cache-dit 0.1.8__tar.gz → 0.2.1__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (110) hide show
  1. {cache_dit-0.1.8 → cache_dit-0.2.1}/PKG-INFO +50 -60
  2. {cache_dit-0.1.8 → cache_dit-0.2.1}/README.md +49 -59
  3. {cache_dit-0.1.8 → cache_dit-0.2.1}/examples/.gitignore +1 -0
  4. cache_dit-0.2.1/examples/README.md +45 -0
  5. cache_dit-0.2.1/examples/requirements.txt +4 -0
  6. {cache_dit-0.1.8 → cache_dit-0.2.1}/examples/run_cogvideox.py +32 -6
  7. cache_dit-0.2.1/examples/run_hunyuan_video.py +75 -0
  8. {cache_dit-0.1.8 → cache_dit-0.2.1}/examples/run_wan.py +19 -5
  9. {cache_dit-0.1.8 → cache_dit-0.2.1}/setup.py +1 -0
  10. {cache_dit-0.1.8 → cache_dit-0.2.1}/src/cache_dit/_version.py +2 -2
  11. {cache_dit-0.1.8 → cache_dit-0.2.1}/src/cache_dit/cache_factory/dual_block_cache/cache_context.py +46 -29
  12. {cache_dit-0.1.8 → cache_dit-0.2.1}/src/cache_dit/cache_factory/dual_block_cache/diffusers_adapters/__init__.py +8 -0
  13. cache_dit-0.2.1/src/cache_dit/cache_factory/dual_block_cache/diffusers_adapters/hunyuan_video.py +295 -0
  14. cache_dit-0.2.1/src/cache_dit/cache_factory/dual_block_cache/diffusers_adapters/wan.py +99 -0
  15. {cache_dit-0.1.8 → cache_dit-0.2.1}/src/cache_dit/cache_factory/dynamic_block_prune/diffusers_adapters/__init__.py +12 -4
  16. cache_dit-0.2.1/src/cache_dit/cache_factory/dynamic_block_prune/diffusers_adapters/hunyuan_video.py +295 -0
  17. cache_dit-0.2.1/src/cache_dit/cache_factory/dynamic_block_prune/diffusers_adapters/wan.py +99 -0
  18. {cache_dit-0.1.8 → cache_dit-0.2.1}/src/cache_dit/cache_factory/first_block_cache/diffusers_adapters/__init__.py +4 -0
  19. cache_dit-0.2.1/src/cache_dit/cache_factory/first_block_cache/diffusers_adapters/hunyuan_video.py +295 -0
  20. {cache_dit-0.1.8 → cache_dit-0.2.1}/src/cache_dit/cache_factory/first_block_cache/diffusers_adapters/wan.py +2 -2
  21. {cache_dit-0.1.8 → cache_dit-0.2.1}/src/cache_dit.egg-info/PKG-INFO +50 -60
  22. {cache_dit-0.1.8 → cache_dit-0.2.1}/src/cache_dit.egg-info/SOURCES.txt +8 -0
  23. {cache_dit-0.1.8 → cache_dit-0.2.1}/.github/workflows/issue.yml +0 -0
  24. {cache_dit-0.1.8 → cache_dit-0.2.1}/.gitignore +0 -0
  25. {cache_dit-0.1.8 → cache_dit-0.2.1}/.pre-commit-config.yaml +0 -0
  26. {cache_dit-0.1.8 → cache_dit-0.2.1}/CONTRIBUTE.md +0 -0
  27. {cache_dit-0.1.8 → cache_dit-0.2.1}/LICENSE +0 -0
  28. {cache_dit-0.1.8 → cache_dit-0.2.1}/MANIFEST.in +0 -0
  29. {cache_dit-0.1.8 → cache_dit-0.2.1}/assets/DBCACHE_F12B12S4_R0.2_S16.png +0 -0
  30. {cache_dit-0.1.8 → cache_dit-0.2.1}/assets/DBCACHE_F12B16S4_R0.08_S6.png +0 -0
  31. {cache_dit-0.1.8 → cache_dit-0.2.1}/assets/DBCACHE_F16B16S2_R0.2_S14.png +0 -0
  32. {cache_dit-0.1.8 → cache_dit-0.2.1}/assets/DBCACHE_F16B16S4_R0.2_S13.png +0 -0
  33. {cache_dit-0.1.8 → cache_dit-0.2.1}/assets/DBCACHE_F1B0S1_R0.08_S11.png +0 -0
  34. {cache_dit-0.1.8 → cache_dit-0.2.1}/assets/DBCACHE_F1B0S1_R0.2_S19.png +0 -0
  35. {cache_dit-0.1.8 → cache_dit-0.2.1}/assets/DBCACHE_F8B0S2_R0.12_S12.png +0 -0
  36. {cache_dit-0.1.8 → cache_dit-0.2.1}/assets/DBCACHE_F8B16S1_R0.2_S18.png +0 -0
  37. {cache_dit-0.1.8 → cache_dit-0.2.1}/assets/DBCACHE_F8B8S1_R0.08_S9.png +0 -0
  38. {cache_dit-0.1.8 → cache_dit-0.2.1}/assets/DBCACHE_F8B8S1_R0.12_S12.png +0 -0
  39. {cache_dit-0.1.8 → cache_dit-0.2.1}/assets/DBCACHE_F8B8S1_R0.15_S15.png +0 -0
  40. {cache_dit-0.1.8 → cache_dit-0.2.1}/assets/DBCache.png +0 -0
  41. {cache_dit-0.1.8 → cache_dit-0.2.1}/assets/DBPRUNE_F1B0_R0.03_P24.0_T19.43s.png +0 -0
  42. {cache_dit-0.1.8 → cache_dit-0.2.1}/assets/DBPRUNE_F1B0_R0.04_P34.6_T16.82s.png +0 -0
  43. {cache_dit-0.1.8 → cache_dit-0.2.1}/assets/DBPRUNE_F1B0_R0.05_P38.3_T15.95s.png +0 -0
  44. {cache_dit-0.1.8 → cache_dit-0.2.1}/assets/DBPRUNE_F1B0_R0.06_P45.2_T14.24s.png +0 -0
  45. {cache_dit-0.1.8 → cache_dit-0.2.1}/assets/DBPRUNE_F1B0_R0.07_P52.3_T12.53s.png +0 -0
  46. {cache_dit-0.1.8 → cache_dit-0.2.1}/assets/DBPRUNE_F1B0_R0.08_P52.4_T12.52s.png +0 -0
  47. {cache_dit-0.1.8 → cache_dit-0.2.1}/assets/DBPRUNE_F1B0_R0.09_P59.2_T10.81s.png +0 -0
  48. {cache_dit-0.1.8 → cache_dit-0.2.1}/assets/DBPRUNE_F1B0_R0.12_P59.5_T10.76s.png +0 -0
  49. {cache_dit-0.1.8 → cache_dit-0.2.1}/assets/DBPRUNE_F1B0_R0.12_P63.0_T9.90s.png +0 -0
  50. {cache_dit-0.1.8 → cache_dit-0.2.1}/assets/DBPRUNE_F1B0_R0.1_P62.8_T9.95s.png +0 -0
  51. {cache_dit-0.1.8 → cache_dit-0.2.1}/assets/DBPRUNE_F1B0_R0.2_P59.5_T10.66s.png +0 -0
  52. {cache_dit-0.1.8 → cache_dit-0.2.1}/assets/DBPRUNE_F1B0_R0.3_P63.1_T9.79s.png +0 -0
  53. {cache_dit-0.1.8 → cache_dit-0.2.1}/assets/NONE_R0.08_S0.png +0 -0
  54. {cache_dit-0.1.8 → cache_dit-0.2.1}/assets/U0_C1_DBPRUNE_F1B0_R0.03_P24.0_T16.25s.png +0 -0
  55. {cache_dit-0.1.8 → cache_dit-0.2.1}/assets/U0_C1_DBPRUNE_F1B0_R0.045_P38.2_T13.41s.png +0 -0
  56. {cache_dit-0.1.8 → cache_dit-0.2.1}/assets/U0_C1_DBPRUNE_F1B0_R0.04_P34.6_T14.12s.png +0 -0
  57. {cache_dit-0.1.8 → cache_dit-0.2.1}/assets/U0_C1_DBPRUNE_F1B0_R0.055_P45.1_T12.00s.png +0 -0
  58. {cache_dit-0.1.8 → cache_dit-0.2.1}/assets/U0_C1_DBPRUNE_F1B0_R0.05_P41.6_T12.70s.png +0 -0
  59. {cache_dit-0.1.8 → cache_dit-0.2.1}/assets/U0_C1_DBPRUNE_F1B0_R0.2_P59.5_T8.86s.png +0 -0
  60. {cache_dit-0.1.8 → cache_dit-0.2.1}/assets/U0_C1_DBPRUNE_F8B8_R0.08_P23.1_T16.14s.png +0 -0
  61. {cache_dit-0.1.8 → cache_dit-0.2.1}/assets/U0_C1_NONE_R0.08_S0_T20.43s.png +0 -0
  62. {cache_dit-0.1.8 → cache_dit-0.2.1}/assets/U4_C1_DBPRUNE_F1B0_R0.03_P27.3_T6.62s.png +0 -0
  63. {cache_dit-0.1.8 → cache_dit-0.2.1}/assets/U4_C1_DBPRUNE_F1B0_R0.03_P27.3_T6.63s.png +0 -0
  64. {cache_dit-0.1.8 → cache_dit-0.2.1}/assets/U4_C1_DBPRUNE_F1B0_R0.045_P38.2_T5.81s.png +0 -0
  65. {cache_dit-0.1.8 → cache_dit-0.2.1}/assets/U4_C1_DBPRUNE_F1B0_R0.045_P38.2_T5.82s.png +0 -0
  66. {cache_dit-0.1.8 → cache_dit-0.2.1}/assets/U4_C1_DBPRUNE_F1B0_R0.04_P34.6_T6.06s.png +0 -0
  67. {cache_dit-0.1.8 → cache_dit-0.2.1}/assets/U4_C1_DBPRUNE_F1B0_R0.04_P34.6_T6.07s.png +0 -0
  68. {cache_dit-0.1.8 → cache_dit-0.2.1}/assets/U4_C1_DBPRUNE_F1B0_R0.04_P34.6_T6.08s.png +0 -0
  69. {cache_dit-0.1.8 → cache_dit-0.2.1}/assets/U4_C1_DBPRUNE_F1B0_R0.055_P45.1_T5.27s.png +0 -0
  70. {cache_dit-0.1.8 → cache_dit-0.2.1}/assets/U4_C1_DBPRUNE_F1B0_R0.055_P45.1_T5.28s.png +0 -0
  71. {cache_dit-0.1.8 → cache_dit-0.2.1}/assets/U4_C1_DBPRUNE_F1B0_R0.2_P59.5_T3.95s.png +0 -0
  72. {cache_dit-0.1.8 → cache_dit-0.2.1}/assets/U4_C1_DBPRUNE_F1B0_R0.2_P59.5_T3.96s.png +0 -0
  73. {cache_dit-0.1.8 → cache_dit-0.2.1}/assets/U4_C1_NONE_R0.08_S0_T7.78s.png +0 -0
  74. {cache_dit-0.1.8 → cache_dit-0.2.1}/assets/U4_C1_NONE_R0.08_S0_T7.79s.png +0 -0
  75. {cache_dit-0.1.8 → cache_dit-0.2.1}/assets/cache-dit.png +0 -0
  76. {cache_dit-0.1.8 → cache_dit-0.2.1}/bench/.gitignore +0 -0
  77. {cache_dit-0.1.8 → cache_dit-0.2.1}/bench/bench.py +0 -0
  78. {cache_dit-0.1.8 → cache_dit-0.2.1}/docs/.gitignore +0 -0
  79. {cache_dit-0.1.8 → cache_dit-0.2.1}/examples/data/cup.png +0 -0
  80. {cache_dit-0.1.8 → cache_dit-0.2.1}/examples/data/cup_mask.png +0 -0
  81. {cache_dit-0.1.8 → cache_dit-0.2.1}/examples/run_flux.py +0 -0
  82. {cache_dit-0.1.8 → cache_dit-0.2.1}/examples/run_flux_fill.py +0 -0
  83. {cache_dit-0.1.8 → cache_dit-0.2.1}/examples/run_mochi.py +0 -0
  84. {cache_dit-0.1.8 → cache_dit-0.2.1}/pyproject.toml +0 -0
  85. {cache_dit-0.1.8 → cache_dit-0.2.1}/pytest.ini +0 -0
  86. {cache_dit-0.1.8 → cache_dit-0.2.1}/requirements.txt +0 -0
  87. {cache_dit-0.1.8 → cache_dit-0.2.1}/setup.cfg +0 -0
  88. {cache_dit-0.1.8 → cache_dit-0.2.1}/src/cache_dit/__init__.py +0 -0
  89. {cache_dit-0.1.8 → cache_dit-0.2.1}/src/cache_dit/cache_factory/__init__.py +0 -0
  90. {cache_dit-0.1.8 → cache_dit-0.2.1}/src/cache_dit/cache_factory/dual_block_cache/__init__.py +0 -0
  91. {cache_dit-0.1.8 → cache_dit-0.2.1}/src/cache_dit/cache_factory/dual_block_cache/diffusers_adapters/cogvideox.py +0 -0
  92. {cache_dit-0.1.8 → cache_dit-0.2.1}/src/cache_dit/cache_factory/dual_block_cache/diffusers_adapters/flux.py +0 -0
  93. {cache_dit-0.1.8 → cache_dit-0.2.1}/src/cache_dit/cache_factory/dual_block_cache/diffusers_adapters/mochi.py +0 -0
  94. {cache_dit-0.1.8 → cache_dit-0.2.1}/src/cache_dit/cache_factory/dynamic_block_prune/__init__.py +0 -0
  95. {cache_dit-0.1.8 → cache_dit-0.2.1}/src/cache_dit/cache_factory/dynamic_block_prune/diffusers_adapters/cogvideox.py +0 -0
  96. {cache_dit-0.1.8 → cache_dit-0.2.1}/src/cache_dit/cache_factory/dynamic_block_prune/diffusers_adapters/flux.py +0 -0
  97. {cache_dit-0.1.8 → cache_dit-0.2.1}/src/cache_dit/cache_factory/dynamic_block_prune/diffusers_adapters/mochi.py +0 -0
  98. {cache_dit-0.1.8 → cache_dit-0.2.1}/src/cache_dit/cache_factory/dynamic_block_prune/prune_context.py +0 -0
  99. {cache_dit-0.1.8 → cache_dit-0.2.1}/src/cache_dit/cache_factory/first_block_cache/__init__.py +0 -0
  100. {cache_dit-0.1.8 → cache_dit-0.2.1}/src/cache_dit/cache_factory/first_block_cache/cache_context.py +0 -0
  101. {cache_dit-0.1.8 → cache_dit-0.2.1}/src/cache_dit/cache_factory/first_block_cache/diffusers_adapters/cogvideox.py +0 -0
  102. {cache_dit-0.1.8 → cache_dit-0.2.1}/src/cache_dit/cache_factory/first_block_cache/diffusers_adapters/flux.py +0 -0
  103. {cache_dit-0.1.8 → cache_dit-0.2.1}/src/cache_dit/cache_factory/first_block_cache/diffusers_adapters/mochi.py +0 -0
  104. {cache_dit-0.1.8 → cache_dit-0.2.1}/src/cache_dit/cache_factory/taylorseer.py +0 -0
  105. {cache_dit-0.1.8 → cache_dit-0.2.1}/src/cache_dit/cache_factory/utils.py +0 -0
  106. {cache_dit-0.1.8 → cache_dit-0.2.1}/src/cache_dit/logger.py +0 -0
  107. {cache_dit-0.1.8 → cache_dit-0.2.1}/src/cache_dit/primitives.py +0 -0
  108. {cache_dit-0.1.8 → cache_dit-0.2.1}/src/cache_dit.egg-info/dependency_links.txt +0 -0
  109. {cache_dit-0.1.8 → cache_dit-0.2.1}/src/cache_dit.egg-info/requires.txt +0 -0
  110. {cache_dit-0.1.8 → cache_dit-0.2.1}/src/cache_dit.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: cache_dit
3
- Version: 0.1.8
3
+ Version: 0.2.1
4
4
  Summary: 🤗 CacheDiT: A Training-free and Easy-to-use Cache Acceleration Toolbox for Diffusion Transformers
5
5
  Author: DefTruth, vipshop.com, etc.
6
6
  Maintainer: DefTruth, vipshop.com, etc
@@ -44,31 +44,18 @@ Dynamic: requires-python
44
44
  <img src=https://img.shields.io/badge/PyPI-pass-brightgreen.svg >
45
45
  <img src=https://static.pepy.tech/badge/cache-dit >
46
46
  <img src=https://img.shields.io/badge/Python-3.10|3.11|3.12-9cf.svg >
47
- <img src=https://img.shields.io/badge/Release-v0.1.8-brightgreen.svg >
47
+ <img src=https://img.shields.io/badge/Release-v0.2.1-brightgreen.svg >
48
48
  </div>
49
49
  <p align="center">
50
50
  DeepCache is for UNet not DiT. Most DiT cache speedups are complex and not training-free. CacheDiT <br>offers a set of training-free cache accelerators for DiT: 🔥DBCache, DBPrune, FBCache, etc🔥
51
51
  </p>
52
- <p align="center">
53
- <h3> 🔥Supported Models🔥</h2>
54
- <a href=https://github.com/vipshop/cache-dit/raw/main/examples> <b>🚀FLUX.1</b>: ✔️DBCache, ✔️DBPrune, ✔️FBCache🔥</a> <br>
55
- <a href=https://github.com/vipshop/cache-dit/raw/main/examples> <b>🚀CogVideoX</b>: ✔️DBCache, ✔️DBPrune, ✔️FBCache🔥</a> <br>
56
- <a href=https://github.com/vipshop/cache-dit/raw/main/examples> <b>🚀Mochi</b>: ✔️DBCache, ✔️DBPrune, ✔️FBCache🔥</a> <br>
57
- <a href=https://github.com/vipshop/cache-dit/raw/main/examples> <b>🚀Wan2.1</b>: 🔜DBCache, 🔜DBPrune, ✔️FBCache🔥</a> <br> <br>
58
- <b>♥️ Please consider to leave a ⭐️ Star to support us ~ ♥️</b>
59
- </p>
60
52
  </div>
61
53
 
54
+ ## 👋 Highlight
62
55
 
63
- <!--
64
- ## 🎉Supported Models
65
- <div id="supported"></div>
66
- - [🚀FLUX.1](https://github.com/vipshop/cache-dit/raw/main/examples): *✔️DBCache, ✔️DBPrune, ✔️FBCache*
67
- - [🚀CogVideoX](https://github.com/vipshop/cache-dit/raw/main/examples): *✔️DBCache, ✔️DBPrune, ✔️FBCache*
68
- - [🚀Mochi](https://github.com/vipshop/cache-dit/raw/main/examples): *✔️DBCache, ✔️DBPrune, ✔️FBCache*
69
- - [🚀Wan2.1**](https://github.com/vipshop/cache-dit/raw/main/examples): *🔜DBCache, 🔜DBPrune, ✔️FBCache*
70
- -->
56
+ <div id="reference"></div>
71
57
 
58
+ The **CacheDiT** codebase is adapted from [FBCache](https://github.com/chengzeyi/ParaAttention/tree/main/src/para_attn/first_block_cache). Special thanks to their excellent work! The **FBCache** support for Mochi, FLUX.1, CogVideoX, Wan2.1, and HunyuanVideo is directly adapted from the original [FBCache](https://github.com/chengzeyi/ParaAttention/tree/main/src/para_attn/first_block_cache).
72
59
 
73
60
  ## 🤗 Introduction
74
61
 
@@ -110,6 +97,12 @@ These case studies demonstrate that even with relatively high thresholds (such a
110
97
 
111
98
  **DBPrune**: We have further implemented a new **Dynamic Block Prune** algorithm based on **Residual Caching** for Diffusion Transformers, referred to as DBPrune. DBPrune caches each block's hidden states and residuals, then **dynamically prunes** blocks during inference by computing the L1 distance between previous hidden states. When a block is pruned, its output is approximated using the cached residuals.
112
99
 
100
+ <div align="center">
101
+ <p align="center">
102
+ DBPrune, <b> L20x1 </b>, Steps: 28, "A cat holding a sign that says hello world with complex background"
103
+ </p>
104
+ </div>
105
+
113
106
  |Baseline(L20x1)|Pruned(24%)|Pruned(35%)|Pruned(38%)|Pruned(45%)|Pruned(60%)|
114
107
  |:---:|:---:|:---:|:---:|:---:|:---:|
115
108
  |24.85s|19.43s|16.82s|15.95s|14.24s|10.66s|
@@ -117,11 +110,11 @@ These case studies demonstrate that even with relatively high thresholds (such a
117
110
 
118
111
  <div align="center">
119
112
  <p align="center">
120
- DBPrune, <b> L20x1 </b>, Steps: 28, "A cat holding a sign that says hello world with complex background"
113
+ <h3>🔥 Context Parallelism and Torch Compile</h3>
121
114
  </p>
122
- </div>
115
+ </div>
123
116
 
124
- **CacheDiT** are **plug-and-play** solutions that works hand-in-hand with [ParaAttention](https://github.com/chengzeyi/ParaAttention). Users can easily tap into its **Context Parallelism** features for distributed inference. Moreover, **CacheDiT** are designed to work compatibly with `torch.compile`. You can easily use CacheDiT with torch.compile to further achieve a better performance.
117
+ Moreover, **CacheDiT** are **plug-and-play** solutions that works hand-in-hand with [ParaAttention](https://github.com/chengzeyi/ParaAttention). Users can easily tap into its **Context Parallelism** features for distributed inference. By the way, CacheDiT is designed to work compatibly with **torch.compile.** You can easily use CacheDiT with torch.compile to further achieve a better performance.
125
118
 
126
119
  <div align="center">
127
120
  <p align="center">
@@ -131,11 +124,16 @@ These case studies demonstrate that even with relatively high thresholds (such a
131
124
 
132
125
  |Baseline|Pruned(24%)|Pruned(35%)|Pruned(38%)|Pruned(45%)|Pruned(60%)|
133
126
  |:---:|:---:|:---:|:---:|:---:|:---:|
134
- |+L20x1:24.85s|19.43s|16.82s|15.95s|14.24s|10.66s|
135
- |+compile:20.43s|16.25s|14.12s|13.41s|12s|8.86s|
127
+ |+compile:20.43s|16.25s|14.12s|13.41s|12.00s|8.86s|
136
128
  |+L20x4:7.75s|6.62s|6.03s|5.81s|5.24s|3.93s|
137
129
  |<img src=https://github.com/vipshop/cache-dit/raw/main/assets/U0_C1_NONE_R0.08_S0_T20.43s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/U0_C1_DBPRUNE_F1B0_R0.03_P24.0_T16.25s.png width=105px> | <img src=https://github.com/vipshop/cache-dit/raw/main/assets/U0_C1_DBPRUNE_F1B0_R0.04_P34.6_T14.12s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/U0_C1_DBPRUNE_F1B0_R0.045_P38.2_T13.41s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/U0_C1_DBPRUNE_F1B0_R0.055_P45.1_T12.00s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/U0_C1_DBPRUNE_F1B0_R0.2_P59.5_T8.86s.png width=105px>|
138
130
 
131
+ <div align="center">
132
+ <p align="center">
133
+ <b>♥️ Please consider to leave a ⭐️ Star to support us ~ ♥️</b>
134
+ </p>
135
+ </div>
136
+
139
137
  ## ©️Citations
140
138
 
141
139
  ```BibTeX
@@ -148,17 +146,12 @@ These case studies demonstrate that even with relatively high thresholds (such a
148
146
  }
149
147
  ```
150
148
 
151
- ## 👋Reference
152
-
153
- <div id="reference"></div>
154
-
155
- The **CacheDiT** codebase was adapted from FBCache's implementation at the [ParaAttention](https://github.com/chengzeyi/ParaAttention/tree/main/src/para_attn/first_block_cache). We would like to express our sincere gratitude for this excellent work!
156
-
157
149
  ## 📖Contents
158
150
 
159
151
  <div id="contents"></div>
160
152
 
161
153
  - [⚙️Installation](#️installation)
154
+ - [🔥Supported Models](#supported)
162
155
  - [⚡️Dual Block Cache](#dbcache)
163
156
  - [🎉First Block Cache](#fbcache)
164
157
  - [⚡️Dynamic Block Prune](#dbprune)
@@ -182,6 +175,30 @@ Or you can install the latest develop version from GitHub:
182
175
  pip3 install git+https://github.com/vipshop/cache-dit.git
183
176
  ```
184
177
 
178
+ ## 🔥Supported Models
179
+
180
+ <div id="supported"></div>
181
+
182
+ - [🚀FLUX.1](https://github.com/vipshop/cache-dit/raw/main/examples)
183
+ - [🚀Mochi](https://github.com/vipshop/cache-dit/raw/main/examples)
184
+ - [🚀CogVideoX](https://github.com/vipshop/cache-dit/raw/main/examples)
185
+ - [🚀CogVideoX1.5](https://github.com/vipshop/cache-dit/raw/main/examples)
186
+ - [🚀Wan2.1](https://github.com/vipshop/cache-dit/raw/main/examples)
187
+ - [🚀HunyuanVideo](https://github.com/vipshop/cache-dit/raw/main/examples)
188
+
189
+
190
+ <!--
191
+ <p align="center">
192
+ <h4> 🔥Supported Models🔥</h4>
193
+ <a href=https://github.com/vipshop/cache-dit/raw/main/examples> <b>🚀FLUX.1</b>: ✔️DBCache, ✔️DBPrune, ✔️FBCache🔥</a> <br>
194
+ <a href=https://github.com/vipshop/cache-dit/raw/main/examples> <b>🚀Mochi</b>: ✔️DBCache, ✔️DBPrune, ✔️FBCache🔥</a> <br>
195
+ <a href=https://github.com/vipshop/cache-dit/raw/main/examples> <b>🚀CogVideoX</b>: ✔️DBCache, ✔️DBPrune, ✔️FBCache🔥</a> <br>
196
+ <a href=https://github.com/vipshop/cache-dit/raw/main/examples> <b>🚀CogVideoX1.5</b>: ✔️DBCache, ✔️DBPrune, ✔️FBCache🔥</a> <br>
197
+ <a href=https://github.com/vipshop/cache-dit/raw/main/examples> <b>🚀Wan2.1</b>: ✔️DBCache, ✔️DBPrune, ✔️FBCache🔥</a> <br>
198
+ <a href=https://github.com/vipshop/cache-dit/raw/main/examples> <b>🚀HunyuanVideo</b>: ✔️DBCache, ✔️DBPrune, ✔️FBCache🔥</a> <br>
199
+ </p>
200
+ -->
201
+
185
202
  ## ⚡️DBCache: Dual Block Cache
186
203
 
187
204
  <div id="dbcache"></div>
@@ -339,6 +356,9 @@ cache_options = {
339
356
  apply_cache_on_pipe(pipe, **cache_options)
340
357
  ```
341
358
 
359
+ > [!Important]
360
+ > Please note that for GPUs with lower VRAM, DBPrune may not be suitable for use on video DiTs, as it caches the hidden states and residuals of each block, leading to higher GPU memory requirements. In such cases, please use DBCache, which only caches the hidden states and residuals of 2 blocks.
361
+
342
362
  <div align="center">
343
363
  <p align="center">
344
364
  DBPrune, <b> L20x1 </b>, Steps: 28, "A cat holding a sign that says hello world with complex background"
@@ -396,26 +416,12 @@ Then, run the python test script with `torchrun`:
396
416
  ```bash
397
417
  torchrun --nproc_per_node=4 parallel_cache.py
398
418
  ```
399
- <!--
400
-
401
- <div align="center">
402
- <p align="center">
403
- DBPrune, <b> L20x4 </b>, Steps: 28, "A cat holding a sign that says hello world with complex background"
404
- </p>
405
- </div>
406
-
407
- |Baseline|Pruned(24%)|Pruned(35%)|Pruned(38%)|Pruned(45%)|Pruned(60%)|
408
- |:---:|:---:|:---:|:---:|:---:|:---:|
409
- |+L20x1:24.85s|19.43s|16.82s|15.95s|14.24s|10.66s|
410
- |+L20x4:8.54s|7.20s|6.61s|6.09s|5.54s|4.22s|
411
- |<img src=https://github.com/vipshop/cache-dit/raw/main/assets/NONE_R0.08_S0.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBPRUNE_F1B0_R0.03_P24.0_T19.43s.png width=105px> | <img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBPRUNE_F1B0_R0.04_P34.6_T16.82s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBPRUNE_F1B0_R0.05_P38.3_T15.95s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBPRUNE_F1B0_R0.06_P45.2_T14.24s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBPRUNE_F1B0_R0.2_P59.5_T10.66s.png width=105px>|
412
- -->
413
419
 
414
420
  ## 🔥Torch Compile
415
421
 
416
422
  <div id="compile"></div>
417
423
 
418
- **CacheDiT** are designed to work compatibly with `torch.compile`. You can easily use CacheDiT with torch.compile to further achieve a better performance. For example:
424
+ By the way, **CacheDiT** is designed to work compatibly with **torch.compile.** You can easily use CacheDiT with torch.compile to further achieve a better performance. For example:
419
425
 
420
426
  ```python
421
427
  apply_cache_on_pipe(
@@ -430,22 +436,6 @@ torch._dynamo.config.recompile_limit = 96 # default is 8
430
436
  torch._dynamo.config.accumulated_recompile_limit = 2048 # default is 256
431
437
  ```
432
438
 
433
- <!--
434
-
435
- <div align="center">
436
- <p align="center">
437
- DBPrune + <b>torch.compile</b>, Steps: 28, "A cat holding a sign that says hello world with complex background"
438
- </p>
439
- </div>
440
-
441
- |Baseline|Pruned(24%)|Pruned(35%)|Pruned(38%)|Pruned(45%)|Pruned(60%)|
442
- |:---:|:---:|:---:|:---:|:---:|:---:|
443
- |+L20x1:24.8s|19.4s|16.8s|15.9s|14.2s|10.6s|
444
- |+compile:20.4s|16.5s|14.1s|13.4s|12s|8.8s|
445
- |+L20x4:7.7s|6.6s|6.0s|5.8s|5.2s|3.9s|
446
- |<img src=https://github.com/vipshop/cache-dit/raw/main/assets/U0_C1_NONE_R0.08_S0_T20.43s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/U0_C1_DBPRUNE_F1B0_R0.03_P24.0_T16.25s.png width=105px> | <img src=https://github.com/vipshop/cache-dit/raw/main/assets/U0_C1_DBPRUNE_F1B0_R0.04_P34.6_T14.12s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/U0_C1_DBPRUNE_F1B0_R0.045_P38.2_T13.41s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/U0_C1_DBPRUNE_F1B0_R0.055_P45.1_T12.00s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/U0_C1_DBPRUNE_F1B0_R0.2_P59.5_T8.86s.png width=105px>|
447
- -->
448
-
449
439
  ## 👋Contribute
450
440
  <div id="contribute"></div>
451
441
 
@@ -9,31 +9,18 @@
9
9
  <img src=https://img.shields.io/badge/PyPI-pass-brightgreen.svg >
10
10
  <img src=https://static.pepy.tech/badge/cache-dit >
11
11
  <img src=https://img.shields.io/badge/Python-3.10|3.11|3.12-9cf.svg >
12
- <img src=https://img.shields.io/badge/Release-v0.1.8-brightgreen.svg >
12
+ <img src=https://img.shields.io/badge/Release-v0.2.1-brightgreen.svg >
13
13
  </div>
14
14
  <p align="center">
15
15
  DeepCache is for UNet not DiT. Most DiT cache speedups are complex and not training-free. CacheDiT <br>offers a set of training-free cache accelerators for DiT: 🔥DBCache, DBPrune, FBCache, etc🔥
16
16
  </p>
17
- <p align="center">
18
- <h3> 🔥Supported Models🔥</h2>
19
- <a href=https://github.com/vipshop/cache-dit/raw/main/examples> <b>🚀FLUX.1</b>: ✔️DBCache, ✔️DBPrune, ✔️FBCache🔥</a> <br>
20
- <a href=https://github.com/vipshop/cache-dit/raw/main/examples> <b>🚀CogVideoX</b>: ✔️DBCache, ✔️DBPrune, ✔️FBCache🔥</a> <br>
21
- <a href=https://github.com/vipshop/cache-dit/raw/main/examples> <b>🚀Mochi</b>: ✔️DBCache, ✔️DBPrune, ✔️FBCache🔥</a> <br>
22
- <a href=https://github.com/vipshop/cache-dit/raw/main/examples> <b>🚀Wan2.1</b>: 🔜DBCache, 🔜DBPrune, ✔️FBCache🔥</a> <br> <br>
23
- <b>♥️ Please consider to leave a ⭐️ Star to support us ~ ♥️</b>
24
- </p>
25
17
  </div>
26
18
 
19
+ ## 👋 Highlight
27
20
 
28
- <!--
29
- ## 🎉Supported Models
30
- <div id="supported"></div>
31
- - [🚀FLUX.1](https://github.com/vipshop/cache-dit/raw/main/examples): *✔️DBCache, ✔️DBPrune, ✔️FBCache*
32
- - [🚀CogVideoX](https://github.com/vipshop/cache-dit/raw/main/examples): *✔️DBCache, ✔️DBPrune, ✔️FBCache*
33
- - [🚀Mochi](https://github.com/vipshop/cache-dit/raw/main/examples): *✔️DBCache, ✔️DBPrune, ✔️FBCache*
34
- - [🚀Wan2.1**](https://github.com/vipshop/cache-dit/raw/main/examples): *🔜DBCache, 🔜DBPrune, ✔️FBCache*
35
- -->
21
+ <div id="reference"></div>
36
22
 
23
+ The **CacheDiT** codebase is adapted from [FBCache](https://github.com/chengzeyi/ParaAttention/tree/main/src/para_attn/first_block_cache). Special thanks to their excellent work! The **FBCache** support for Mochi, FLUX.1, CogVideoX, Wan2.1, and HunyuanVideo is directly adapted from the original [FBCache](https://github.com/chengzeyi/ParaAttention/tree/main/src/para_attn/first_block_cache).
37
24
 
38
25
  ## 🤗 Introduction
39
26
 
@@ -75,6 +62,12 @@ These case studies demonstrate that even with relatively high thresholds (such a
75
62
 
76
63
  **DBPrune**: We have further implemented a new **Dynamic Block Prune** algorithm based on **Residual Caching** for Diffusion Transformers, referred to as DBPrune. DBPrune caches each block's hidden states and residuals, then **dynamically prunes** blocks during inference by computing the L1 distance between previous hidden states. When a block is pruned, its output is approximated using the cached residuals.
77
64
 
65
+ <div align="center">
66
+ <p align="center">
67
+ DBPrune, <b> L20x1 </b>, Steps: 28, "A cat holding a sign that says hello world with complex background"
68
+ </p>
69
+ </div>
70
+
78
71
  |Baseline(L20x1)|Pruned(24%)|Pruned(35%)|Pruned(38%)|Pruned(45%)|Pruned(60%)|
79
72
  |:---:|:---:|:---:|:---:|:---:|:---:|
80
73
  |24.85s|19.43s|16.82s|15.95s|14.24s|10.66s|
@@ -82,11 +75,11 @@ These case studies demonstrate that even with relatively high thresholds (such a
82
75
 
83
76
  <div align="center">
84
77
  <p align="center">
85
- DBPrune, <b> L20x1 </b>, Steps: 28, "A cat holding a sign that says hello world with complex background"
78
+ <h3>🔥 Context Parallelism and Torch Compile</h3>
86
79
  </p>
87
- </div>
80
+ </div>
88
81
 
89
- **CacheDiT** are **plug-and-play** solutions that works hand-in-hand with [ParaAttention](https://github.com/chengzeyi/ParaAttention). Users can easily tap into its **Context Parallelism** features for distributed inference. Moreover, **CacheDiT** are designed to work compatibly with `torch.compile`. You can easily use CacheDiT with torch.compile to further achieve a better performance.
82
+ Moreover, **CacheDiT** are **plug-and-play** solutions that works hand-in-hand with [ParaAttention](https://github.com/chengzeyi/ParaAttention). Users can easily tap into its **Context Parallelism** features for distributed inference. By the way, CacheDiT is designed to work compatibly with **torch.compile.** You can easily use CacheDiT with torch.compile to further achieve a better performance.
90
83
 
91
84
  <div align="center">
92
85
  <p align="center">
@@ -96,11 +89,16 @@ These case studies demonstrate that even with relatively high thresholds (such a
96
89
 
97
90
  |Baseline|Pruned(24%)|Pruned(35%)|Pruned(38%)|Pruned(45%)|Pruned(60%)|
98
91
  |:---:|:---:|:---:|:---:|:---:|:---:|
99
- |+L20x1:24.85s|19.43s|16.82s|15.95s|14.24s|10.66s|
100
- |+compile:20.43s|16.25s|14.12s|13.41s|12s|8.86s|
92
+ |+compile:20.43s|16.25s|14.12s|13.41s|12.00s|8.86s|
101
93
  |+L20x4:7.75s|6.62s|6.03s|5.81s|5.24s|3.93s|
102
94
  |<img src=https://github.com/vipshop/cache-dit/raw/main/assets/U0_C1_NONE_R0.08_S0_T20.43s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/U0_C1_DBPRUNE_F1B0_R0.03_P24.0_T16.25s.png width=105px> | <img src=https://github.com/vipshop/cache-dit/raw/main/assets/U0_C1_DBPRUNE_F1B0_R0.04_P34.6_T14.12s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/U0_C1_DBPRUNE_F1B0_R0.045_P38.2_T13.41s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/U0_C1_DBPRUNE_F1B0_R0.055_P45.1_T12.00s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/U0_C1_DBPRUNE_F1B0_R0.2_P59.5_T8.86s.png width=105px>|
103
95
 
96
+ <div align="center">
97
+ <p align="center">
98
+ <b>♥️ Please consider to leave a ⭐️ Star to support us ~ ♥️</b>
99
+ </p>
100
+ </div>
101
+
104
102
  ## ©️Citations
105
103
 
106
104
  ```BibTeX
@@ -113,17 +111,12 @@ These case studies demonstrate that even with relatively high thresholds (such a
113
111
  }
114
112
  ```
115
113
 
116
- ## 👋Reference
117
-
118
- <div id="reference"></div>
119
-
120
- The **CacheDiT** codebase was adapted from FBCache's implementation at the [ParaAttention](https://github.com/chengzeyi/ParaAttention/tree/main/src/para_attn/first_block_cache). We would like to express our sincere gratitude for this excellent work!
121
-
122
114
  ## 📖Contents
123
115
 
124
116
  <div id="contents"></div>
125
117
 
126
118
  - [⚙️Installation](#️installation)
119
+ - [🔥Supported Models](#supported)
127
120
  - [⚡️Dual Block Cache](#dbcache)
128
121
  - [🎉First Block Cache](#fbcache)
129
122
  - [⚡️Dynamic Block Prune](#dbprune)
@@ -147,6 +140,30 @@ Or you can install the latest develop version from GitHub:
147
140
  pip3 install git+https://github.com/vipshop/cache-dit.git
148
141
  ```
149
142
 
143
+ ## 🔥Supported Models
144
+
145
+ <div id="supported"></div>
146
+
147
+ - [🚀FLUX.1](https://github.com/vipshop/cache-dit/raw/main/examples)
148
+ - [🚀Mochi](https://github.com/vipshop/cache-dit/raw/main/examples)
149
+ - [🚀CogVideoX](https://github.com/vipshop/cache-dit/raw/main/examples)
150
+ - [🚀CogVideoX1.5](https://github.com/vipshop/cache-dit/raw/main/examples)
151
+ - [🚀Wan2.1](https://github.com/vipshop/cache-dit/raw/main/examples)
152
+ - [🚀HunyuanVideo](https://github.com/vipshop/cache-dit/raw/main/examples)
153
+
154
+
155
+ <!--
156
+ <p align="center">
157
+ <h4> 🔥Supported Models🔥</h4>
158
+ <a href=https://github.com/vipshop/cache-dit/raw/main/examples> <b>🚀FLUX.1</b>: ✔️DBCache, ✔️DBPrune, ✔️FBCache🔥</a> <br>
159
+ <a href=https://github.com/vipshop/cache-dit/raw/main/examples> <b>🚀Mochi</b>: ✔️DBCache, ✔️DBPrune, ✔️FBCache🔥</a> <br>
160
+ <a href=https://github.com/vipshop/cache-dit/raw/main/examples> <b>🚀CogVideoX</b>: ✔️DBCache, ✔️DBPrune, ✔️FBCache🔥</a> <br>
161
+ <a href=https://github.com/vipshop/cache-dit/raw/main/examples> <b>🚀CogVideoX1.5</b>: ✔️DBCache, ✔️DBPrune, ✔️FBCache🔥</a> <br>
162
+ <a href=https://github.com/vipshop/cache-dit/raw/main/examples> <b>🚀Wan2.1</b>: ✔️DBCache, ✔️DBPrune, ✔️FBCache🔥</a> <br>
163
+ <a href=https://github.com/vipshop/cache-dit/raw/main/examples> <b>🚀HunyuanVideo</b>: ✔️DBCache, ✔️DBPrune, ✔️FBCache🔥</a> <br>
164
+ </p>
165
+ -->
166
+
150
167
  ## ⚡️DBCache: Dual Block Cache
151
168
 
152
169
  <div id="dbcache"></div>
@@ -304,6 +321,9 @@ cache_options = {
304
321
  apply_cache_on_pipe(pipe, **cache_options)
305
322
  ```
306
323
 
324
+ > [!Important]
325
+ > Please note that for GPUs with lower VRAM, DBPrune may not be suitable for use on video DiTs, as it caches the hidden states and residuals of each block, leading to higher GPU memory requirements. In such cases, please use DBCache, which only caches the hidden states and residuals of 2 blocks.
326
+
307
327
  <div align="center">
308
328
  <p align="center">
309
329
  DBPrune, <b> L20x1 </b>, Steps: 28, "A cat holding a sign that says hello world with complex background"
@@ -361,26 +381,12 @@ Then, run the python test script with `torchrun`:
361
381
  ```bash
362
382
  torchrun --nproc_per_node=4 parallel_cache.py
363
383
  ```
364
- <!--
365
-
366
- <div align="center">
367
- <p align="center">
368
- DBPrune, <b> L20x4 </b>, Steps: 28, "A cat holding a sign that says hello world with complex background"
369
- </p>
370
- </div>
371
-
372
- |Baseline|Pruned(24%)|Pruned(35%)|Pruned(38%)|Pruned(45%)|Pruned(60%)|
373
- |:---:|:---:|:---:|:---:|:---:|:---:|
374
- |+L20x1:24.85s|19.43s|16.82s|15.95s|14.24s|10.66s|
375
- |+L20x4:8.54s|7.20s|6.61s|6.09s|5.54s|4.22s|
376
- |<img src=https://github.com/vipshop/cache-dit/raw/main/assets/NONE_R0.08_S0.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBPRUNE_F1B0_R0.03_P24.0_T19.43s.png width=105px> | <img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBPRUNE_F1B0_R0.04_P34.6_T16.82s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBPRUNE_F1B0_R0.05_P38.3_T15.95s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBPRUNE_F1B0_R0.06_P45.2_T14.24s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBPRUNE_F1B0_R0.2_P59.5_T10.66s.png width=105px>|
377
- -->
378
384
 
379
385
  ## 🔥Torch Compile
380
386
 
381
387
  <div id="compile"></div>
382
388
 
383
- **CacheDiT** are designed to work compatibly with `torch.compile`. You can easily use CacheDiT with torch.compile to further achieve a better performance. For example:
389
+ By the way, **CacheDiT** is designed to work compatibly with **torch.compile.** You can easily use CacheDiT with torch.compile to further achieve a better performance. For example:
384
390
 
385
391
  ```python
386
392
  apply_cache_on_pipe(
@@ -395,22 +401,6 @@ torch._dynamo.config.recompile_limit = 96 # default is 8
395
401
  torch._dynamo.config.accumulated_recompile_limit = 2048 # default is 256
396
402
  ```
397
403
 
398
- <!--
399
-
400
- <div align="center">
401
- <p align="center">
402
- DBPrune + <b>torch.compile</b>, Steps: 28, "A cat holding a sign that says hello world with complex background"
403
- </p>
404
- </div>
405
-
406
- |Baseline|Pruned(24%)|Pruned(35%)|Pruned(38%)|Pruned(45%)|Pruned(60%)|
407
- |:---:|:---:|:---:|:---:|:---:|:---:|
408
- |+L20x1:24.8s|19.4s|16.8s|15.9s|14.2s|10.6s|
409
- |+compile:20.4s|16.5s|14.1s|13.4s|12s|8.8s|
410
- |+L20x4:7.7s|6.6s|6.0s|5.8s|5.2s|3.9s|
411
- |<img src=https://github.com/vipshop/cache-dit/raw/main/assets/U0_C1_NONE_R0.08_S0_T20.43s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/U0_C1_DBPRUNE_F1B0_R0.03_P24.0_T16.25s.png width=105px> | <img src=https://github.com/vipshop/cache-dit/raw/main/assets/U0_C1_DBPRUNE_F1B0_R0.04_P34.6_T14.12s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/U0_C1_DBPRUNE_F1B0_R0.045_P38.2_T13.41s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/U0_C1_DBPRUNE_F1B0_R0.055_P45.1_T12.00s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/U0_C1_DBPRUNE_F1B0_R0.2_P59.5_T8.86s.png width=105px>|
412
- -->
413
-
414
404
  ## 👋Contribute
415
405
  <div id="contribute"></div>
416
406
 
@@ -165,3 +165,4 @@ report*.html
165
165
 
166
166
  .DS_Store
167
167
  *.png
168
+ *.mp4
@@ -0,0 +1,45 @@
1
+ # Examples for CacheDiT
2
+
3
+ ## Install requirements
4
+
5
+ ```bash
6
+ pip3 install -r requirements.txt
7
+ ```
8
+
9
+ ## Run examples
10
+
11
+ - FLUX.1-dev
12
+
13
+ ```bash
14
+ python3 run_flux.py
15
+ ```
16
+
17
+ - FLUX.1-Fill-dev
18
+
19
+ ```bash
20
+ python3 run_flux_fill.py
21
+ ```
22
+
23
+ - CogVideoX
24
+
25
+ ```bash
26
+ python3 run_cogvideox.py
27
+ ```
28
+
29
+ - Wan2.1
30
+
31
+ ```bash
32
+ python3 run_wan.py
33
+ ```
34
+
35
+ - Mochi
36
+
37
+ ```bash
38
+ python3 run_mochi.py
39
+ ```
40
+
41
+ - HunyuanVideo
42
+
43
+ ```bash
44
+ python3 run_hunyuan_video.py
45
+ ```
@@ -0,0 +1,4 @@
1
+ imageio-ffmpeg
2
+ # wan currently requires installing from source
3
+ diffusers @ git+https://github.com/huggingface/diffusers
4
+ ftfy
@@ -1,14 +1,33 @@
1
1
  import os
2
2
  import torch
3
- from diffusers import CogVideoXPipeline
4
3
  from diffusers.utils import export_to_video
4
+ from diffusers import CogVideoXPipeline, AutoencoderKLCogVideoX
5
5
  from cache_dit.cache_factory import apply_cache_on_pipe, CacheType
6
6
 
7
+
8
+ model_id = os.environ.get("COGVIDEOX_DIR", "THUDM/CogVideoX-5b")
9
+
10
+
11
+ def is_cogvideox_1_5():
12
+ return "CogVideoX1.5" in model_id or "THUDM/CogVideoX1.5" in model_id
13
+
14
+
15
+ def get_gpu_memory_in_gib():
16
+ if not torch.cuda.is_available():
17
+ return 0
18
+
19
+ try:
20
+ total_memory_bytes = torch.cuda.get_device_properties(
21
+ torch.cuda.current_device(),
22
+ ).total_memory
23
+ total_memory_gib = total_memory_bytes / (1024**3)
24
+ return int(total_memory_gib)
25
+ except Exception:
26
+ return 0
27
+
28
+
7
29
  pipe = CogVideoXPipeline.from_pretrained(
8
- os.environ.get(
9
- "COGVIDEOX_DIR",
10
- "THUDM/CogVideoX-5b",
11
- ),
30
+ model_id,
12
31
  torch_dtype=torch.bfloat16,
13
32
  ).to("cuda")
14
33
 
@@ -17,6 +36,8 @@ cache_options = CacheType.default_options(CacheType.DBCache)
17
36
 
18
37
  apply_cache_on_pipe(pipe, **cache_options)
19
38
 
39
+ pipe.enable_model_cpu_offload()
40
+ assert isinstance(pipe.vae, AutoencoderKLCogVideoX) # enable type check for IDE
20
41
  pipe.vae.enable_slicing()
21
42
  pipe.vae.enable_tiling()
22
43
 
@@ -37,7 +58,12 @@ video = pipe(
37
58
  prompt=prompt,
38
59
  num_videos_per_prompt=1,
39
60
  num_inference_steps=50,
40
- num_frames=49,
61
+ num_frames=(
62
+ # Avoid OOM for CogVideoX1.5 model on 48GB GPU
63
+ 16
64
+ if (is_cogvideox_1_5() and get_gpu_memory_in_gib() < 48)
65
+ else 49
66
+ ),
41
67
  guidance_scale=6,
42
68
  generator=torch.Generator("cuda").manual_seed(0),
43
69
  ).frames[0]
@@ -0,0 +1,75 @@
1
+ # Adapted from: https://github.com/chengzeyi/ParaAttention/blob/main/first_block_cache_examples/run_hunyuan_video.py
2
+ import os
3
+ import torch
4
+ from diffusers.utils import export_to_video
5
+ from diffusers import (
6
+ HunyuanVideoPipeline,
7
+ HunyuanVideoTransformer3DModel,
8
+ AutoencoderKLHunyuanVideo,
9
+ )
10
+ from cache_dit.cache_factory import apply_cache_on_pipe, CacheType
11
+
12
+ model_id = os.environ.get("HUNYUAN_DIR", "tencent/HunyuanVideo")
13
+
14
+
15
+ def get_gpu_memory_in_gib():
16
+ if not torch.cuda.is_available():
17
+ return 0
18
+
19
+ try:
20
+ total_memory_bytes = torch.cuda.get_device_properties(
21
+ torch.cuda.current_device(),
22
+ ).total_memory
23
+ total_memory_gib = total_memory_bytes / (1024**3)
24
+ return int(total_memory_gib)
25
+ except Exception:
26
+ return 0
27
+
28
+
29
+ transformer = HunyuanVideoTransformer3DModel.from_pretrained(
30
+ model_id,
31
+ subfolder="transformer",
32
+ torch_dtype=torch.bfloat16,
33
+ revision="refs/pr/18",
34
+ )
35
+ pipe = HunyuanVideoPipeline.from_pretrained(
36
+ model_id,
37
+ transformer=transformer,
38
+ torch_dtype=torch.float16,
39
+ revision="refs/pr/18",
40
+ ).to("cuda")
41
+
42
+
43
+ # Default options, F8B8, good balance between performance and precision
44
+ apply_cache_on_pipe(pipe, **CacheType.default_options(CacheType.DBCache))
45
+
46
+ assert isinstance(
47
+ pipe.vae, AutoencoderKLHunyuanVideo
48
+ ) # enable type check for IDE
49
+
50
+ # Enable memory savings
51
+ pipe.enable_model_cpu_offload()
52
+ if get_gpu_memory_in_gib() <= 48:
53
+ pipe.vae.enable_tiling(
54
+ # Make it runnable on GPUs with 48GB memory
55
+ tile_sample_min_height=128,
56
+ tile_sample_stride_height=96,
57
+ tile_sample_min_width=128,
58
+ tile_sample_stride_width=96,
59
+ tile_sample_min_num_frames=32,
60
+ tile_sample_stride_num_frames=24,
61
+ )
62
+ else:
63
+ pipe.vae.enable_tiling()
64
+
65
+
66
+ output = pipe(
67
+ prompt="A cat walks on the grass, realistic",
68
+ height=720,
69
+ width=1280,
70
+ num_frames=129,
71
+ num_inference_steps=30,
72
+ ).frames[0]
73
+
74
+ print("Saving video to hunyuan_video.mp4")
75
+ export_to_video(output, "hunyuan_video.mp4", fps=15)
@@ -1,6 +1,7 @@
1
1
  import os
2
2
  import torch
3
- from diffusers import WanPipeline
3
+ import diffusers
4
+ from diffusers import WanPipeline, AutoencoderKLWan
4
5
  from diffusers.utils import export_to_video
5
6
  from diffusers.schedulers.scheduling_unipc_multistep import (
6
7
  UniPCMultistepScheduler,
@@ -27,11 +28,24 @@ if hasattr(pipe, "scheduler") and pipe.scheduler is not None:
27
28
 
28
29
  pipe.to("cuda")
29
30
 
30
- apply_cache_on_pipe(pipe, **CacheType.default_options(CacheType.FBCache))
31
+ # Default options, F8B8, good balance between performance and precision
32
+ apply_cache_on_pipe(pipe, **CacheType.default_options(CacheType.DBCache))
31
33
 
32
34
  # Enable memory savings
33
35
  pipe.enable_model_cpu_offload()
34
- pipe.enable_vae_tiling()
36
+
37
+ # Wan currently requires installing diffusers from source
38
+ assert isinstance(pipe.vae, AutoencoderKLWan) # enable type check for IDE
39
+ if diffusers.__version__ >= "0.34.0.dev0":
40
+ pipe.vae.enable_tiling()
41
+ pipe.vae.enable_slicing()
42
+ else:
43
+ print(
44
+ "Wan pipeline requires diffusers version >= 0.34.0.dev0 "
45
+ "for vae tiling and slicing, please install diffusers "
46
+ "from source."
47
+ )
48
+
35
49
 
36
50
  video = pipe(
37
51
  prompt=(
@@ -39,8 +53,8 @@ video = pipe(
39
53
  "flying past in the background, hyperrealistic"
40
54
  ),
41
55
  negative_prompt="",
42
- height=480,
43
- width=832,
56
+ height=height,
57
+ width=width,
44
58
  num_frames=81,
45
59
  num_inference_steps=30,
46
60
  ).frames[0]
@@ -66,6 +66,7 @@ setup(
66
66
  "expecttest",
67
67
  "hypothesis",
68
68
  "transformers",
69
+ # "diffusers @ git+https://github.com/huggingface/diffusers", # wan currently requires installing from source
69
70
  "diffusers",
70
71
  "accelerate",
71
72
  "peft",
@@ -17,5 +17,5 @@ __version__: str
17
17
  __version_tuple__: VERSION_TUPLE
18
18
  version_tuple: VERSION_TUPLE
19
19
 
20
- __version__ = version = '0.1.8'
21
- __version_tuple__ = version_tuple = (0, 1, 8)
20
+ __version__ = version = '0.2.1'
21
+ __version_tuple__ = version_tuple = (0, 2, 1)