_dashed_line(date, annotation_text=None)
|
|
119
|
+
|
|
120
|
+
Adds a dashed line and annotation at the specified date; meant for timeseries data. If annotation_text is None, it uses the column name that contains the max value for the specified date.
|
|
121
|
+
|
|
122
|
+
### ChartMaker.return_df()
|
|
123
|
+
|
|
124
|
+
Returns the dataframe used in a chart.
|
|
125
|
+
|
|
126
|
+
### ChartMaker.return_fig()
|
|
127
|
+
|
|
128
|
+
Returns the Plotly figure that was created from calling the build method.
|
|
129
|
+
|
|
130
|
+
---
|
|
131
|
+
|
|
132
|
+
## Customization Options
|
|
133
|
+
|
|
134
|
+
All style options can be passed via the `options` parameter. These are the same options that can be passed to a base Plotly figure. Refer to the Plotly library documentation for a full list of accepted parameters.
|
|
135
|
+
|
|
136
|
+
```python
|
|
137
|
+
options = {
|
|
138
|
+
"tickprefix": {"y1": "$"},
|
|
139
|
+
"ticksuffix": {"y1": "%"},
|
|
140
|
+
"dimensions": {"width": 800, "height": 400},
|
|
141
|
+
"font_family": "Cardo",
|
|
142
|
+
"font_size": {"axes": 16, "legend": 12, "textfont": 12},
|
|
143
|
+
"legend_placement": {"x": 1.05, "y": 1},
|
|
144
|
+
"show_text": True,
|
|
145
|
+
"annotations": True,
|
|
146
|
+
}
|
|
147
|
+
```
|
|
148
|
+
|
|
149
|
+
---
|
|
150
|
+
|
|
151
|
+
## Chart Features
|
|
152
|
+
|
|
153
|
+
- Grouped bar plots with custom sort and color mapping
|
|
154
|
+
- Automatic annotations for first/last/max points
|
|
155
|
+
- Time series support with datetime formatting
|
|
156
|
+
- Pie chart labels, percentages, donut hole support
|
|
157
|
+
- Heatmaps with flexible x/y/z column mapping
|
|
158
|
+
|
|
159
|
+
---
|
|
160
|
+
|
|
161
|
+
## Project Structure
|
|
162
|
+
|
|
163
|
+
```
|
|
164
|
+
chartengineer/
|
|
165
|
+
├── __init__.py
|
|
166
|
+
├── core.py # ChartMaker class
|
|
167
|
+
├── utils.py # Plotting utils, formatting
|
|
168
|
+
```
|
|
169
|
+
|
|
170
|
+
---
|
|
171
|
+
|
|
172
|
+
## License
|
|
173
|
+
|
|
174
|
+
MIT License © Brandyn Hamilton
|
|
@@ -0,0 +1,153 @@
|
|
|
1
|
+
# `chartengineer` Documentation
|
|
2
|
+
|
|
3
|
+
**chartengineer** is a lightweight Python package for building publication-ready, highly customizable Plotly charts from pandas DataFrames.
|
|
4
|
+
|
|
5
|
+
It supports a flexible API for pie charts, grouped bar charts, heatmaps, time series, and area/line plots, with robust formatting, annotations, and layout tools.
|
|
6
|
+
|
|
7
|
+
---
|
|
8
|
+
|
|
9
|
+
## Installation
|
|
10
|
+
|
|
11
|
+
```bash
|
|
12
|
+
pip install chartengineer
|
|
13
|
+
```
|
|
14
|
+
|
|
15
|
+
Or install from source:
|
|
16
|
+
|
|
17
|
+
```bash
|
|
18
|
+
git clone https://github.com/your-org/chartengineer
|
|
19
|
+
cd chartengineer
|
|
20
|
+
pip install -e .
|
|
21
|
+
```
|
|
22
|
+
|
|
23
|
+
---
|
|
24
|
+
|
|
25
|
+
## Quickstart
|
|
26
|
+
|
|
27
|
+
```python
|
|
28
|
+
from chartengineer import ChartMaker
|
|
29
|
+
|
|
30
|
+
cm = ChartMaker(shuffle_colors=True)
|
|
31
|
+
cm.build(
|
|
32
|
+
df=my_df,
|
|
33
|
+
groupby_col="CHAIN",
|
|
34
|
+
num_col="TOTAL_VOLUME",
|
|
35
|
+
title="Bridge Volume by Chain",
|
|
36
|
+
chart_type="pie",
|
|
37
|
+
options={
|
|
38
|
+
"tickprefix": {"y1": "$"},
|
|
39
|
+
"annotations": True,
|
|
40
|
+
"texttemplate": "%{label}<br>%{percent}"
|
|
41
|
+
}
|
|
42
|
+
)
|
|
43
|
+
cm.add_title(subtitle="As of 2025-04-01")
|
|
44
|
+
cm.show_fig()
|
|
45
|
+
```
|
|
46
|
+
|
|
47
|
+
---
|
|
48
|
+
|
|
49
|
+
## Supported Chart Types
|
|
50
|
+
|
|
51
|
+
- `"line"` (default)
|
|
52
|
+
- `"bar"`
|
|
53
|
+
- `"area"`
|
|
54
|
+
- `"pie"`
|
|
55
|
+
- `"heatmap"`
|
|
56
|
+
|
|
57
|
+
You can use a string or dictionary:
|
|
58
|
+
|
|
59
|
+
```python
|
|
60
|
+
chart_type = "bar" # applies to both y1/y2
|
|
61
|
+
chart_type = {"y1": "line", "y2": "bar"} # axis-specific
|
|
62
|
+
```
|
|
63
|
+
|
|
64
|
+
---
|
|
65
|
+
|
|
66
|
+
## Main Methods
|
|
67
|
+
|
|
68
|
+
### `ChartMaker.build(...)`
|
|
69
|
+
|
|
70
|
+
Build a chart.
|
|
71
|
+
|
|
72
|
+
**Arguments**
|
|
73
|
+
|
|
74
|
+
- `df`: pandas DataFrame
|
|
75
|
+
- `title`: Chart title
|
|
76
|
+
- `chart_type`: string or dict
|
|
77
|
+
- `groupby_col`, `num_col`: for grouped series or pie/bar
|
|
78
|
+
- `axes_data`: e.g. `{"x": "DATE", "y1": ["TVL"]}`
|
|
79
|
+
- `options`: plot style and behavior options
|
|
80
|
+
|
|
81
|
+
---
|
|
82
|
+
|
|
83
|
+
### `ChartMaker.show_fig()`
|
|
84
|
+
|
|
85
|
+
Render the current chart inline (Jupyter) or open in browser.
|
|
86
|
+
|
|
87
|
+
### `ChartMaker.save_fig(path, filetype='png')`
|
|
88
|
+
|
|
89
|
+
Save the chart as `.png`, `.svg`, or `.html`.
|
|
90
|
+
|
|
91
|
+
### ChartMaker.add_annotations(max_annotation=True, custom_annotations=None, annotation_placement=dict(x=0.5,y=0.5))
|
|
92
|
+
|
|
93
|
+
If called and the chart is plotting timeseries data, this automatically adds annotations for the first and last data points. If max_annotation is True, it dynamically calculates the max value in the dataset and annotates it. Note that this is meant for plotting single-series timeseries data.
|
|
94
|
+
|
|
95
|
+
If the chart is a Pie chart, the annotation_placement parameter enables moving the location of where the annotation is placed.
|
|
96
|
+
|
|
97
|
+
### ChartMaker.add_dashed_line(date, annotation_text=None)
|
|
98
|
+
|
|
99
|
+
Adds a dashed line and annotation at the specified date; meant for timeseries data. If annotation_text is None, it uses the column name that contains the max value for the specified date.
|
|
100
|
+
|
|
101
|
+
### ChartMaker.return_df()
|
|
102
|
+
|
|
103
|
+
Returns the dataframe used in a chart.
|
|
104
|
+
|
|
105
|
+
### ChartMaker.return_fig()
|
|
106
|
+
|
|
107
|
+
Returns the Plotly figure that was created from calling the build method.
|
|
108
|
+
|
|
109
|
+
---
|
|
110
|
+
|
|
111
|
+
## Customization Options
|
|
112
|
+
|
|
113
|
+
All style options can be passed via the `options` parameter. These are the same options that can be passed to a base Plotly figure. Refer to the Plotly library documentation for a full list of accepted parameters.
|
|
114
|
+
|
|
115
|
+
```python
|
|
116
|
+
options = {
|
|
117
|
+
"tickprefix": {"y1": "$"},
|
|
118
|
+
"ticksuffix": {"y1": "%"},
|
|
119
|
+
"dimensions": {"width": 800, "height": 400},
|
|
120
|
+
"font_family": "Cardo",
|
|
121
|
+
"font_size": {"axes": 16, "legend": 12, "textfont": 12},
|
|
122
|
+
"legend_placement": {"x": 1.05, "y": 1},
|
|
123
|
+
"show_text": True,
|
|
124
|
+
"annotations": True,
|
|
125
|
+
}
|
|
126
|
+
```
|
|
127
|
+
|
|
128
|
+
---
|
|
129
|
+
|
|
130
|
+
## Chart Features
|
|
131
|
+
|
|
132
|
+
- Grouped bar plots with custom sort and color mapping
|
|
133
|
+
- Automatic annotations for first/last/max points
|
|
134
|
+
- Time series support with datetime formatting
|
|
135
|
+
- Pie chart labels, percentages, donut hole support
|
|
136
|
+
- Heatmaps with flexible x/y/z column mapping
|
|
137
|
+
|
|
138
|
+
---
|
|
139
|
+
|
|
140
|
+
## Project Structure
|
|
141
|
+
|
|
142
|
+
```
|
|
143
|
+
chartengineer/
|
|
144
|
+
├── __init__.py
|
|
145
|
+
├── core.py # ChartMaker class
|
|
146
|
+
├── utils.py # Plotting utils, formatting
|
|
147
|
+
```
|
|
148
|
+
|
|
149
|
+
---
|
|
150
|
+
|
|
151
|
+
## License
|
|
152
|
+
|
|
153
|
+
MIT License © Brandyn Hamilton
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
from .core import (ChartMaker)
|