cavapy 0.1.2__tar.gz → 0.1.4__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of cavapy might be problematic. Click here for more details.

@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: cavapy
3
- Version: 0.1.2
3
+ Version: 0.1.4
4
4
  Summary: CAVA Python package. Retrive and analyze climate data.
5
5
  Home-page: https://github.com/Risk-Team/cavapy
6
6
  License: MIT
@@ -23,7 +23,17 @@ Requires-Dist: xclim (>=0.53.2,<0.54.0)
23
23
  Project-URL: Repository, https://github.com/Risk-Team/cavapy
24
24
  Description-Content-Type: text/markdown
25
25
 
26
- # cavapy: CORDEX-CORE Climate Data Access Simplified
26
+ <h1 align="center">
27
+ <br>
28
+ <h2 align="center">cavapy: CORDEX-CORE Climate Data Access Simplified</h2>
29
+ <br>
30
+ <div align="center">
31
+ <img src="https://img.shields.io/pepy/dt/cavapy?style=plastic" alt="Downloads" style="display: inline-block;">
32
+ <img src="https://img.shields.io/pypi/v/cavapy?label=pypi%20package" alt="version" style="display: inline-block;">
33
+ </div>
34
+ </h1
35
+
36
+ ---
27
37
 
28
38
  ## Introduction
29
39
 
@@ -31,7 +41,7 @@ Description-Content-Type: text/markdown
31
41
 
32
42
  With `cavapy`, users can efficiently integrate CORDEX-CORE data into their workflows, making it an ideal resource for hydrological and crop modeling, among other climate-sensitive analyses. Additionally, `cavapy` enables bias correction, potentially enhancing the precision and usability of the data for a wide range of applications.
33
43
 
34
- ---
44
+
35
45
 
36
46
  ## Data Source
37
47
 
@@ -91,13 +101,13 @@ It takes about 10 minutes to run each of the tasks below. For bigger areas/count
91
101
 
92
102
  ```
93
103
  import cavapy
94
- Togo_climate_data = cavapy.get_climate_data(country="Togo", cordex_domain="AFR-22", rcp="rcp26", gcm="MPI", rcm="REMO", years_up_to=2030, obs=False, bias_correction=True, historical=False)
104
+ Togo_climate_data = cavapy.get_climate_data(country="Togo", variables=["tasmax", "pr"], cordex_domain="AFR-22", rcp="rcp26", gcm="MPI", rcm="REMO", years_up_to=2030, obs=False, bias_correction=True, historical=False)
95
105
  ```
96
106
  ### Non bias-corrected climate projections
97
107
 
98
108
  ```
99
109
  import cavapy
100
- Togo_climate_data = cavapy.get_climate_data(country="Togo", cordex_domain="AFR-22", rcp="rcp26", gcm="MPI", rcm="REMO", years_up_to=2030, obs=False, bias_correction=False, historical=False)
110
+ Togo_climate_data = cavapy.get_climate_data(country="Togo",variables=["tasmax", "pr"], cordex_domain="AFR-22", rcp="rcp26", gcm="MPI", rcm="REMO", years_up_to=2030, obs=False, bias_correction=False, historical=False)
101
111
  ```
102
112
  ### Bias-corrected climate projections plus the historical run
103
113
 
@@ -105,12 +115,12 @@ This is useful when assessing changes in crop yield from the historical period.
105
115
 
106
116
  ```
107
117
  import cavapy
108
- Togo_climate_data = cavapy.get_climate_data(country="Togo", cordex_domain="AFR-22", rcp="rcp26", gcm="MPI", rcm="REMO", years_up_to=2030, obs=False, bias_correction=True, historical=True)
118
+ Togo_climate_data = cavapy.get_climate_data(country="Togo", variables=["tasmax", "pr"], cordex_domain="AFR-22", rcp="rcp26", gcm="MPI", rcm="REMO", years_up_to=2030, obs=False, bias_correction=True, historical=True)
109
119
  ```
110
120
  ### Observations only (ERA5)
111
121
 
112
122
  ```
113
123
  import cavapy
114
- Togo_climate_data = cavapy.get_climate_data(country="Togo", cordex_domain="AFR-22", rcp="rcp26", gcm="MPI", rcm="REMO", years_up_to=2030, obs=True, bias_correction=True, historical=True, years_obs=range(1980,2019))
124
+ Togo_climate_data = cavapy.get_climate_data(country="Togo", cordex_domain="AFR-22",variables=["tasmax", "pr"], rcp="rcp26", gcm="MPI", rcm="REMO", years_up_to=2030, obs=True, bias_correction=True, historical=True, years_obs=range(1980,2019))
115
125
  ```
116
126
 
@@ -1,4 +1,14 @@
1
- # cavapy: CORDEX-CORE Climate Data Access Simplified
1
+ <h1 align="center">
2
+ <br>
3
+ <h2 align="center">cavapy: CORDEX-CORE Climate Data Access Simplified</h2>
4
+ <br>
5
+ <div align="center">
6
+ <img src="https://img.shields.io/pepy/dt/cavapy?style=plastic" alt="Downloads" style="display: inline-block;">
7
+ <img src="https://img.shields.io/pypi/v/cavapy?label=pypi%20package" alt="version" style="display: inline-block;">
8
+ </div>
9
+ </h1
10
+
11
+ ---
2
12
 
3
13
  ## Introduction
4
14
 
@@ -6,7 +16,7 @@
6
16
 
7
17
  With `cavapy`, users can efficiently integrate CORDEX-CORE data into their workflows, making it an ideal resource for hydrological and crop modeling, among other climate-sensitive analyses. Additionally, `cavapy` enables bias correction, potentially enhancing the precision and usability of the data for a wide range of applications.
8
18
 
9
- ---
19
+
10
20
 
11
21
  ## Data Source
12
22
 
@@ -66,13 +76,13 @@ It takes about 10 minutes to run each of the tasks below. For bigger areas/count
66
76
 
67
77
  ```
68
78
  import cavapy
69
- Togo_climate_data = cavapy.get_climate_data(country="Togo", cordex_domain="AFR-22", rcp="rcp26", gcm="MPI", rcm="REMO", years_up_to=2030, obs=False, bias_correction=True, historical=False)
79
+ Togo_climate_data = cavapy.get_climate_data(country="Togo", variables=["tasmax", "pr"], cordex_domain="AFR-22", rcp="rcp26", gcm="MPI", rcm="REMO", years_up_to=2030, obs=False, bias_correction=True, historical=False)
70
80
  ```
71
81
  ### Non bias-corrected climate projections
72
82
 
73
83
  ```
74
84
  import cavapy
75
- Togo_climate_data = cavapy.get_climate_data(country="Togo", cordex_domain="AFR-22", rcp="rcp26", gcm="MPI", rcm="REMO", years_up_to=2030, obs=False, bias_correction=False, historical=False)
85
+ Togo_climate_data = cavapy.get_climate_data(country="Togo",variables=["tasmax", "pr"], cordex_domain="AFR-22", rcp="rcp26", gcm="MPI", rcm="REMO", years_up_to=2030, obs=False, bias_correction=False, historical=False)
76
86
  ```
77
87
  ### Bias-corrected climate projections plus the historical run
78
88
 
@@ -80,11 +90,11 @@ This is useful when assessing changes in crop yield from the historical period.
80
90
 
81
91
  ```
82
92
  import cavapy
83
- Togo_climate_data = cavapy.get_climate_data(country="Togo", cordex_domain="AFR-22", rcp="rcp26", gcm="MPI", rcm="REMO", years_up_to=2030, obs=False, bias_correction=True, historical=True)
93
+ Togo_climate_data = cavapy.get_climate_data(country="Togo", variables=["tasmax", "pr"], cordex_domain="AFR-22", rcp="rcp26", gcm="MPI", rcm="REMO", years_up_to=2030, obs=False, bias_correction=True, historical=True)
84
94
  ```
85
95
  ### Observations only (ERA5)
86
96
 
87
97
  ```
88
98
  import cavapy
89
- Togo_climate_data = cavapy.get_climate_data(country="Togo", cordex_domain="AFR-22", rcp="rcp26", gcm="MPI", rcm="REMO", years_up_to=2030, obs=True, bias_correction=True, historical=True, years_obs=range(1980,2019))
99
+ Togo_climate_data = cavapy.get_climate_data(country="Togo", cordex_domain="AFR-22",variables=["tasmax", "pr"], rcp="rcp26", gcm="MPI", rcm="REMO", years_up_to=2030, obs=True, bias_correction=True, historical=True, years_obs=range(1980,2019))
90
100
  ```