cesnet-datazoo 0.1.2__tar.gz → 0.1.3__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (35) hide show
  1. {cesnet-datazoo-0.1.2 → cesnet-datazoo-0.1.3}/PKG-INFO +9 -6
  2. {cesnet-datazoo-0.1.2 → cesnet-datazoo-0.1.3}/README.md +8 -5
  3. {cesnet-datazoo-0.1.2 → cesnet-datazoo-0.1.3}/cesnet_datazoo/metrics/classification_report.py +2 -2
  4. {cesnet-datazoo-0.1.2 → cesnet-datazoo-0.1.3}/cesnet_datazoo.egg-info/PKG-INFO +9 -6
  5. {cesnet-datazoo-0.1.2 → cesnet-datazoo-0.1.3}/pyproject.toml +1 -1
  6. {cesnet-datazoo-0.1.2 → cesnet-datazoo-0.1.3}/LICENCE +0 -0
  7. {cesnet-datazoo-0.1.2 → cesnet-datazoo-0.1.3}/cesnet_datazoo/__init__.py +0 -0
  8. {cesnet-datazoo-0.1.2 → cesnet-datazoo-0.1.3}/cesnet_datazoo/config.py +0 -0
  9. {cesnet-datazoo-0.1.2 → cesnet-datazoo-0.1.3}/cesnet_datazoo/constants.py +0 -0
  10. {cesnet-datazoo-0.1.2 → cesnet-datazoo-0.1.3}/cesnet_datazoo/datasets/__init__.py +0 -0
  11. {cesnet-datazoo-0.1.2 → cesnet-datazoo-0.1.3}/cesnet_datazoo/datasets/cesnet_dataset.py +0 -0
  12. {cesnet-datazoo-0.1.2 → cesnet-datazoo-0.1.3}/cesnet_datazoo/datasets/datasets.py +0 -0
  13. {cesnet-datazoo-0.1.2 → cesnet-datazoo-0.1.3}/cesnet_datazoo/datasets/datasets_constants.py +0 -0
  14. {cesnet-datazoo-0.1.2 → cesnet-datazoo-0.1.3}/cesnet_datazoo/datasets/loaders.py +0 -0
  15. {cesnet-datazoo-0.1.2 → cesnet-datazoo-0.1.3}/cesnet_datazoo/datasets/metadata/__init__.py +0 -0
  16. {cesnet-datazoo-0.1.2 → cesnet-datazoo-0.1.3}/cesnet_datazoo/datasets/metadata/dataset_metadata.py +0 -0
  17. {cesnet-datazoo-0.1.2 → cesnet-datazoo-0.1.3}/cesnet_datazoo/datasets/metadata/metadata.csv +0 -0
  18. {cesnet-datazoo-0.1.2 → cesnet-datazoo-0.1.3}/cesnet_datazoo/datasets/statistics.py +0 -0
  19. {cesnet-datazoo-0.1.2 → cesnet-datazoo-0.1.3}/cesnet_datazoo/metrics/__init__.py +0 -0
  20. {cesnet-datazoo-0.1.2 → cesnet-datazoo-0.1.3}/cesnet_datazoo/metrics/provider_metrics.py +0 -0
  21. {cesnet-datazoo-0.1.2 → cesnet-datazoo-0.1.3}/cesnet_datazoo/pytables_data/__init__.py +0 -0
  22. {cesnet-datazoo-0.1.2 → cesnet-datazoo-0.1.3}/cesnet_datazoo/pytables_data/apps_split.py +0 -0
  23. {cesnet-datazoo-0.1.2 → cesnet-datazoo-0.1.3}/cesnet_datazoo/pytables_data/data_scalers.py +0 -0
  24. {cesnet-datazoo-0.1.2 → cesnet-datazoo-0.1.3}/cesnet_datazoo/pytables_data/indices_setup.py +0 -0
  25. {cesnet-datazoo-0.1.2 → cesnet-datazoo-0.1.3}/cesnet_datazoo/pytables_data/pytables_dataset.py +0 -0
  26. {cesnet-datazoo-0.1.2 → cesnet-datazoo-0.1.3}/cesnet_datazoo/utils/__init__.py +0 -0
  27. {cesnet-datazoo-0.1.2 → cesnet-datazoo-0.1.3}/cesnet_datazoo/utils/class_info.py +0 -0
  28. {cesnet-datazoo-0.1.2 → cesnet-datazoo-0.1.3}/cesnet_datazoo/utils/download.py +0 -0
  29. {cesnet-datazoo-0.1.2 → cesnet-datazoo-0.1.3}/cesnet_datazoo/utils/fileutils.py +0 -0
  30. {cesnet-datazoo-0.1.2 → cesnet-datazoo-0.1.3}/cesnet_datazoo/utils/random.py +0 -0
  31. {cesnet-datazoo-0.1.2 → cesnet-datazoo-0.1.3}/cesnet_datazoo.egg-info/SOURCES.txt +0 -0
  32. {cesnet-datazoo-0.1.2 → cesnet-datazoo-0.1.3}/cesnet_datazoo.egg-info/dependency_links.txt +0 -0
  33. {cesnet-datazoo-0.1.2 → cesnet-datazoo-0.1.3}/cesnet_datazoo.egg-info/requires.txt +0 -0
  34. {cesnet-datazoo-0.1.2 → cesnet-datazoo-0.1.3}/cesnet_datazoo.egg-info/top_level.txt +0 -0
  35. {cesnet-datazoo-0.1.2 → cesnet-datazoo-0.1.3}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: cesnet-datazoo
3
- Version: 0.1.2
3
+ Version: 0.1.3
4
4
  Summary: A toolkit for large network traffic datasets
5
5
  Author-email: Jan Luxemburk <luxemburk@cesnet.cz>, Karel Hynek <hynekkar@cesnet.cz>
6
6
  Maintainer-email: Jan Luxemburk <luxemburk@cesnet.cz>, Karel Hynek <hynekkar@cesnet.cz>
@@ -43,7 +43,7 @@ Requires-Dist: twine; extra == "dev"
43
43
  </p>
44
44
 
45
45
  [![](https://img.shields.io/badge/license-BSD-blue.svg)](https://github.com/CESNET/cesnet-datazoo/blob/main/LICENCE)
46
- [![](https://img.shields.io/badge/docs-mkdocs_material-blue.svg)](https://cesnet.github.io/cesnet-datazoo/)
46
+ [![](https://img.shields.io/badge/docs-cesnet--datazoo-blue.svg)](https://cesnet.github.io/cesnet-datazoo/)
47
47
  [![](https://img.shields.io/badge/python->=3.10-blue.svg)](https://pypi.org/project/cesnet-datazoo/)
48
48
  [![](https://img.shields.io/pypi/v/cesnet-datazoo)](https://pypi.org/project/cesnet-datazoo/)
49
49
 
@@ -58,9 +58,12 @@ The goal of this project is to provide tools for working with large network traf
58
58
  - Built on suitable data structures for experiments with large datasets. There are several caching mechanisms to make repeated runs faster, for example, when searching for the best model configuration.
59
59
  - Datasets are offered in multiple sizes to give users an option to start the experiments at a smaller scale (also faster dataset download, disk space, etc.). The default is the `S` size containing 25 million samples.
60
60
 
61
- ## Datasets
61
+ :brain: :brain: See a related project [CESNET Models](https://github.com/CESNET/cesnet-models) providing pre-trained neural networks for traffic classification. :brain: :brain:
62
+
63
+ :notebook: :notebook: Example Jupyter notebooks are included in a separate [CESNET Traffic Classification Examples](https://github.com/CESNET/cesnet-tcexamples) repo. :notebook: :notebook:
62
64
 
63
- The package is able to handle the following datasets:
65
+ ## Datasets
66
+ The following datasets are available in the `cesnet-datazoo` package:
64
67
 
65
68
  | Name | CESNET-TLS22 | CESNET-QUIC22 | CESNET-TLS-Year22 |
66
69
  | ---------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
@@ -120,6 +123,6 @@ See more examples in the [documentation](https://cesnet.github.io/cesnet-datazoo
120
123
  Jan Luxemburk and Karel Hynek <br>
121
124
  CoNEXT Workshop on Explainable and Safety Bounded, Fidelitous, Machine Learning for Networking (SAFE), 2023
122
125
 
123
- ### Acknowledgements
126
+ ## Acknowledgments
124
127
 
125
- This project was supported by the Ministry of the Interior of the Czech Republic, grant No. VJ02010024: Flow-Based Encrypted Traffic Analysis.
128
+ This project was supported by the Ministry of the Interior of the Czech Republic, grant No. VJ02010024: Flow-Based Encrypted Traffic Analysis.
@@ -3,7 +3,7 @@
3
3
  </p>
4
4
 
5
5
  [![](https://img.shields.io/badge/license-BSD-blue.svg)](https://github.com/CESNET/cesnet-datazoo/blob/main/LICENCE)
6
- [![](https://img.shields.io/badge/docs-mkdocs_material-blue.svg)](https://cesnet.github.io/cesnet-datazoo/)
6
+ [![](https://img.shields.io/badge/docs-cesnet--datazoo-blue.svg)](https://cesnet.github.io/cesnet-datazoo/)
7
7
  [![](https://img.shields.io/badge/python->=3.10-blue.svg)](https://pypi.org/project/cesnet-datazoo/)
8
8
  [![](https://img.shields.io/pypi/v/cesnet-datazoo)](https://pypi.org/project/cesnet-datazoo/)
9
9
 
@@ -18,9 +18,12 @@ The goal of this project is to provide tools for working with large network traf
18
18
  - Built on suitable data structures for experiments with large datasets. There are several caching mechanisms to make repeated runs faster, for example, when searching for the best model configuration.
19
19
  - Datasets are offered in multiple sizes to give users an option to start the experiments at a smaller scale (also faster dataset download, disk space, etc.). The default is the `S` size containing 25 million samples.
20
20
 
21
- ## Datasets
21
+ :brain: :brain: See a related project [CESNET Models](https://github.com/CESNET/cesnet-models) providing pre-trained neural networks for traffic classification. :brain: :brain:
22
+
23
+ :notebook: :notebook: Example Jupyter notebooks are included in a separate [CESNET Traffic Classification Examples](https://github.com/CESNET/cesnet-tcexamples) repo. :notebook: :notebook:
22
24
 
23
- The package is able to handle the following datasets:
25
+ ## Datasets
26
+ The following datasets are available in the `cesnet-datazoo` package:
24
27
 
25
28
  | Name | CESNET-TLS22 | CESNET-QUIC22 | CESNET-TLS-Year22 |
26
29
  | ---------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
@@ -80,6 +83,6 @@ See more examples in the [documentation](https://cesnet.github.io/cesnet-datazoo
80
83
  Jan Luxemburk and Karel Hynek <br>
81
84
  CoNEXT Workshop on Explainable and Safety Bounded, Fidelitous, Machine Learning for Networking (SAFE), 2023
82
85
 
83
- ### Acknowledgements
86
+ ## Acknowledgments
84
87
 
85
- This project was supported by the Ministry of the Interior of the Czech Republic, grant No. VJ02010024: Flow-Based Encrypted Traffic Analysis.
88
+ This project was supported by the Ministry of the Interior of the Czech Republic, grant No. VJ02010024: Flow-Based Encrypted Traffic Analysis.
@@ -8,8 +8,8 @@ from cesnet_datazoo.utils.class_info import ClassInfo
8
8
 
9
9
  def better_classification_report(y_true: np.ndarray, y_pred: np.ndarray, cm: np.ndarray, labels: list[int], class_info: ClassInfo, digits: int = 2, zero_division: int = 0) -> tuple[str, dict[str, float]]:
10
10
  p, r, f1, s = precision_recall_fscore_support(y_true, y_pred,
11
- labels=labels,
12
- zero_division=zero_division)
11
+ labels=labels,
12
+ zero_division=zero_division)
13
13
  sc_p, sc_r, sc_f1 = per_app_provider_metrics(cm, class_info=class_info)
14
14
  predicted_unknown = cm[:, -1]
15
15
  with np.errstate(divide="ignore", invalid="ignore"):
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: cesnet-datazoo
3
- Version: 0.1.2
3
+ Version: 0.1.3
4
4
  Summary: A toolkit for large network traffic datasets
5
5
  Author-email: Jan Luxemburk <luxemburk@cesnet.cz>, Karel Hynek <hynekkar@cesnet.cz>
6
6
  Maintainer-email: Jan Luxemburk <luxemburk@cesnet.cz>, Karel Hynek <hynekkar@cesnet.cz>
@@ -43,7 +43,7 @@ Requires-Dist: twine; extra == "dev"
43
43
  </p>
44
44
 
45
45
  [![](https://img.shields.io/badge/license-BSD-blue.svg)](https://github.com/CESNET/cesnet-datazoo/blob/main/LICENCE)
46
- [![](https://img.shields.io/badge/docs-mkdocs_material-blue.svg)](https://cesnet.github.io/cesnet-datazoo/)
46
+ [![](https://img.shields.io/badge/docs-cesnet--datazoo-blue.svg)](https://cesnet.github.io/cesnet-datazoo/)
47
47
  [![](https://img.shields.io/badge/python->=3.10-blue.svg)](https://pypi.org/project/cesnet-datazoo/)
48
48
  [![](https://img.shields.io/pypi/v/cesnet-datazoo)](https://pypi.org/project/cesnet-datazoo/)
49
49
 
@@ -58,9 +58,12 @@ The goal of this project is to provide tools for working with large network traf
58
58
  - Built on suitable data structures for experiments with large datasets. There are several caching mechanisms to make repeated runs faster, for example, when searching for the best model configuration.
59
59
  - Datasets are offered in multiple sizes to give users an option to start the experiments at a smaller scale (also faster dataset download, disk space, etc.). The default is the `S` size containing 25 million samples.
60
60
 
61
- ## Datasets
61
+ :brain: :brain: See a related project [CESNET Models](https://github.com/CESNET/cesnet-models) providing pre-trained neural networks for traffic classification. :brain: :brain:
62
+
63
+ :notebook: :notebook: Example Jupyter notebooks are included in a separate [CESNET Traffic Classification Examples](https://github.com/CESNET/cesnet-tcexamples) repo. :notebook: :notebook:
62
64
 
63
- The package is able to handle the following datasets:
65
+ ## Datasets
66
+ The following datasets are available in the `cesnet-datazoo` package:
64
67
 
65
68
  | Name | CESNET-TLS22 | CESNET-QUIC22 | CESNET-TLS-Year22 |
66
69
  | ---------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
@@ -120,6 +123,6 @@ See more examples in the [documentation](https://cesnet.github.io/cesnet-datazoo
120
123
  Jan Luxemburk and Karel Hynek <br>
121
124
  CoNEXT Workshop on Explainable and Safety Bounded, Fidelitous, Machine Learning for Networking (SAFE), 2023
122
125
 
123
- ### Acknowledgements
126
+ ## Acknowledgments
124
127
 
125
- This project was supported by the Ministry of the Interior of the Czech Republic, grant No. VJ02010024: Flow-Based Encrypted Traffic Analysis.
128
+ This project was supported by the Ministry of the Interior of the Czech Republic, grant No. VJ02010024: Flow-Based Encrypted Traffic Analysis.
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
4
4
 
5
5
  [project]
6
6
  name = "cesnet-datazoo"
7
- version = "0.1.2"
7
+ version = "0.1.3"
8
8
  authors = [
9
9
  {name = "Jan Luxemburk", email = "luxemburk@cesnet.cz"},
10
10
  {name = "Karel Hynek", email = "hynekkar@cesnet.cz"},
File without changes
File without changes