cache-dit 0.1.8__tar.gz → 0.2.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of cache-dit might be problematic. Click here for more details.

Files changed (110) hide show
  1. {cache_dit-0.1.8 → cache_dit-0.2.0}/PKG-INFO +27 -56
  2. {cache_dit-0.1.8 → cache_dit-0.2.0}/README.md +26 -55
  3. {cache_dit-0.1.8 → cache_dit-0.2.0}/examples/.gitignore +1 -0
  4. cache_dit-0.2.0/examples/README.md +45 -0
  5. cache_dit-0.2.0/examples/requirements.txt +4 -0
  6. {cache_dit-0.1.8 → cache_dit-0.2.0}/examples/run_cogvideox.py +32 -6
  7. cache_dit-0.2.0/examples/run_hunyuan_video.py +75 -0
  8. {cache_dit-0.1.8 → cache_dit-0.2.0}/examples/run_wan.py +10 -5
  9. {cache_dit-0.1.8 → cache_dit-0.2.0}/setup.py +1 -0
  10. {cache_dit-0.1.8 → cache_dit-0.2.0}/src/cache_dit/_version.py +2 -2
  11. {cache_dit-0.1.8 → cache_dit-0.2.0}/src/cache_dit/cache_factory/dual_block_cache/diffusers_adapters/__init__.py +8 -0
  12. cache_dit-0.2.0/src/cache_dit/cache_factory/dual_block_cache/diffusers_adapters/hunyuan_video.py +295 -0
  13. cache_dit-0.2.0/src/cache_dit/cache_factory/dual_block_cache/diffusers_adapters/wan.py +99 -0
  14. {cache_dit-0.1.8 → cache_dit-0.2.0}/src/cache_dit/cache_factory/dynamic_block_prune/diffusers_adapters/__init__.py +12 -4
  15. cache_dit-0.2.0/src/cache_dit/cache_factory/dynamic_block_prune/diffusers_adapters/hunyuan_video.py +295 -0
  16. cache_dit-0.2.0/src/cache_dit/cache_factory/dynamic_block_prune/diffusers_adapters/wan.py +99 -0
  17. {cache_dit-0.1.8 → cache_dit-0.2.0}/src/cache_dit/cache_factory/first_block_cache/diffusers_adapters/__init__.py +4 -0
  18. cache_dit-0.2.0/src/cache_dit/cache_factory/first_block_cache/diffusers_adapters/hunyuan_video.py +295 -0
  19. {cache_dit-0.1.8 → cache_dit-0.2.0}/src/cache_dit/cache_factory/first_block_cache/diffusers_adapters/wan.py +2 -2
  20. {cache_dit-0.1.8 → cache_dit-0.2.0}/src/cache_dit.egg-info/PKG-INFO +27 -56
  21. {cache_dit-0.1.8 → cache_dit-0.2.0}/src/cache_dit.egg-info/SOURCES.txt +8 -0
  22. {cache_dit-0.1.8 → cache_dit-0.2.0}/.github/workflows/issue.yml +0 -0
  23. {cache_dit-0.1.8 → cache_dit-0.2.0}/.gitignore +0 -0
  24. {cache_dit-0.1.8 → cache_dit-0.2.0}/.pre-commit-config.yaml +0 -0
  25. {cache_dit-0.1.8 → cache_dit-0.2.0}/CONTRIBUTE.md +0 -0
  26. {cache_dit-0.1.8 → cache_dit-0.2.0}/LICENSE +0 -0
  27. {cache_dit-0.1.8 → cache_dit-0.2.0}/MANIFEST.in +0 -0
  28. {cache_dit-0.1.8 → cache_dit-0.2.0}/assets/DBCACHE_F12B12S4_R0.2_S16.png +0 -0
  29. {cache_dit-0.1.8 → cache_dit-0.2.0}/assets/DBCACHE_F12B16S4_R0.08_S6.png +0 -0
  30. {cache_dit-0.1.8 → cache_dit-0.2.0}/assets/DBCACHE_F16B16S2_R0.2_S14.png +0 -0
  31. {cache_dit-0.1.8 → cache_dit-0.2.0}/assets/DBCACHE_F16B16S4_R0.2_S13.png +0 -0
  32. {cache_dit-0.1.8 → cache_dit-0.2.0}/assets/DBCACHE_F1B0S1_R0.08_S11.png +0 -0
  33. {cache_dit-0.1.8 → cache_dit-0.2.0}/assets/DBCACHE_F1B0S1_R0.2_S19.png +0 -0
  34. {cache_dit-0.1.8 → cache_dit-0.2.0}/assets/DBCACHE_F8B0S2_R0.12_S12.png +0 -0
  35. {cache_dit-0.1.8 → cache_dit-0.2.0}/assets/DBCACHE_F8B16S1_R0.2_S18.png +0 -0
  36. {cache_dit-0.1.8 → cache_dit-0.2.0}/assets/DBCACHE_F8B8S1_R0.08_S9.png +0 -0
  37. {cache_dit-0.1.8 → cache_dit-0.2.0}/assets/DBCACHE_F8B8S1_R0.12_S12.png +0 -0
  38. {cache_dit-0.1.8 → cache_dit-0.2.0}/assets/DBCACHE_F8B8S1_R0.15_S15.png +0 -0
  39. {cache_dit-0.1.8 → cache_dit-0.2.0}/assets/DBCache.png +0 -0
  40. {cache_dit-0.1.8 → cache_dit-0.2.0}/assets/DBPRUNE_F1B0_R0.03_P24.0_T19.43s.png +0 -0
  41. {cache_dit-0.1.8 → cache_dit-0.2.0}/assets/DBPRUNE_F1B0_R0.04_P34.6_T16.82s.png +0 -0
  42. {cache_dit-0.1.8 → cache_dit-0.2.0}/assets/DBPRUNE_F1B0_R0.05_P38.3_T15.95s.png +0 -0
  43. {cache_dit-0.1.8 → cache_dit-0.2.0}/assets/DBPRUNE_F1B0_R0.06_P45.2_T14.24s.png +0 -0
  44. {cache_dit-0.1.8 → cache_dit-0.2.0}/assets/DBPRUNE_F1B0_R0.07_P52.3_T12.53s.png +0 -0
  45. {cache_dit-0.1.8 → cache_dit-0.2.0}/assets/DBPRUNE_F1B0_R0.08_P52.4_T12.52s.png +0 -0
  46. {cache_dit-0.1.8 → cache_dit-0.2.0}/assets/DBPRUNE_F1B0_R0.09_P59.2_T10.81s.png +0 -0
  47. {cache_dit-0.1.8 → cache_dit-0.2.0}/assets/DBPRUNE_F1B0_R0.12_P59.5_T10.76s.png +0 -0
  48. {cache_dit-0.1.8 → cache_dit-0.2.0}/assets/DBPRUNE_F1B0_R0.12_P63.0_T9.90s.png +0 -0
  49. {cache_dit-0.1.8 → cache_dit-0.2.0}/assets/DBPRUNE_F1B0_R0.1_P62.8_T9.95s.png +0 -0
  50. {cache_dit-0.1.8 → cache_dit-0.2.0}/assets/DBPRUNE_F1B0_R0.2_P59.5_T10.66s.png +0 -0
  51. {cache_dit-0.1.8 → cache_dit-0.2.0}/assets/DBPRUNE_F1B0_R0.3_P63.1_T9.79s.png +0 -0
  52. {cache_dit-0.1.8 → cache_dit-0.2.0}/assets/NONE_R0.08_S0.png +0 -0
  53. {cache_dit-0.1.8 → cache_dit-0.2.0}/assets/U0_C1_DBPRUNE_F1B0_R0.03_P24.0_T16.25s.png +0 -0
  54. {cache_dit-0.1.8 → cache_dit-0.2.0}/assets/U0_C1_DBPRUNE_F1B0_R0.045_P38.2_T13.41s.png +0 -0
  55. {cache_dit-0.1.8 → cache_dit-0.2.0}/assets/U0_C1_DBPRUNE_F1B0_R0.04_P34.6_T14.12s.png +0 -0
  56. {cache_dit-0.1.8 → cache_dit-0.2.0}/assets/U0_C1_DBPRUNE_F1B0_R0.055_P45.1_T12.00s.png +0 -0
  57. {cache_dit-0.1.8 → cache_dit-0.2.0}/assets/U0_C1_DBPRUNE_F1B0_R0.05_P41.6_T12.70s.png +0 -0
  58. {cache_dit-0.1.8 → cache_dit-0.2.0}/assets/U0_C1_DBPRUNE_F1B0_R0.2_P59.5_T8.86s.png +0 -0
  59. {cache_dit-0.1.8 → cache_dit-0.2.0}/assets/U0_C1_DBPRUNE_F8B8_R0.08_P23.1_T16.14s.png +0 -0
  60. {cache_dit-0.1.8 → cache_dit-0.2.0}/assets/U0_C1_NONE_R0.08_S0_T20.43s.png +0 -0
  61. {cache_dit-0.1.8 → cache_dit-0.2.0}/assets/U4_C1_DBPRUNE_F1B0_R0.03_P27.3_T6.62s.png +0 -0
  62. {cache_dit-0.1.8 → cache_dit-0.2.0}/assets/U4_C1_DBPRUNE_F1B0_R0.03_P27.3_T6.63s.png +0 -0
  63. {cache_dit-0.1.8 → cache_dit-0.2.0}/assets/U4_C1_DBPRUNE_F1B0_R0.045_P38.2_T5.81s.png +0 -0
  64. {cache_dit-0.1.8 → cache_dit-0.2.0}/assets/U4_C1_DBPRUNE_F1B0_R0.045_P38.2_T5.82s.png +0 -0
  65. {cache_dit-0.1.8 → cache_dit-0.2.0}/assets/U4_C1_DBPRUNE_F1B0_R0.04_P34.6_T6.06s.png +0 -0
  66. {cache_dit-0.1.8 → cache_dit-0.2.0}/assets/U4_C1_DBPRUNE_F1B0_R0.04_P34.6_T6.07s.png +0 -0
  67. {cache_dit-0.1.8 → cache_dit-0.2.0}/assets/U4_C1_DBPRUNE_F1B0_R0.04_P34.6_T6.08s.png +0 -0
  68. {cache_dit-0.1.8 → cache_dit-0.2.0}/assets/U4_C1_DBPRUNE_F1B0_R0.055_P45.1_T5.27s.png +0 -0
  69. {cache_dit-0.1.8 → cache_dit-0.2.0}/assets/U4_C1_DBPRUNE_F1B0_R0.055_P45.1_T5.28s.png +0 -0
  70. {cache_dit-0.1.8 → cache_dit-0.2.0}/assets/U4_C1_DBPRUNE_F1B0_R0.2_P59.5_T3.95s.png +0 -0
  71. {cache_dit-0.1.8 → cache_dit-0.2.0}/assets/U4_C1_DBPRUNE_F1B0_R0.2_P59.5_T3.96s.png +0 -0
  72. {cache_dit-0.1.8 → cache_dit-0.2.0}/assets/U4_C1_NONE_R0.08_S0_T7.78s.png +0 -0
  73. {cache_dit-0.1.8 → cache_dit-0.2.0}/assets/U4_C1_NONE_R0.08_S0_T7.79s.png +0 -0
  74. {cache_dit-0.1.8 → cache_dit-0.2.0}/assets/cache-dit.png +0 -0
  75. {cache_dit-0.1.8 → cache_dit-0.2.0}/bench/.gitignore +0 -0
  76. {cache_dit-0.1.8 → cache_dit-0.2.0}/bench/bench.py +0 -0
  77. {cache_dit-0.1.8 → cache_dit-0.2.0}/docs/.gitignore +0 -0
  78. {cache_dit-0.1.8 → cache_dit-0.2.0}/examples/data/cup.png +0 -0
  79. {cache_dit-0.1.8 → cache_dit-0.2.0}/examples/data/cup_mask.png +0 -0
  80. {cache_dit-0.1.8 → cache_dit-0.2.0}/examples/run_flux.py +0 -0
  81. {cache_dit-0.1.8 → cache_dit-0.2.0}/examples/run_flux_fill.py +0 -0
  82. {cache_dit-0.1.8 → cache_dit-0.2.0}/examples/run_mochi.py +0 -0
  83. {cache_dit-0.1.8 → cache_dit-0.2.0}/pyproject.toml +0 -0
  84. {cache_dit-0.1.8 → cache_dit-0.2.0}/pytest.ini +0 -0
  85. {cache_dit-0.1.8 → cache_dit-0.2.0}/requirements.txt +0 -0
  86. {cache_dit-0.1.8 → cache_dit-0.2.0}/setup.cfg +0 -0
  87. {cache_dit-0.1.8 → cache_dit-0.2.0}/src/cache_dit/__init__.py +0 -0
  88. {cache_dit-0.1.8 → cache_dit-0.2.0}/src/cache_dit/cache_factory/__init__.py +0 -0
  89. {cache_dit-0.1.8 → cache_dit-0.2.0}/src/cache_dit/cache_factory/dual_block_cache/__init__.py +0 -0
  90. {cache_dit-0.1.8 → cache_dit-0.2.0}/src/cache_dit/cache_factory/dual_block_cache/cache_context.py +0 -0
  91. {cache_dit-0.1.8 → cache_dit-0.2.0}/src/cache_dit/cache_factory/dual_block_cache/diffusers_adapters/cogvideox.py +0 -0
  92. {cache_dit-0.1.8 → cache_dit-0.2.0}/src/cache_dit/cache_factory/dual_block_cache/diffusers_adapters/flux.py +0 -0
  93. {cache_dit-0.1.8 → cache_dit-0.2.0}/src/cache_dit/cache_factory/dual_block_cache/diffusers_adapters/mochi.py +0 -0
  94. {cache_dit-0.1.8 → cache_dit-0.2.0}/src/cache_dit/cache_factory/dynamic_block_prune/__init__.py +0 -0
  95. {cache_dit-0.1.8 → cache_dit-0.2.0}/src/cache_dit/cache_factory/dynamic_block_prune/diffusers_adapters/cogvideox.py +0 -0
  96. {cache_dit-0.1.8 → cache_dit-0.2.0}/src/cache_dit/cache_factory/dynamic_block_prune/diffusers_adapters/flux.py +0 -0
  97. {cache_dit-0.1.8 → cache_dit-0.2.0}/src/cache_dit/cache_factory/dynamic_block_prune/diffusers_adapters/mochi.py +0 -0
  98. {cache_dit-0.1.8 → cache_dit-0.2.0}/src/cache_dit/cache_factory/dynamic_block_prune/prune_context.py +0 -0
  99. {cache_dit-0.1.8 → cache_dit-0.2.0}/src/cache_dit/cache_factory/first_block_cache/__init__.py +0 -0
  100. {cache_dit-0.1.8 → cache_dit-0.2.0}/src/cache_dit/cache_factory/first_block_cache/cache_context.py +0 -0
  101. {cache_dit-0.1.8 → cache_dit-0.2.0}/src/cache_dit/cache_factory/first_block_cache/diffusers_adapters/cogvideox.py +0 -0
  102. {cache_dit-0.1.8 → cache_dit-0.2.0}/src/cache_dit/cache_factory/first_block_cache/diffusers_adapters/flux.py +0 -0
  103. {cache_dit-0.1.8 → cache_dit-0.2.0}/src/cache_dit/cache_factory/first_block_cache/diffusers_adapters/mochi.py +0 -0
  104. {cache_dit-0.1.8 → cache_dit-0.2.0}/src/cache_dit/cache_factory/taylorseer.py +0 -0
  105. {cache_dit-0.1.8 → cache_dit-0.2.0}/src/cache_dit/cache_factory/utils.py +0 -0
  106. {cache_dit-0.1.8 → cache_dit-0.2.0}/src/cache_dit/logger.py +0 -0
  107. {cache_dit-0.1.8 → cache_dit-0.2.0}/src/cache_dit/primitives.py +0 -0
  108. {cache_dit-0.1.8 → cache_dit-0.2.0}/src/cache_dit.egg-info/dependency_links.txt +0 -0
  109. {cache_dit-0.1.8 → cache_dit-0.2.0}/src/cache_dit.egg-info/requires.txt +0 -0
  110. {cache_dit-0.1.8 → cache_dit-0.2.0}/src/cache_dit.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: cache_dit
3
- Version: 0.1.8
3
+ Version: 0.2.0
4
4
  Summary: 🤗 CacheDiT: A Training-free and Easy-to-use Cache Acceleration Toolbox for Diffusion Transformers
5
5
  Author: DefTruth, vipshop.com, etc.
6
6
  Maintainer: DefTruth, vipshop.com, etc
@@ -44,31 +44,27 @@ Dynamic: requires-python
44
44
  <img src=https://img.shields.io/badge/PyPI-pass-brightgreen.svg >
45
45
  <img src=https://static.pepy.tech/badge/cache-dit >
46
46
  <img src=https://img.shields.io/badge/Python-3.10|3.11|3.12-9cf.svg >
47
- <img src=https://img.shields.io/badge/Release-v0.1.8-brightgreen.svg >
47
+ <img src=https://img.shields.io/badge/Release-v0.2.0-brightgreen.svg >
48
48
  </div>
49
49
  <p align="center">
50
50
  DeepCache is for UNet not DiT. Most DiT cache speedups are complex and not training-free. CacheDiT <br>offers a set of training-free cache accelerators for DiT: 🔥DBCache, DBPrune, FBCache, etc🔥
51
51
  </p>
52
52
  <p align="center">
53
- <h3> 🔥Supported Models🔥</h2>
53
+ <h4> 🔥Supported Models🔥</h4>
54
54
  <a href=https://github.com/vipshop/cache-dit/raw/main/examples> <b>🚀FLUX.1</b>: ✔️DBCache, ✔️DBPrune, ✔️FBCache🔥</a> <br>
55
- <a href=https://github.com/vipshop/cache-dit/raw/main/examples> <b>🚀CogVideoX</b>: ✔️DBCache, ✔️DBPrune, ✔️FBCache🔥</a> <br>
56
55
  <a href=https://github.com/vipshop/cache-dit/raw/main/examples> <b>🚀Mochi</b>: ✔️DBCache, ✔️DBPrune, ✔️FBCache🔥</a> <br>
57
- <a href=https://github.com/vipshop/cache-dit/raw/main/examples> <b>🚀Wan2.1</b>: 🔜DBCache, 🔜DBPrune, ✔️FBCache🔥</a> <br> <br>
58
- <b>♥️ Please consider to leave a ⭐️ Star to support us ~ ♥️</b>
56
+ <a href=https://github.com/vipshop/cache-dit/raw/main/examples> <b>🚀CogVideoX</b>: ✔️DBCache, ✔️DBPrune, ✔️FBCache🔥</a> <br>
57
+ <a href=https://github.com/vipshop/cache-dit/raw/main/examples> <b>🚀CogVideoX1.5</b>: ✔️DBCache, ✔️DBPrune, ✔️FBCache🔥</a> <br>
58
+ <a href=https://github.com/vipshop/cache-dit/raw/main/examples> <b>🚀Wan2.1</b>: ✔️DBCache, ✔️DBPrune, ✔️FBCache🔥</a> <br>
59
+ <a href=https://github.com/vipshop/cache-dit/raw/main/examples> <b>🚀HunyuanVideo</b>: ✔️DBCache, ✔️DBPrune, ✔️FBCache🔥</a> <br>
59
60
  </p>
60
61
  </div>
61
62
 
63
+ ## 👋 Highlight
62
64
 
63
- <!--
64
- ## 🎉Supported Models
65
- <div id="supported"></div>
66
- - [🚀FLUX.1](https://github.com/vipshop/cache-dit/raw/main/examples): *✔️DBCache, ✔️DBPrune, ✔️FBCache*
67
- - [🚀CogVideoX](https://github.com/vipshop/cache-dit/raw/main/examples): *✔️DBCache, ✔️DBPrune, ✔️FBCache*
68
- - [🚀Mochi](https://github.com/vipshop/cache-dit/raw/main/examples): *✔️DBCache, ✔️DBPrune, ✔️FBCache*
69
- - [🚀Wan2.1**](https://github.com/vipshop/cache-dit/raw/main/examples): *🔜DBCache, 🔜DBPrune, ✔️FBCache*
70
- -->
65
+ <div id="reference"></div>
71
66
 
67
+ The **CacheDiT** codebase is adapted from [FBCache](https://github.com/chengzeyi/ParaAttention/tree/main/src/para_attn/first_block_cache). Special thanks to their excellent work! The **FBCache** support for Mochi, FLUX.1, CogVideoX, Wan2.1, and HunyuanVideo is directly adapted from the original [FBCache](https://github.com/chengzeyi/ParaAttention/tree/main/src/para_attn/first_block_cache).
72
68
 
73
69
  ## 🤗 Introduction
74
70
 
@@ -110,6 +106,12 @@ These case studies demonstrate that even with relatively high thresholds (such a
110
106
 
111
107
  **DBPrune**: We have further implemented a new **Dynamic Block Prune** algorithm based on **Residual Caching** for Diffusion Transformers, referred to as DBPrune. DBPrune caches each block's hidden states and residuals, then **dynamically prunes** blocks during inference by computing the L1 distance between previous hidden states. When a block is pruned, its output is approximated using the cached residuals.
112
108
 
109
+ <div align="center">
110
+ <p align="center">
111
+ DBPrune, <b> L20x1 </b>, Steps: 28, "A cat holding a sign that says hello world with complex background"
112
+ </p>
113
+ </div>
114
+
113
115
  |Baseline(L20x1)|Pruned(24%)|Pruned(35%)|Pruned(38%)|Pruned(45%)|Pruned(60%)|
114
116
  |:---:|:---:|:---:|:---:|:---:|:---:|
115
117
  |24.85s|19.43s|16.82s|15.95s|14.24s|10.66s|
@@ -117,11 +119,11 @@ These case studies demonstrate that even with relatively high thresholds (such a
117
119
 
118
120
  <div align="center">
119
121
  <p align="center">
120
- DBPrune, <b> L20x1 </b>, Steps: 28, "A cat holding a sign that says hello world with complex background"
122
+ <h3>🔥 Context Parallelism and Torch Compile</h3>
121
123
  </p>
122
- </div>
124
+ </div>
123
125
 
124
- **CacheDiT** are **plug-and-play** solutions that works hand-in-hand with [ParaAttention](https://github.com/chengzeyi/ParaAttention). Users can easily tap into its **Context Parallelism** features for distributed inference. Moreover, **CacheDiT** are designed to work compatibly with `torch.compile`. You can easily use CacheDiT with torch.compile to further achieve a better performance.
126
+ Moreover, **CacheDiT** are **plug-and-play** solutions that works hand-in-hand with [ParaAttention](https://github.com/chengzeyi/ParaAttention). Users can easily tap into its **Context Parallelism** features for distributed inference. By the way, CacheDiT is designed to work compatibly with **torch.compile.** You can easily use CacheDiT with torch.compile to further achieve a better performance.
125
127
 
126
128
  <div align="center">
127
129
  <p align="center">
@@ -131,11 +133,16 @@ These case studies demonstrate that even with relatively high thresholds (such a
131
133
 
132
134
  |Baseline|Pruned(24%)|Pruned(35%)|Pruned(38%)|Pruned(45%)|Pruned(60%)|
133
135
  |:---:|:---:|:---:|:---:|:---:|:---:|
134
- |+L20x1:24.85s|19.43s|16.82s|15.95s|14.24s|10.66s|
135
- |+compile:20.43s|16.25s|14.12s|13.41s|12s|8.86s|
136
+ |+compile:20.43s|16.25s|14.12s|13.41s|12.00s|8.86s|
136
137
  |+L20x4:7.75s|6.62s|6.03s|5.81s|5.24s|3.93s|
137
138
  |<img src=https://github.com/vipshop/cache-dit/raw/main/assets/U0_C1_NONE_R0.08_S0_T20.43s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/U0_C1_DBPRUNE_F1B0_R0.03_P24.0_T16.25s.png width=105px> | <img src=https://github.com/vipshop/cache-dit/raw/main/assets/U0_C1_DBPRUNE_F1B0_R0.04_P34.6_T14.12s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/U0_C1_DBPRUNE_F1B0_R0.045_P38.2_T13.41s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/U0_C1_DBPRUNE_F1B0_R0.055_P45.1_T12.00s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/U0_C1_DBPRUNE_F1B0_R0.2_P59.5_T8.86s.png width=105px>|
138
139
 
140
+ <div align="center">
141
+ <p align="center">
142
+ <b>♥️ Please consider to leave a ⭐️ Star to support us ~ ♥️</b>
143
+ </p>
144
+ </div>
145
+
139
146
  ## ©️Citations
140
147
 
141
148
  ```BibTeX
@@ -148,12 +155,6 @@ These case studies demonstrate that even with relatively high thresholds (such a
148
155
  }
149
156
  ```
150
157
 
151
- ## 👋Reference
152
-
153
- <div id="reference"></div>
154
-
155
- The **CacheDiT** codebase was adapted from FBCache's implementation at the [ParaAttention](https://github.com/chengzeyi/ParaAttention/tree/main/src/para_attn/first_block_cache). We would like to express our sincere gratitude for this excellent work!
156
-
157
158
  ## 📖Contents
158
159
 
159
160
  <div id="contents"></div>
@@ -396,26 +397,12 @@ Then, run the python test script with `torchrun`:
396
397
  ```bash
397
398
  torchrun --nproc_per_node=4 parallel_cache.py
398
399
  ```
399
- <!--
400
-
401
- <div align="center">
402
- <p align="center">
403
- DBPrune, <b> L20x4 </b>, Steps: 28, "A cat holding a sign that says hello world with complex background"
404
- </p>
405
- </div>
406
-
407
- |Baseline|Pruned(24%)|Pruned(35%)|Pruned(38%)|Pruned(45%)|Pruned(60%)|
408
- |:---:|:---:|:---:|:---:|:---:|:---:|
409
- |+L20x1:24.85s|19.43s|16.82s|15.95s|14.24s|10.66s|
410
- |+L20x4:8.54s|7.20s|6.61s|6.09s|5.54s|4.22s|
411
- |<img src=https://github.com/vipshop/cache-dit/raw/main/assets/NONE_R0.08_S0.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBPRUNE_F1B0_R0.03_P24.0_T19.43s.png width=105px> | <img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBPRUNE_F1B0_R0.04_P34.6_T16.82s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBPRUNE_F1B0_R0.05_P38.3_T15.95s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBPRUNE_F1B0_R0.06_P45.2_T14.24s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBPRUNE_F1B0_R0.2_P59.5_T10.66s.png width=105px>|
412
- -->
413
400
 
414
401
  ## 🔥Torch Compile
415
402
 
416
403
  <div id="compile"></div>
417
404
 
418
- **CacheDiT** are designed to work compatibly with `torch.compile`. You can easily use CacheDiT with torch.compile to further achieve a better performance. For example:
405
+ By the way, **CacheDiT** is designed to work compatibly with **torch.compile.** You can easily use CacheDiT with torch.compile to further achieve a better performance. For example:
419
406
 
420
407
  ```python
421
408
  apply_cache_on_pipe(
@@ -430,22 +417,6 @@ torch._dynamo.config.recompile_limit = 96 # default is 8
430
417
  torch._dynamo.config.accumulated_recompile_limit = 2048 # default is 256
431
418
  ```
432
419
 
433
- <!--
434
-
435
- <div align="center">
436
- <p align="center">
437
- DBPrune + <b>torch.compile</b>, Steps: 28, "A cat holding a sign that says hello world with complex background"
438
- </p>
439
- </div>
440
-
441
- |Baseline|Pruned(24%)|Pruned(35%)|Pruned(38%)|Pruned(45%)|Pruned(60%)|
442
- |:---:|:---:|:---:|:---:|:---:|:---:|
443
- |+L20x1:24.8s|19.4s|16.8s|15.9s|14.2s|10.6s|
444
- |+compile:20.4s|16.5s|14.1s|13.4s|12s|8.8s|
445
- |+L20x4:7.7s|6.6s|6.0s|5.8s|5.2s|3.9s|
446
- |<img src=https://github.com/vipshop/cache-dit/raw/main/assets/U0_C1_NONE_R0.08_S0_T20.43s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/U0_C1_DBPRUNE_F1B0_R0.03_P24.0_T16.25s.png width=105px> | <img src=https://github.com/vipshop/cache-dit/raw/main/assets/U0_C1_DBPRUNE_F1B0_R0.04_P34.6_T14.12s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/U0_C1_DBPRUNE_F1B0_R0.045_P38.2_T13.41s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/U0_C1_DBPRUNE_F1B0_R0.055_P45.1_T12.00s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/U0_C1_DBPRUNE_F1B0_R0.2_P59.5_T8.86s.png width=105px>|
447
- -->
448
-
449
420
  ## 👋Contribute
450
421
  <div id="contribute"></div>
451
422
 
@@ -9,31 +9,27 @@
9
9
  <img src=https://img.shields.io/badge/PyPI-pass-brightgreen.svg >
10
10
  <img src=https://static.pepy.tech/badge/cache-dit >
11
11
  <img src=https://img.shields.io/badge/Python-3.10|3.11|3.12-9cf.svg >
12
- <img src=https://img.shields.io/badge/Release-v0.1.8-brightgreen.svg >
12
+ <img src=https://img.shields.io/badge/Release-v0.2.0-brightgreen.svg >
13
13
  </div>
14
14
  <p align="center">
15
15
  DeepCache is for UNet not DiT. Most DiT cache speedups are complex and not training-free. CacheDiT <br>offers a set of training-free cache accelerators for DiT: 🔥DBCache, DBPrune, FBCache, etc🔥
16
16
  </p>
17
17
  <p align="center">
18
- <h3> 🔥Supported Models🔥</h2>
18
+ <h4> 🔥Supported Models🔥</h4>
19
19
  <a href=https://github.com/vipshop/cache-dit/raw/main/examples> <b>🚀FLUX.1</b>: ✔️DBCache, ✔️DBPrune, ✔️FBCache🔥</a> <br>
20
- <a href=https://github.com/vipshop/cache-dit/raw/main/examples> <b>🚀CogVideoX</b>: ✔️DBCache, ✔️DBPrune, ✔️FBCache🔥</a> <br>
21
20
  <a href=https://github.com/vipshop/cache-dit/raw/main/examples> <b>🚀Mochi</b>: ✔️DBCache, ✔️DBPrune, ✔️FBCache🔥</a> <br>
22
- <a href=https://github.com/vipshop/cache-dit/raw/main/examples> <b>🚀Wan2.1</b>: 🔜DBCache, 🔜DBPrune, ✔️FBCache🔥</a> <br> <br>
23
- <b>♥️ Please consider to leave a ⭐️ Star to support us ~ ♥️</b>
21
+ <a href=https://github.com/vipshop/cache-dit/raw/main/examples> <b>🚀CogVideoX</b>: ✔️DBCache, ✔️DBPrune, ✔️FBCache🔥</a> <br>
22
+ <a href=https://github.com/vipshop/cache-dit/raw/main/examples> <b>🚀CogVideoX1.5</b>: ✔️DBCache, ✔️DBPrune, ✔️FBCache🔥</a> <br>
23
+ <a href=https://github.com/vipshop/cache-dit/raw/main/examples> <b>🚀Wan2.1</b>: ✔️DBCache, ✔️DBPrune, ✔️FBCache🔥</a> <br>
24
+ <a href=https://github.com/vipshop/cache-dit/raw/main/examples> <b>🚀HunyuanVideo</b>: ✔️DBCache, ✔️DBPrune, ✔️FBCache🔥</a> <br>
24
25
  </p>
25
26
  </div>
26
27
 
28
+ ## 👋 Highlight
27
29
 
28
- <!--
29
- ## 🎉Supported Models
30
- <div id="supported"></div>
31
- - [🚀FLUX.1](https://github.com/vipshop/cache-dit/raw/main/examples): *✔️DBCache, ✔️DBPrune, ✔️FBCache*
32
- - [🚀CogVideoX](https://github.com/vipshop/cache-dit/raw/main/examples): *✔️DBCache, ✔️DBPrune, ✔️FBCache*
33
- - [🚀Mochi](https://github.com/vipshop/cache-dit/raw/main/examples): *✔️DBCache, ✔️DBPrune, ✔️FBCache*
34
- - [🚀Wan2.1**](https://github.com/vipshop/cache-dit/raw/main/examples): *🔜DBCache, 🔜DBPrune, ✔️FBCache*
35
- -->
30
+ <div id="reference"></div>
36
31
 
32
+ The **CacheDiT** codebase is adapted from [FBCache](https://github.com/chengzeyi/ParaAttention/tree/main/src/para_attn/first_block_cache). Special thanks to their excellent work! The **FBCache** support for Mochi, FLUX.1, CogVideoX, Wan2.1, and HunyuanVideo is directly adapted from the original [FBCache](https://github.com/chengzeyi/ParaAttention/tree/main/src/para_attn/first_block_cache).
37
33
 
38
34
  ## 🤗 Introduction
39
35
 
@@ -75,6 +71,12 @@ These case studies demonstrate that even with relatively high thresholds (such a
75
71
 
76
72
  **DBPrune**: We have further implemented a new **Dynamic Block Prune** algorithm based on **Residual Caching** for Diffusion Transformers, referred to as DBPrune. DBPrune caches each block's hidden states and residuals, then **dynamically prunes** blocks during inference by computing the L1 distance between previous hidden states. When a block is pruned, its output is approximated using the cached residuals.
77
73
 
74
+ <div align="center">
75
+ <p align="center">
76
+ DBPrune, <b> L20x1 </b>, Steps: 28, "A cat holding a sign that says hello world with complex background"
77
+ </p>
78
+ </div>
79
+
78
80
  |Baseline(L20x1)|Pruned(24%)|Pruned(35%)|Pruned(38%)|Pruned(45%)|Pruned(60%)|
79
81
  |:---:|:---:|:---:|:---:|:---:|:---:|
80
82
  |24.85s|19.43s|16.82s|15.95s|14.24s|10.66s|
@@ -82,11 +84,11 @@ These case studies demonstrate that even with relatively high thresholds (such a
82
84
 
83
85
  <div align="center">
84
86
  <p align="center">
85
- DBPrune, <b> L20x1 </b>, Steps: 28, "A cat holding a sign that says hello world with complex background"
87
+ <h3>🔥 Context Parallelism and Torch Compile</h3>
86
88
  </p>
87
- </div>
89
+ </div>
88
90
 
89
- **CacheDiT** are **plug-and-play** solutions that works hand-in-hand with [ParaAttention](https://github.com/chengzeyi/ParaAttention). Users can easily tap into its **Context Parallelism** features for distributed inference. Moreover, **CacheDiT** are designed to work compatibly with `torch.compile`. You can easily use CacheDiT with torch.compile to further achieve a better performance.
91
+ Moreover, **CacheDiT** are **plug-and-play** solutions that works hand-in-hand with [ParaAttention](https://github.com/chengzeyi/ParaAttention). Users can easily tap into its **Context Parallelism** features for distributed inference. By the way, CacheDiT is designed to work compatibly with **torch.compile.** You can easily use CacheDiT with torch.compile to further achieve a better performance.
90
92
 
91
93
  <div align="center">
92
94
  <p align="center">
@@ -96,11 +98,16 @@ These case studies demonstrate that even with relatively high thresholds (such a
96
98
 
97
99
  |Baseline|Pruned(24%)|Pruned(35%)|Pruned(38%)|Pruned(45%)|Pruned(60%)|
98
100
  |:---:|:---:|:---:|:---:|:---:|:---:|
99
- |+L20x1:24.85s|19.43s|16.82s|15.95s|14.24s|10.66s|
100
- |+compile:20.43s|16.25s|14.12s|13.41s|12s|8.86s|
101
+ |+compile:20.43s|16.25s|14.12s|13.41s|12.00s|8.86s|
101
102
  |+L20x4:7.75s|6.62s|6.03s|5.81s|5.24s|3.93s|
102
103
  |<img src=https://github.com/vipshop/cache-dit/raw/main/assets/U0_C1_NONE_R0.08_S0_T20.43s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/U0_C1_DBPRUNE_F1B0_R0.03_P24.0_T16.25s.png width=105px> | <img src=https://github.com/vipshop/cache-dit/raw/main/assets/U0_C1_DBPRUNE_F1B0_R0.04_P34.6_T14.12s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/U0_C1_DBPRUNE_F1B0_R0.045_P38.2_T13.41s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/U0_C1_DBPRUNE_F1B0_R0.055_P45.1_T12.00s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/U0_C1_DBPRUNE_F1B0_R0.2_P59.5_T8.86s.png width=105px>|
103
104
 
105
+ <div align="center">
106
+ <p align="center">
107
+ <b>♥️ Please consider to leave a ⭐️ Star to support us ~ ♥️</b>
108
+ </p>
109
+ </div>
110
+
104
111
  ## ©️Citations
105
112
 
106
113
  ```BibTeX
@@ -113,12 +120,6 @@ These case studies demonstrate that even with relatively high thresholds (such a
113
120
  }
114
121
  ```
115
122
 
116
- ## 👋Reference
117
-
118
- <div id="reference"></div>
119
-
120
- The **CacheDiT** codebase was adapted from FBCache's implementation at the [ParaAttention](https://github.com/chengzeyi/ParaAttention/tree/main/src/para_attn/first_block_cache). We would like to express our sincere gratitude for this excellent work!
121
-
122
123
  ## 📖Contents
123
124
 
124
125
  <div id="contents"></div>
@@ -361,26 +362,12 @@ Then, run the python test script with `torchrun`:
361
362
  ```bash
362
363
  torchrun --nproc_per_node=4 parallel_cache.py
363
364
  ```
364
- <!--
365
-
366
- <div align="center">
367
- <p align="center">
368
- DBPrune, <b> L20x4 </b>, Steps: 28, "A cat holding a sign that says hello world with complex background"
369
- </p>
370
- </div>
371
-
372
- |Baseline|Pruned(24%)|Pruned(35%)|Pruned(38%)|Pruned(45%)|Pruned(60%)|
373
- |:---:|:---:|:---:|:---:|:---:|:---:|
374
- |+L20x1:24.85s|19.43s|16.82s|15.95s|14.24s|10.66s|
375
- |+L20x4:8.54s|7.20s|6.61s|6.09s|5.54s|4.22s|
376
- |<img src=https://github.com/vipshop/cache-dit/raw/main/assets/NONE_R0.08_S0.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBPRUNE_F1B0_R0.03_P24.0_T19.43s.png width=105px> | <img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBPRUNE_F1B0_R0.04_P34.6_T16.82s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBPRUNE_F1B0_R0.05_P38.3_T15.95s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBPRUNE_F1B0_R0.06_P45.2_T14.24s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBPRUNE_F1B0_R0.2_P59.5_T10.66s.png width=105px>|
377
- -->
378
365
 
379
366
  ## 🔥Torch Compile
380
367
 
381
368
  <div id="compile"></div>
382
369
 
383
- **CacheDiT** are designed to work compatibly with `torch.compile`. You can easily use CacheDiT with torch.compile to further achieve a better performance. For example:
370
+ By the way, **CacheDiT** is designed to work compatibly with **torch.compile.** You can easily use CacheDiT with torch.compile to further achieve a better performance. For example:
384
371
 
385
372
  ```python
386
373
  apply_cache_on_pipe(
@@ -395,22 +382,6 @@ torch._dynamo.config.recompile_limit = 96 # default is 8
395
382
  torch._dynamo.config.accumulated_recompile_limit = 2048 # default is 256
396
383
  ```
397
384
 
398
- <!--
399
-
400
- <div align="center">
401
- <p align="center">
402
- DBPrune + <b>torch.compile</b>, Steps: 28, "A cat holding a sign that says hello world with complex background"
403
- </p>
404
- </div>
405
-
406
- |Baseline|Pruned(24%)|Pruned(35%)|Pruned(38%)|Pruned(45%)|Pruned(60%)|
407
- |:---:|:---:|:---:|:---:|:---:|:---:|
408
- |+L20x1:24.8s|19.4s|16.8s|15.9s|14.2s|10.6s|
409
- |+compile:20.4s|16.5s|14.1s|13.4s|12s|8.8s|
410
- |+L20x4:7.7s|6.6s|6.0s|5.8s|5.2s|3.9s|
411
- |<img src=https://github.com/vipshop/cache-dit/raw/main/assets/U0_C1_NONE_R0.08_S0_T20.43s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/U0_C1_DBPRUNE_F1B0_R0.03_P24.0_T16.25s.png width=105px> | <img src=https://github.com/vipshop/cache-dit/raw/main/assets/U0_C1_DBPRUNE_F1B0_R0.04_P34.6_T14.12s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/U0_C1_DBPRUNE_F1B0_R0.045_P38.2_T13.41s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/U0_C1_DBPRUNE_F1B0_R0.055_P45.1_T12.00s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/U0_C1_DBPRUNE_F1B0_R0.2_P59.5_T8.86s.png width=105px>|
412
- -->
413
-
414
385
  ## 👋Contribute
415
386
  <div id="contribute"></div>
416
387
 
@@ -165,3 +165,4 @@ report*.html
165
165
 
166
166
  .DS_Store
167
167
  *.png
168
+ *.mp4
@@ -0,0 +1,45 @@
1
+ # Examples for CacheDiT
2
+
3
+ ## Install requirements
4
+
5
+ ```bash
6
+ pip3 install -r requirements.txt
7
+ ```
8
+
9
+ ## Run examples
10
+
11
+ - FLUX.1-dev
12
+
13
+ ```bash
14
+ python3 run_flux.py
15
+ ```
16
+
17
+ - FLUX.1-Fill-dev
18
+
19
+ ```bash
20
+ python3 run_flux_fill.py
21
+ ```
22
+
23
+ - CogVideoX
24
+
25
+ ```bash
26
+ python3 run_cogvideox.py
27
+ ```
28
+
29
+ - Wan2.1
30
+
31
+ ```bash
32
+ python3 run_wan.py
33
+ ```
34
+
35
+ - Mochi
36
+
37
+ ```bash
38
+ python3 run_mochi.py
39
+ ```
40
+
41
+ - HunyuanVideo
42
+
43
+ ```bash
44
+ python3 run_hunyuan_video.py
45
+ ```
@@ -0,0 +1,4 @@
1
+ imageio-ffmpeg
2
+ # wan currently requires installing from source
3
+ diffusers @ git+https://github.com/huggingface/diffusers
4
+ ftfy
@@ -1,14 +1,33 @@
1
1
  import os
2
2
  import torch
3
- from diffusers import CogVideoXPipeline
4
3
  from diffusers.utils import export_to_video
4
+ from diffusers import CogVideoXPipeline, AutoencoderKLCogVideoX
5
5
  from cache_dit.cache_factory import apply_cache_on_pipe, CacheType
6
6
 
7
+
8
+ model_id = os.environ.get("COGVIDEOX_DIR", "THUDM/CogVideoX-5b")
9
+
10
+
11
+ def is_cogvideox_1_5():
12
+ return "CogVideoX1.5" in model_id or "THUDM/CogVideoX1.5" in model_id
13
+
14
+
15
+ def get_gpu_memory_in_gib():
16
+ if not torch.cuda.is_available():
17
+ return 0
18
+
19
+ try:
20
+ total_memory_bytes = torch.cuda.get_device_properties(
21
+ torch.cuda.current_device(),
22
+ ).total_memory
23
+ total_memory_gib = total_memory_bytes / (1024**3)
24
+ return int(total_memory_gib)
25
+ except Exception:
26
+ return 0
27
+
28
+
7
29
  pipe = CogVideoXPipeline.from_pretrained(
8
- os.environ.get(
9
- "COGVIDEOX_DIR",
10
- "THUDM/CogVideoX-5b",
11
- ),
30
+ model_id,
12
31
  torch_dtype=torch.bfloat16,
13
32
  ).to("cuda")
14
33
 
@@ -17,6 +36,8 @@ cache_options = CacheType.default_options(CacheType.DBCache)
17
36
 
18
37
  apply_cache_on_pipe(pipe, **cache_options)
19
38
 
39
+ pipe.enable_model_cpu_offload()
40
+ assert isinstance(pipe.vae, AutoencoderKLCogVideoX) # enable type check for IDE
20
41
  pipe.vae.enable_slicing()
21
42
  pipe.vae.enable_tiling()
22
43
 
@@ -37,7 +58,12 @@ video = pipe(
37
58
  prompt=prompt,
38
59
  num_videos_per_prompt=1,
39
60
  num_inference_steps=50,
40
- num_frames=49,
61
+ num_frames=(
62
+ # Avoid OOM for CogVideoX1.5 model on 48GB GPU
63
+ 16
64
+ if (is_cogvideox_1_5() and get_gpu_memory_in_gib() < 48)
65
+ else 49
66
+ ),
41
67
  guidance_scale=6,
42
68
  generator=torch.Generator("cuda").manual_seed(0),
43
69
  ).frames[0]
@@ -0,0 +1,75 @@
1
+ # Adapted from: https://github.com/chengzeyi/ParaAttention/blob/main/first_block_cache_examples/run_hunyuan_video.py
2
+ import os
3
+ import torch
4
+ from diffusers.utils import export_to_video
5
+ from diffusers import (
6
+ HunyuanVideoPipeline,
7
+ HunyuanVideoTransformer3DModel,
8
+ AutoencoderKLHunyuanVideo,
9
+ )
10
+ from cache_dit.cache_factory import apply_cache_on_pipe, CacheType
11
+
12
+ model_id = os.environ.get("HUNYAN_DIR", "tencent/HunyuanVideo")
13
+
14
+
15
+ def get_gpu_memory_in_gib():
16
+ if not torch.cuda.is_available():
17
+ return 0
18
+
19
+ try:
20
+ total_memory_bytes = torch.cuda.get_device_properties(
21
+ torch.cuda.current_device(),
22
+ ).total_memory
23
+ total_memory_gib = total_memory_bytes / (1024**3)
24
+ return int(total_memory_gib)
25
+ except Exception:
26
+ return 0
27
+
28
+
29
+ transformer = HunyuanVideoTransformer3DModel.from_pretrained(
30
+ model_id,
31
+ subfolder="transformer",
32
+ torch_dtype=torch.bfloat16,
33
+ revision="refs/pr/18",
34
+ )
35
+ pipe = HunyuanVideoPipeline.from_pretrained(
36
+ model_id,
37
+ transformer=transformer,
38
+ torch_dtype=torch.float16,
39
+ revision="refs/pr/18",
40
+ ).to("cuda")
41
+
42
+
43
+ # Default options, F8B8, good balance between performance and precision
44
+ apply_cache_on_pipe(pipe, **CacheType.default_options(CacheType.DBCache))
45
+
46
+ assert isinstance(
47
+ pipe.vae, AutoencoderKLHunyuanVideo
48
+ ) # enable type check for IDE
49
+
50
+ # Enable memory savings
51
+ pipe.enable_model_cpu_offload()
52
+ if get_gpu_memory_in_gib() <= 48:
53
+ pipe.vae.enable_tiling(
54
+ # Make it runnable on GPUs with 48GB memory
55
+ tile_sample_min_height=128,
56
+ tile_sample_stride_height=96,
57
+ tile_sample_min_width=128,
58
+ tile_sample_stride_width=96,
59
+ tile_sample_min_num_frames=32,
60
+ tile_sample_stride_num_frames=24,
61
+ )
62
+ else:
63
+ pipe.vae.enable_tiling()
64
+
65
+
66
+ output = pipe(
67
+ prompt="A cat walks on the grass, realistic",
68
+ height=720,
69
+ width=1280,
70
+ num_frames=129,
71
+ num_inference_steps=30,
72
+ ).frames[0]
73
+
74
+ print("Saving video to hunyuan_video.mp4")
75
+ export_to_video(output, "hunyuan_video.mp4", fps=15)
@@ -1,6 +1,6 @@
1
1
  import os
2
2
  import torch
3
- from diffusers import WanPipeline
3
+ from diffusers import WanPipeline, AutoencoderKLWan
4
4
  from diffusers.utils import export_to_video
5
5
  from diffusers.schedulers.scheduling_unipc_multistep import (
6
6
  UniPCMultistepScheduler,
@@ -27,11 +27,16 @@ if hasattr(pipe, "scheduler") and pipe.scheduler is not None:
27
27
 
28
28
  pipe.to("cuda")
29
29
 
30
- apply_cache_on_pipe(pipe, **CacheType.default_options(CacheType.FBCache))
30
+ # Default options, F8B8, good balance between performance and precision
31
+ apply_cache_on_pipe(pipe, **CacheType.default_options(CacheType.DBCache))
31
32
 
32
33
  # Enable memory savings
33
34
  pipe.enable_model_cpu_offload()
34
- pipe.enable_vae_tiling()
35
+
36
+ # Wan currently requires installing diffusers from source
37
+ assert isinstance(pipe.vae, AutoencoderKLWan) # enable type check for IDE
38
+ pipe.vae.enable_tiling()
39
+ pipe.vae.enable_slicing()
35
40
 
36
41
  video = pipe(
37
42
  prompt=(
@@ -39,8 +44,8 @@ video = pipe(
39
44
  "flying past in the background, hyperrealistic"
40
45
  ),
41
46
  negative_prompt="",
42
- height=480,
43
- width=832,
47
+ height=height,
48
+ width=width,
44
49
  num_frames=81,
45
50
  num_inference_steps=30,
46
51
  ).frames[0]
@@ -66,6 +66,7 @@ setup(
66
66
  "expecttest",
67
67
  "hypothesis",
68
68
  "transformers",
69
+ # "diffusers @ git+https://github.com/huggingface/diffusers", # wan currently requires installing from source
69
70
  "diffusers",
70
71
  "accelerate",
71
72
  "peft",
@@ -17,5 +17,5 @@ __version__: str
17
17
  __version_tuple__: VERSION_TUPLE
18
18
  version_tuple: VERSION_TUPLE
19
19
 
20
- __version__ = version = '0.1.8'
21
- __version_tuple__ = version_tuple = (0, 1, 8)
20
+ __version__ = version = '0.2.0'
21
+ __version_tuple__ = version_tuple = (0, 2, 0)
@@ -13,6 +13,10 @@ def apply_db_cache_on_transformer(transformer, *args, **kwargs):
13
13
  adapter_name = "mochi"
14
14
  elif transformer_cls_name.startswith("CogVideoX"):
15
15
  adapter_name = "cogvideox"
16
+ elif transformer_cls_name.startswith("Wan"):
17
+ adapter_name = "wan"
18
+ elif transformer_cls_name.startswith("HunyuanVideo"):
19
+ adapter_name = "hunyuan_video"
16
20
  else:
17
21
  raise ValueError(
18
22
  f"Unknown transformer class name: {transformer_cls_name}"
@@ -35,6 +39,10 @@ def apply_db_cache_on_pipe(pipe: DiffusionPipeline, *args, **kwargs):
35
39
  adapter_name = "mochi"
36
40
  elif pipe_cls_name.startswith("CogVideoX"):
37
41
  adapter_name = "cogvideox"
42
+ elif pipe_cls_name.startswith("Wan"):
43
+ adapter_name = "wan"
44
+ elif pipe_cls_name.startswith("HunyuanVideo"):
45
+ adapter_name = "hunyuan_video"
38
46
  else:
39
47
  raise ValueError(f"Unknown pipeline class name: {pipe_cls_name}")
40
48