cdc-cluster 0.2.0__tar.gz → 0.2.1__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: cdc-cluster
3
- Version: 0.2.0
3
+ Version: 0.2.1
4
4
  Summary: A novel Clustering algorithm by measuring Direction Centrality (CDC) locally. It adopts a density-independent metric based on the distribution of K-nearest neighbors (KNNs) to distinguish between internal and boundary points. The boundary points generate enclosed cages to bind the connections of internal points.
5
5
  Author-email: pdh <pengdh@whu.edu.cn>
6
6
  Project-URL: Homepage, https://github.com/ZPGuiGroupWhu/CDC-pkg
@@ -52,7 +52,7 @@ The CDC algorithm is refactored to be a scikit-learn compatible estimator. It pr
52
52
 
53
53
  ### Class-based Usage
54
54
  ```python
55
- from cdc import CDC
55
+ from cdc_cluster import CDC
56
56
  import numpy as np
57
57
  import matplotlib.pyplot as plt
58
58
  from sklearn.datasets import make_moons
@@ -78,7 +78,7 @@ plt.show()
78
78
 
79
79
  ### Function-based Usage
80
80
  ```python
81
- from cdc import cdc_cluster
81
+ from cdc_cluster import cdc_cluster
82
82
  from sklearn.datasets import make_blobs
83
83
 
84
84
  X, _ = make_blobs(n_samples=200, centers=3, random_state=42)
@@ -27,7 +27,7 @@ The CDC algorithm is refactored to be a scikit-learn compatible estimator. It pr
27
27
 
28
28
  ### Class-based Usage
29
29
  ```python
30
- from cdc import CDC
30
+ from cdc_cluster import CDC
31
31
  import numpy as np
32
32
  import matplotlib.pyplot as plt
33
33
  from sklearn.datasets import make_moons
@@ -53,7 +53,7 @@ plt.show()
53
53
 
54
54
  ### Function-based Usage
55
55
  ```python
56
- from cdc import cdc_cluster
56
+ from cdc_cluster import cdc_cluster
57
57
  from sklearn.datasets import make_blobs
58
58
 
59
59
  X, _ = make_blobs(n_samples=200, centers=3, random_state=42)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: cdc-cluster
3
- Version: 0.2.0
3
+ Version: 0.2.1
4
4
  Summary: A novel Clustering algorithm by measuring Direction Centrality (CDC) locally. It adopts a density-independent metric based on the distribution of K-nearest neighbors (KNNs) to distinguish between internal and boundary points. The boundary points generate enclosed cages to bind the connections of internal points.
5
5
  Author-email: pdh <pengdh@whu.edu.cn>
6
6
  Project-URL: Homepage, https://github.com/ZPGuiGroupWhu/CDC-pkg
@@ -52,7 +52,7 @@ The CDC algorithm is refactored to be a scikit-learn compatible estimator. It pr
52
52
 
53
53
  ### Class-based Usage
54
54
  ```python
55
- from cdc import CDC
55
+ from cdc_cluster import CDC
56
56
  import numpy as np
57
57
  import matplotlib.pyplot as plt
58
58
  from sklearn.datasets import make_moons
@@ -78,7 +78,7 @@ plt.show()
78
78
 
79
79
  ### Function-based Usage
80
80
  ```python
81
- from cdc import cdc_cluster
81
+ from cdc_cluster import cdc_cluster
82
82
  from sklearn.datasets import make_blobs
83
83
 
84
84
  X, _ = make_blobs(n_samples=200, centers=3, random_state=42)
@@ -1,8 +1,8 @@
1
1
  LICENSE
2
2
  README.md
3
3
  pyproject.toml
4
- cdc/__init__.py
5
- cdc/_cdc.py
4
+ cdc_cluster/__init__.py
5
+ cdc_cluster/_cdc.py
6
6
  cdc_cluster.egg-info/PKG-INFO
7
7
  cdc_cluster.egg-info/SOURCES.txt
8
8
  cdc_cluster.egg-info/dependency_links.txt
@@ -0,0 +1 @@
1
+ cdc_cluster
@@ -1,6 +1,6 @@
1
1
  [project]
2
2
  name = "cdc-cluster"
3
- version = "0.2.0"
3
+ version = "0.2.1"
4
4
  description = "A novel Clustering algorithm by measuring Direction Centrality (CDC) locally. It adopts a density-independent metric based on the distribution of K-nearest neighbors (KNNs) to distinguish between internal and boundary points. The boundary points generate enclosed cages to bind the connections of internal points."
5
5
  authors = [
6
6
  {name = "pdh", email = "pengdh@whu.edu.cn"}
@@ -39,7 +39,7 @@ requires = ["setuptools>=68.0", "wheel"]
39
39
  build-backend = "setuptools.build_meta"
40
40
 
41
41
  [tool.setuptools]
42
- packages = ["cdc"]
42
+ packages = ["cdc_cluster"]
43
43
 
44
44
  [dependency-groups]
45
45
  dev = [
@@ -1,7 +1,7 @@
1
1
  import numpy as np
2
2
  import pytest
3
3
  from sklearn.datasets import make_blobs
4
- from cdc import CDC, cdc_cluster
4
+ from cdc_cluster import CDC, cdc_cluster
5
5
 
6
6
  def test_cdc_class():
7
7
  X, y = make_blobs(n_samples=100, centers=3, random_state=42)
File without changes
File without changes