cesnet-datazoo 0.1.7__tar.gz → 0.1.9__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {cesnet_datazoo-0.1.7 → cesnet_datazoo-0.1.9}/PKG-INFO +11 -7
- {cesnet_datazoo-0.1.7 → cesnet_datazoo-0.1.9}/README.md +9 -5
- {cesnet_datazoo-0.1.7 → cesnet_datazoo-0.1.9}/cesnet_datazoo/datasets/metadata/metadata.csv +1 -1
- {cesnet_datazoo-0.1.7 → cesnet_datazoo-0.1.9}/cesnet_datazoo/pytables_data/data_scalers.py +1 -1
- {cesnet_datazoo-0.1.7 → cesnet_datazoo-0.1.9}/cesnet_datazoo.egg-info/PKG-INFO +11 -7
- {cesnet_datazoo-0.1.7 → cesnet_datazoo-0.1.9}/cesnet_datazoo.egg-info/requires.txt +1 -1
- {cesnet_datazoo-0.1.7 → cesnet_datazoo-0.1.9}/pyproject.toml +3 -3
- {cesnet_datazoo-0.1.7 → cesnet_datazoo-0.1.9}/LICENCE +0 -0
- {cesnet_datazoo-0.1.7 → cesnet_datazoo-0.1.9}/cesnet_datazoo/__init__.py +0 -0
- {cesnet_datazoo-0.1.7 → cesnet_datazoo-0.1.9}/cesnet_datazoo/config.py +0 -0
- {cesnet_datazoo-0.1.7 → cesnet_datazoo-0.1.9}/cesnet_datazoo/constants.py +0 -0
- {cesnet_datazoo-0.1.7 → cesnet_datazoo-0.1.9}/cesnet_datazoo/datasets/__init__.py +0 -0
- {cesnet_datazoo-0.1.7 → cesnet_datazoo-0.1.9}/cesnet_datazoo/datasets/cesnet_dataset.py +0 -0
- {cesnet_datazoo-0.1.7 → cesnet_datazoo-0.1.9}/cesnet_datazoo/datasets/datasets.py +0 -0
- {cesnet_datazoo-0.1.7 → cesnet_datazoo-0.1.9}/cesnet_datazoo/datasets/datasets_constants.py +0 -0
- {cesnet_datazoo-0.1.7 → cesnet_datazoo-0.1.9}/cesnet_datazoo/datasets/loaders.py +0 -0
- {cesnet_datazoo-0.1.7 → cesnet_datazoo-0.1.9}/cesnet_datazoo/datasets/metadata/__init__.py +0 -0
- {cesnet_datazoo-0.1.7 → cesnet_datazoo-0.1.9}/cesnet_datazoo/datasets/metadata/dataset_metadata.py +0 -0
- {cesnet_datazoo-0.1.7 → cesnet_datazoo-0.1.9}/cesnet_datazoo/datasets/statistics.py +0 -0
- {cesnet_datazoo-0.1.7 → cesnet_datazoo-0.1.9}/cesnet_datazoo/metrics/__init__.py +0 -0
- {cesnet_datazoo-0.1.7 → cesnet_datazoo-0.1.9}/cesnet_datazoo/metrics/classification_report.py +0 -0
- {cesnet_datazoo-0.1.7 → cesnet_datazoo-0.1.9}/cesnet_datazoo/metrics/provider_metrics.py +0 -0
- {cesnet_datazoo-0.1.7 → cesnet_datazoo-0.1.9}/cesnet_datazoo/pytables_data/__init__.py +0 -0
- {cesnet_datazoo-0.1.7 → cesnet_datazoo-0.1.9}/cesnet_datazoo/pytables_data/apps_split.py +0 -0
- {cesnet_datazoo-0.1.7 → cesnet_datazoo-0.1.9}/cesnet_datazoo/pytables_data/indices_setup.py +0 -0
- {cesnet_datazoo-0.1.7 → cesnet_datazoo-0.1.9}/cesnet_datazoo/pytables_data/pytables_dataset.py +0 -0
- {cesnet_datazoo-0.1.7 → cesnet_datazoo-0.1.9}/cesnet_datazoo/utils/__init__.py +0 -0
- {cesnet_datazoo-0.1.7 → cesnet_datazoo-0.1.9}/cesnet_datazoo/utils/class_info.py +0 -0
- {cesnet_datazoo-0.1.7 → cesnet_datazoo-0.1.9}/cesnet_datazoo/utils/download.py +0 -0
- {cesnet_datazoo-0.1.7 → cesnet_datazoo-0.1.9}/cesnet_datazoo/utils/fileutils.py +0 -0
- {cesnet_datazoo-0.1.7 → cesnet_datazoo-0.1.9}/cesnet_datazoo/utils/random.py +0 -0
- {cesnet_datazoo-0.1.7 → cesnet_datazoo-0.1.9}/cesnet_datazoo.egg-info/SOURCES.txt +0 -0
- {cesnet_datazoo-0.1.7 → cesnet_datazoo-0.1.9}/cesnet_datazoo.egg-info/dependency_links.txt +0 -0
- {cesnet_datazoo-0.1.7 → cesnet_datazoo-0.1.9}/cesnet_datazoo.egg-info/top_level.txt +0 -0
- {cesnet_datazoo-0.1.7 → cesnet_datazoo-0.1.9}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: cesnet-datazoo
|
3
|
-
Version: 0.1.
|
3
|
+
Version: 0.1.9
|
4
4
|
Summary: A toolkit for large network traffic datasets
|
5
5
|
Author-email: Jan Luxemburk <luxemburk@cesnet.cz>, Karel Hynek <hynekkar@cesnet.cz>
|
6
6
|
Maintainer-email: Jan Luxemburk <luxemburk@cesnet.cz>, Karel Hynek <hynekkar@cesnet.cz>
|
@@ -20,7 +20,7 @@ Requires-Dist: cesnet_models
|
|
20
20
|
Requires-Dist: matplotlib
|
21
21
|
Requires-Dist: numpy<2.0
|
22
22
|
Requires-Dist: pandas
|
23
|
-
Requires-Dist: pydantic
|
23
|
+
Requires-Dist: pydantic<=2.8.2,>=2.0
|
24
24
|
Requires-Dist: PyYAML
|
25
25
|
Requires-Dist: requests
|
26
26
|
Requires-Dist: scikit-learn
|
@@ -56,26 +56,30 @@ The goal of this project is to provide tools for working with large network traf
|
|
56
56
|
- Selection of application classes and splitting classes between *known* and *unknown*.
|
57
57
|
- Data transformations, such as feature scaling.
|
58
58
|
- Built on suitable data structures for experiments with large datasets. There are several caching mechanisms to make repeated runs faster, for example, when searching for the best model configuration.
|
59
|
-
- Datasets are offered in multiple sizes to give users an option to start the experiments at a smaller scale (also faster dataset download, disk space, etc.). The default is the `S` size containing 25 million samples.
|
59
|
+
- Datasets are offered in multiple sizes to give users an option to start the experiments at a smaller scale (also faster dataset download, disk space, etc.). The default is the `S` size containing 25 million samples.
|
60
60
|
|
61
61
|
:brain: :brain: See a related project [CESNET Models](https://github.com/CESNET/cesnet-models) providing pre-trained neural networks for traffic classification. :brain: :brain:
|
62
62
|
|
63
63
|
:notebook: :notebook: Example Jupyter notebooks are included in a separate [CESNET Traffic Classification Examples](https://github.com/CESNET/cesnet-tcexamples) repo. :notebook: :notebook:
|
64
64
|
|
65
65
|
## Datasets
|
66
|
-
The
|
66
|
+
The `cesnet-datazoo` package currently provides three datasets with details in the following table (you might need to scroll the table horizontally to see all datasets).
|
67
|
+
|
68
|
+
1. CESNET-TLS22
|
69
|
+
2. CESNET-QUIC22
|
70
|
+
3. CESNET-TLS-Year22
|
67
71
|
|
68
72
|
| Name | CESNET-TLS22 | CESNET-QUIC22 | CESNET-TLS-Year22 |
|
69
73
|
| ---------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
70
74
|
| _Protocol_ | TLS | QUIC | TLS |
|
71
75
|
| _Published in_ | 2022 | 2023 | 2023 |
|
72
76
|
| _Collection duration_ | 2 weeks | 4 weeks | 1 year |
|
73
|
-
| _Collection period_ | 4.10.2021 - 17.10.2021 | 31.10.2022 - 27.11.2022 | 1.1.2022 - 31.12.2022 |
|
77
|
+
| _Collection period_ | 4.10.2021 - 17.10.2021 | 31.10.2022 - 27.11.2022 | 1.1.2022 - 31.12.2022 |
|
74
78
|
| _Application count_ | 191 | 102 | 180 |
|
75
79
|
| _Available samples_ | 141392195 | 153226273 | 507739073 |
|
76
80
|
| _Available dataset sizes_ | XS, S, M, L | XS, S, M, L | XS, S, M, L |
|
77
|
-
| _Cite_ | [https://doi.org/10.1016/j.comnet.2022.109467](https://doi.org/10.1016/j.comnet.2022.109467) | [https://doi.org/10.1016/j.dib.2023.108888](https://doi.org/10.1016/j.dib.2023.108888) |
|
78
|
-
| _Zenodo URL_ | [https://zenodo.org/record/7965515](https://zenodo.org/record/7965515) | [https://zenodo.org/record/7963302](https://zenodo.org/record/7963302) |
|
81
|
+
| _Cite_ | [https://doi.org/10.1016/j.comnet.2022.109467](https://doi.org/10.1016/j.comnet.2022.109467) | [https://doi.org/10.1016/j.dib.2023.108888](https://doi.org/10.1016/j.dib.2023.108888) | [https://doi.org/10.1038/s41597-024-03927-4](https://doi.org/10.1038/s41597-024-03927-4) |
|
82
|
+
| _Zenodo URL_ | [https://zenodo.org/record/7965515](https://zenodo.org/record/7965515) | [https://zenodo.org/record/7963302](https://zenodo.org/record/7963302) | [https://zenodo.org/records/10608607](https://zenodo.org/records/10608607) |
|
79
83
|
| _Related papers_ | | [https://doi.org/10.23919/TMA58422.2023.10199052](https://doi.org/10.23919/TMA58422.2023.10199052) | |
|
80
84
|
|
81
85
|
## Installation
|
@@ -16,26 +16,30 @@ The goal of this project is to provide tools for working with large network traf
|
|
16
16
|
- Selection of application classes and splitting classes between *known* and *unknown*.
|
17
17
|
- Data transformations, such as feature scaling.
|
18
18
|
- Built on suitable data structures for experiments with large datasets. There are several caching mechanisms to make repeated runs faster, for example, when searching for the best model configuration.
|
19
|
-
- Datasets are offered in multiple sizes to give users an option to start the experiments at a smaller scale (also faster dataset download, disk space, etc.). The default is the `S` size containing 25 million samples.
|
19
|
+
- Datasets are offered in multiple sizes to give users an option to start the experiments at a smaller scale (also faster dataset download, disk space, etc.). The default is the `S` size containing 25 million samples.
|
20
20
|
|
21
21
|
:brain: :brain: See a related project [CESNET Models](https://github.com/CESNET/cesnet-models) providing pre-trained neural networks for traffic classification. :brain: :brain:
|
22
22
|
|
23
23
|
:notebook: :notebook: Example Jupyter notebooks are included in a separate [CESNET Traffic Classification Examples](https://github.com/CESNET/cesnet-tcexamples) repo. :notebook: :notebook:
|
24
24
|
|
25
25
|
## Datasets
|
26
|
-
The
|
26
|
+
The `cesnet-datazoo` package currently provides three datasets with details in the following table (you might need to scroll the table horizontally to see all datasets).
|
27
|
+
|
28
|
+
1. CESNET-TLS22
|
29
|
+
2. CESNET-QUIC22
|
30
|
+
3. CESNET-TLS-Year22
|
27
31
|
|
28
32
|
| Name | CESNET-TLS22 | CESNET-QUIC22 | CESNET-TLS-Year22 |
|
29
33
|
| ---------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
30
34
|
| _Protocol_ | TLS | QUIC | TLS |
|
31
35
|
| _Published in_ | 2022 | 2023 | 2023 |
|
32
36
|
| _Collection duration_ | 2 weeks | 4 weeks | 1 year |
|
33
|
-
| _Collection period_ | 4.10.2021 - 17.10.2021 | 31.10.2022 - 27.11.2022 | 1.1.2022 - 31.12.2022 |
|
37
|
+
| _Collection period_ | 4.10.2021 - 17.10.2021 | 31.10.2022 - 27.11.2022 | 1.1.2022 - 31.12.2022 |
|
34
38
|
| _Application count_ | 191 | 102 | 180 |
|
35
39
|
| _Available samples_ | 141392195 | 153226273 | 507739073 |
|
36
40
|
| _Available dataset sizes_ | XS, S, M, L | XS, S, M, L | XS, S, M, L |
|
37
|
-
| _Cite_ | [https://doi.org/10.1016/j.comnet.2022.109467](https://doi.org/10.1016/j.comnet.2022.109467) | [https://doi.org/10.1016/j.dib.2023.108888](https://doi.org/10.1016/j.dib.2023.108888) |
|
38
|
-
| _Zenodo URL_ | [https://zenodo.org/record/7965515](https://zenodo.org/record/7965515) | [https://zenodo.org/record/7963302](https://zenodo.org/record/7963302) |
|
41
|
+
| _Cite_ | [https://doi.org/10.1016/j.comnet.2022.109467](https://doi.org/10.1016/j.comnet.2022.109467) | [https://doi.org/10.1016/j.dib.2023.108888](https://doi.org/10.1016/j.dib.2023.108888) | [https://doi.org/10.1038/s41597-024-03927-4](https://doi.org/10.1038/s41597-024-03927-4) |
|
42
|
+
| _Zenodo URL_ | [https://zenodo.org/record/7965515](https://zenodo.org/record/7965515) | [https://zenodo.org/record/7963302](https://zenodo.org/record/7963302) | [https://zenodo.org/records/10608607](https://zenodo.org/records/10608607) |
|
39
43
|
| _Related papers_ | | [https://doi.org/10.23919/TMA58422.2023.10199052](https://doi.org/10.23919/TMA58422.2023.10199052) | |
|
40
44
|
|
41
45
|
## Installation
|
@@ -1,4 +1,4 @@
|
|
1
1
|
Name,Protocol,Published in,Collected in,Collection duration,Available samples,Available dataset sizes,Collection period,Missing dates in collection period,Application count,Background traffic classes,PPI features,Flowstats features,Flowstats features boolean,Packet histograms,TCP features,Other fields,Cite,Zenodo URL,Related papers
|
2
2
|
CESNET-TLS22,TLS,2022,2021,2 weeks,141392195,"XS, S, M, L",4.10.2021 - 17.10.2021,,191,,"IPT, DIR, SIZE","BYTES, BYTES_REV, PACKETS, PACKETS_REV, DURATION, PPI_LEN, PPI_ROUNDTRIPS, PPI_DURATION",,,"FLAG_CWR, FLAG_CWR_REV, FLAG_ECE, FLAG_ECE_REV, FLAG_URG, FLAG_URG_REV, FLAG_ACK, FLAG_ACK_REV, FLAG_PSH, FLAG_PSH_REV, FLAG_RST, FLAG_RST_REV, FLAG_SYN, FLAG_SYN_REV, FLAG_FIN, FLAG_FIN_REV",ID,https://doi.org/10.1016/j.comnet.2022.109467,https://zenodo.org/record/7965515,
|
3
3
|
CESNET-QUIC22,QUIC,2023,2022,4 weeks,153226273,"XS, S, M, L",31.10.2022 - 27.11.2022,,102,"default-background, google-background, facebook-background","IPT, DIR, SIZE","BYTES, BYTES_REV, PACKETS, PACKETS_REV, DURATION, PPI_LEN, PPI_ROUNDTRIPS, PPI_DURATION","FLOW_ENDREASON_IDLE, FLOW_ENDREASON_ACTIVE, FLOW_ENDREASON_OTHER","PHIST_SRC_SIZES, PHIST_DST_SIZES, PHIST_SRC_IPT, PHIST_DST_IPT",,"ID, SRC_IP, DST_IP, DST_ASN, SRC_PORT, DST_PORT, PROTOCOL, QUIC_VERSION, QUIC_SNI, QUIC_USERAGENT, TIME_FIRST, TIME_LAST",https://doi.org/10.1016/j.dib.2023.108888,https://zenodo.org/record/7963302,https://doi.org/10.23919/TMA58422.2023.10199052
|
4
|
-
CESNET-TLS-Year22,TLS,2023,2022,1 year,507739073,"XS, S, M, L",1.1.2022 - 31.12.2022,"20220128, 20220129, 20220130, 20221212, 20221213, 20221229, 20221230, 20221231",180,,"IPT, DIR, SIZE, PUSH_FLAG","BYTES, BYTES_REV, PACKETS, PACKETS_REV, DURATION, PPI_LEN, PPI_ROUNDTRIPS, PPI_DURATION","FLOW_ENDREASON_IDLE, FLOW_ENDREASON_ACTIVE, FLOW_ENDREASON_END, FLOW_ENDREASON_OTHER","PHIST_SRC_SIZES, PHIST_DST_SIZES, PHIST_SRC_IPT, PHIST_DST_IPT","FLAG_CWR, FLAG_CWR_REV, FLAG_ECE, FLAG_ECE_REV, FLAG_URG, FLAG_URG_REV, FLAG_ACK, FLAG_ACK_REV, FLAG_PSH, FLAG_PSH_REV, FLAG_RST, FLAG_RST_REV, FLAG_SYN, FLAG_SYN_REV, FLAG_FIN, FLAG_FIN_REV","ID, SRC_IP, DST_IP, DST_ASN, DST_PORT, PROTOCOL, TLS_SNI, TLS_JA3, TIME_FIRST, TIME_LAST"
|
4
|
+
CESNET-TLS-Year22,TLS,2023,2022,1 year,507739073,"XS, S, M, L",1.1.2022 - 31.12.2022,"20220128, 20220129, 20220130, 20221212, 20221213, 20221229, 20221230, 20221231",180,,"IPT, DIR, SIZE, PUSH_FLAG","BYTES, BYTES_REV, PACKETS, PACKETS_REV, DURATION, PPI_LEN, PPI_ROUNDTRIPS, PPI_DURATION","FLOW_ENDREASON_IDLE, FLOW_ENDREASON_ACTIVE, FLOW_ENDREASON_END, FLOW_ENDREASON_OTHER","PHIST_SRC_SIZES, PHIST_DST_SIZES, PHIST_SRC_IPT, PHIST_DST_IPT","FLAG_CWR, FLAG_CWR_REV, FLAG_ECE, FLAG_ECE_REV, FLAG_URG, FLAG_URG_REV, FLAG_ACK, FLAG_ACK_REV, FLAG_PSH, FLAG_PSH_REV, FLAG_RST, FLAG_RST_REV, FLAG_SYN, FLAG_SYN_REV, FLAG_FIN, FLAG_FIN_REV","ID, SRC_IP, DST_IP, DST_ASN, DST_PORT, PROTOCOL, TLS_SNI, TLS_JA3, TIME_FIRST, TIME_LAST",https://doi.org/10.1038/s41597-024-03927-4,https://zenodo.org/records/10608607,
|
@@ -55,7 +55,7 @@ def fit_scalers(dataset_config: DatasetConfig, train_indices: np.ndarray) -> Non
|
|
55
55
|
clip_and_scale_ppi_transform.ipt_scaler.fit(train_ipt.reshape(-1, 1))
|
56
56
|
# Fit packet sizes scaler
|
57
57
|
if clip_and_scale_ppi_transform.psizes_scaler:
|
58
|
-
train_psizes = data_ppi[:, SIZE_POS].clip(max=clip_and_scale_ppi_transform.psizes_max, min=clip_and_scale_ppi_transform.
|
58
|
+
train_psizes = data_ppi[:, SIZE_POS].clip(max=clip_and_scale_ppi_transform.psizes_max, min=clip_and_scale_ppi_transform.psizes_min)
|
59
59
|
train_psizes[padding_mask] = np.nan
|
60
60
|
if isinstance(clip_and_scale_ppi_transform.psizes_scaler, MinMaxScaler):
|
61
61
|
train_psizes = np.concatenate((train_psizes, [0]))
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: cesnet-datazoo
|
3
|
-
Version: 0.1.
|
3
|
+
Version: 0.1.9
|
4
4
|
Summary: A toolkit for large network traffic datasets
|
5
5
|
Author-email: Jan Luxemburk <luxemburk@cesnet.cz>, Karel Hynek <hynekkar@cesnet.cz>
|
6
6
|
Maintainer-email: Jan Luxemburk <luxemburk@cesnet.cz>, Karel Hynek <hynekkar@cesnet.cz>
|
@@ -20,7 +20,7 @@ Requires-Dist: cesnet_models
|
|
20
20
|
Requires-Dist: matplotlib
|
21
21
|
Requires-Dist: numpy<2.0
|
22
22
|
Requires-Dist: pandas
|
23
|
-
Requires-Dist: pydantic
|
23
|
+
Requires-Dist: pydantic<=2.8.2,>=2.0
|
24
24
|
Requires-Dist: PyYAML
|
25
25
|
Requires-Dist: requests
|
26
26
|
Requires-Dist: scikit-learn
|
@@ -56,26 +56,30 @@ The goal of this project is to provide tools for working with large network traf
|
|
56
56
|
- Selection of application classes and splitting classes between *known* and *unknown*.
|
57
57
|
- Data transformations, such as feature scaling.
|
58
58
|
- Built on suitable data structures for experiments with large datasets. There are several caching mechanisms to make repeated runs faster, for example, when searching for the best model configuration.
|
59
|
-
- Datasets are offered in multiple sizes to give users an option to start the experiments at a smaller scale (also faster dataset download, disk space, etc.). The default is the `S` size containing 25 million samples.
|
59
|
+
- Datasets are offered in multiple sizes to give users an option to start the experiments at a smaller scale (also faster dataset download, disk space, etc.). The default is the `S` size containing 25 million samples.
|
60
60
|
|
61
61
|
:brain: :brain: See a related project [CESNET Models](https://github.com/CESNET/cesnet-models) providing pre-trained neural networks for traffic classification. :brain: :brain:
|
62
62
|
|
63
63
|
:notebook: :notebook: Example Jupyter notebooks are included in a separate [CESNET Traffic Classification Examples](https://github.com/CESNET/cesnet-tcexamples) repo. :notebook: :notebook:
|
64
64
|
|
65
65
|
## Datasets
|
66
|
-
The
|
66
|
+
The `cesnet-datazoo` package currently provides three datasets with details in the following table (you might need to scroll the table horizontally to see all datasets).
|
67
|
+
|
68
|
+
1. CESNET-TLS22
|
69
|
+
2. CESNET-QUIC22
|
70
|
+
3. CESNET-TLS-Year22
|
67
71
|
|
68
72
|
| Name | CESNET-TLS22 | CESNET-QUIC22 | CESNET-TLS-Year22 |
|
69
73
|
| ---------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
70
74
|
| _Protocol_ | TLS | QUIC | TLS |
|
71
75
|
| _Published in_ | 2022 | 2023 | 2023 |
|
72
76
|
| _Collection duration_ | 2 weeks | 4 weeks | 1 year |
|
73
|
-
| _Collection period_ | 4.10.2021 - 17.10.2021 | 31.10.2022 - 27.11.2022 | 1.1.2022 - 31.12.2022 |
|
77
|
+
| _Collection period_ | 4.10.2021 - 17.10.2021 | 31.10.2022 - 27.11.2022 | 1.1.2022 - 31.12.2022 |
|
74
78
|
| _Application count_ | 191 | 102 | 180 |
|
75
79
|
| _Available samples_ | 141392195 | 153226273 | 507739073 |
|
76
80
|
| _Available dataset sizes_ | XS, S, M, L | XS, S, M, L | XS, S, M, L |
|
77
|
-
| _Cite_ | [https://doi.org/10.1016/j.comnet.2022.109467](https://doi.org/10.1016/j.comnet.2022.109467) | [https://doi.org/10.1016/j.dib.2023.108888](https://doi.org/10.1016/j.dib.2023.108888) |
|
78
|
-
| _Zenodo URL_ | [https://zenodo.org/record/7965515](https://zenodo.org/record/7965515) | [https://zenodo.org/record/7963302](https://zenodo.org/record/7963302) |
|
81
|
+
| _Cite_ | [https://doi.org/10.1016/j.comnet.2022.109467](https://doi.org/10.1016/j.comnet.2022.109467) | [https://doi.org/10.1016/j.dib.2023.108888](https://doi.org/10.1016/j.dib.2023.108888) | [https://doi.org/10.1038/s41597-024-03927-4](https://doi.org/10.1038/s41597-024-03927-4) |
|
82
|
+
| _Zenodo URL_ | [https://zenodo.org/record/7965515](https://zenodo.org/record/7965515) | [https://zenodo.org/record/7963302](https://zenodo.org/record/7963302) | [https://zenodo.org/records/10608607](https://zenodo.org/records/10608607) |
|
79
83
|
| _Related papers_ | | [https://doi.org/10.23919/TMA58422.2023.10199052](https://doi.org/10.23919/TMA58422.2023.10199052) | |
|
80
84
|
|
81
85
|
## Installation
|
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
|
|
4
4
|
|
5
5
|
[project]
|
6
6
|
name = "cesnet-datazoo"
|
7
|
-
version = "0.1.
|
7
|
+
version = "0.1.9"
|
8
8
|
authors = [
|
9
9
|
{name = "Jan Luxemburk", email = "luxemburk@cesnet.cz"},
|
10
10
|
{name = "Karel Hynek", email = "hynekkar@cesnet.cz"},
|
@@ -33,12 +33,12 @@ dependencies = [
|
|
33
33
|
"matplotlib",
|
34
34
|
"numpy<2.0",
|
35
35
|
"pandas",
|
36
|
-
"pydantic>=2.0",
|
36
|
+
"pydantic>=2.0,<=2.8.2",
|
37
37
|
"PyYAML",
|
38
38
|
"requests",
|
39
39
|
"scikit-learn",
|
40
40
|
"seaborn",
|
41
|
-
"tables>=3.8.0
|
41
|
+
"tables>=3.8.0,<=3.9.2",
|
42
42
|
"torch>=1.10",
|
43
43
|
"tqdm",
|
44
44
|
]
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
{cesnet_datazoo-0.1.7 → cesnet_datazoo-0.1.9}/cesnet_datazoo/datasets/metadata/dataset_metadata.py
RENAMED
File without changes
|
File without changes
|
File without changes
|
{cesnet_datazoo-0.1.7 → cesnet_datazoo-0.1.9}/cesnet_datazoo/metrics/classification_report.py
RENAMED
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
{cesnet_datazoo-0.1.7 → cesnet_datazoo-0.1.9}/cesnet_datazoo/pytables_data/pytables_dataset.py
RENAMED
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|