cache-dit 0.1.5__tar.gz → 0.1.7__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of cache-dit might be problematic. Click here for more details.

Files changed (77) hide show
  1. {cache_dit-0.1.5 → cache_dit-0.1.7}/PKG-INFO +53 -19
  2. {cache_dit-0.1.5 → cache_dit-0.1.7}/README.md +49 -15
  3. {cache_dit-0.1.5 → cache_dit-0.1.7}/bench/bench.py +50 -13
  4. {cache_dit-0.1.5 → cache_dit-0.1.7}/requirements.txt +3 -3
  5. {cache_dit-0.1.5 → cache_dit-0.1.7}/src/cache_dit/_version.py +2 -2
  6. {cache_dit-0.1.5 → cache_dit-0.1.7}/src/cache_dit/cache_factory/dynamic_block_prune/prune_context.py +11 -3
  7. {cache_dit-0.1.5 → cache_dit-0.1.7}/src/cache_dit.egg-info/PKG-INFO +53 -19
  8. {cache_dit-0.1.5 → cache_dit-0.1.7}/src/cache_dit.egg-info/requires.txt +3 -3
  9. {cache_dit-0.1.5 → cache_dit-0.1.7}/.github/workflows/issue.yml +0 -0
  10. {cache_dit-0.1.5 → cache_dit-0.1.7}/.gitignore +0 -0
  11. {cache_dit-0.1.5 → cache_dit-0.1.7}/.pre-commit-config.yaml +0 -0
  12. {cache_dit-0.1.5 → cache_dit-0.1.7}/CONTRIBUTE.md +0 -0
  13. {cache_dit-0.1.5 → cache_dit-0.1.7}/LICENSE +0 -0
  14. {cache_dit-0.1.5 → cache_dit-0.1.7}/MANIFEST.in +0 -0
  15. {cache_dit-0.1.5 → cache_dit-0.1.7}/assets/DBCACHE_F12B12S4_R0.2_S16.png +0 -0
  16. {cache_dit-0.1.5 → cache_dit-0.1.7}/assets/DBCACHE_F12B16S4_R0.08_S6.png +0 -0
  17. {cache_dit-0.1.5 → cache_dit-0.1.7}/assets/DBCACHE_F16B16S2_R0.2_S14.png +0 -0
  18. {cache_dit-0.1.5 → cache_dit-0.1.7}/assets/DBCACHE_F16B16S4_R0.2_S13.png +0 -0
  19. {cache_dit-0.1.5 → cache_dit-0.1.7}/assets/DBCACHE_F1B0S1_R0.08_S11.png +0 -0
  20. {cache_dit-0.1.5 → cache_dit-0.1.7}/assets/DBCACHE_F1B0S1_R0.2_S19.png +0 -0
  21. {cache_dit-0.1.5 → cache_dit-0.1.7}/assets/DBCACHE_F8B0S2_R0.12_S12.png +0 -0
  22. {cache_dit-0.1.5 → cache_dit-0.1.7}/assets/DBCACHE_F8B16S1_R0.2_S18.png +0 -0
  23. {cache_dit-0.1.5 → cache_dit-0.1.7}/assets/DBCACHE_F8B8S1_R0.08_S9.png +0 -0
  24. {cache_dit-0.1.5 → cache_dit-0.1.7}/assets/DBCACHE_F8B8S1_R0.12_S12.png +0 -0
  25. {cache_dit-0.1.5 → cache_dit-0.1.7}/assets/DBCACHE_F8B8S1_R0.15_S15.png +0 -0
  26. {cache_dit-0.1.5 → cache_dit-0.1.7}/assets/DBCache.png +0 -0
  27. {cache_dit-0.1.5 → cache_dit-0.1.7}/assets/DBPRUNE_F1B0_R0.03_P24.0_T19.43s.png +0 -0
  28. {cache_dit-0.1.5 → cache_dit-0.1.7}/assets/DBPRUNE_F1B0_R0.04_P34.6_T16.82s.png +0 -0
  29. {cache_dit-0.1.5 → cache_dit-0.1.7}/assets/DBPRUNE_F1B0_R0.05_P38.3_T15.95s.png +0 -0
  30. {cache_dit-0.1.5 → cache_dit-0.1.7}/assets/DBPRUNE_F1B0_R0.06_P45.2_T14.24s.png +0 -0
  31. {cache_dit-0.1.5 → cache_dit-0.1.7}/assets/DBPRUNE_F1B0_R0.07_P52.3_T12.53s.png +0 -0
  32. {cache_dit-0.1.5 → cache_dit-0.1.7}/assets/DBPRUNE_F1B0_R0.08_P52.4_T12.52s.png +0 -0
  33. {cache_dit-0.1.5 → cache_dit-0.1.7}/assets/DBPRUNE_F1B0_R0.09_P59.2_T10.81s.png +0 -0
  34. {cache_dit-0.1.5 → cache_dit-0.1.7}/assets/DBPRUNE_F1B0_R0.12_P59.5_T10.76s.png +0 -0
  35. {cache_dit-0.1.5 → cache_dit-0.1.7}/assets/DBPRUNE_F1B0_R0.12_P63.0_T9.90s.png +0 -0
  36. {cache_dit-0.1.5 → cache_dit-0.1.7}/assets/DBPRUNE_F1B0_R0.1_P62.8_T9.95s.png +0 -0
  37. {cache_dit-0.1.5 → cache_dit-0.1.7}/assets/DBPRUNE_F1B0_R0.2_P59.5_T10.66s.png +0 -0
  38. {cache_dit-0.1.5 → cache_dit-0.1.7}/assets/DBPRUNE_F1B0_R0.3_P63.1_T9.79s.png +0 -0
  39. {cache_dit-0.1.5 → cache_dit-0.1.7}/assets/NONE_R0.08_S0.png +0 -0
  40. {cache_dit-0.1.5 → cache_dit-0.1.7}/assets/cache-dit.png +0 -0
  41. {cache_dit-0.1.5 → cache_dit-0.1.7}/bench/.gitignore +0 -0
  42. {cache_dit-0.1.5 → cache_dit-0.1.7}/docs/.gitignore +0 -0
  43. {cache_dit-0.1.5 → cache_dit-0.1.7}/examples/.gitignore +0 -0
  44. {cache_dit-0.1.5 → cache_dit-0.1.7}/examples/run_cogvideox.py +0 -0
  45. {cache_dit-0.1.5 → cache_dit-0.1.7}/examples/run_flux.py +0 -0
  46. {cache_dit-0.1.5 → cache_dit-0.1.7}/examples/run_mochi.py +0 -0
  47. {cache_dit-0.1.5 → cache_dit-0.1.7}/pyproject.toml +0 -0
  48. {cache_dit-0.1.5 → cache_dit-0.1.7}/pytest.ini +0 -0
  49. {cache_dit-0.1.5 → cache_dit-0.1.7}/setup.cfg +0 -0
  50. {cache_dit-0.1.5 → cache_dit-0.1.7}/setup.py +0 -0
  51. {cache_dit-0.1.5 → cache_dit-0.1.7}/src/cache_dit/__init__.py +0 -0
  52. {cache_dit-0.1.5 → cache_dit-0.1.7}/src/cache_dit/cache_factory/__init__.py +0 -0
  53. {cache_dit-0.1.5 → cache_dit-0.1.7}/src/cache_dit/cache_factory/dual_block_cache/__init__.py +0 -0
  54. {cache_dit-0.1.5 → cache_dit-0.1.7}/src/cache_dit/cache_factory/dual_block_cache/cache_context.py +0 -0
  55. {cache_dit-0.1.5 → cache_dit-0.1.7}/src/cache_dit/cache_factory/dual_block_cache/diffusers_adapters/__init__.py +0 -0
  56. {cache_dit-0.1.5 → cache_dit-0.1.7}/src/cache_dit/cache_factory/dual_block_cache/diffusers_adapters/cogvideox.py +0 -0
  57. {cache_dit-0.1.5 → cache_dit-0.1.7}/src/cache_dit/cache_factory/dual_block_cache/diffusers_adapters/flux.py +0 -0
  58. {cache_dit-0.1.5 → cache_dit-0.1.7}/src/cache_dit/cache_factory/dual_block_cache/diffusers_adapters/mochi.py +0 -0
  59. {cache_dit-0.1.5 → cache_dit-0.1.7}/src/cache_dit/cache_factory/dynamic_block_prune/__init__.py +0 -0
  60. {cache_dit-0.1.5 → cache_dit-0.1.7}/src/cache_dit/cache_factory/dynamic_block_prune/diffusers_adapters/__init__.py +0 -0
  61. {cache_dit-0.1.5 → cache_dit-0.1.7}/src/cache_dit/cache_factory/dynamic_block_prune/diffusers_adapters/cogvideox.py +0 -0
  62. {cache_dit-0.1.5 → cache_dit-0.1.7}/src/cache_dit/cache_factory/dynamic_block_prune/diffusers_adapters/flux.py +0 -0
  63. {cache_dit-0.1.5 → cache_dit-0.1.7}/src/cache_dit/cache_factory/dynamic_block_prune/diffusers_adapters/mochi.py +0 -0
  64. {cache_dit-0.1.5 → cache_dit-0.1.7}/src/cache_dit/cache_factory/first_block_cache/__init__.py +0 -0
  65. {cache_dit-0.1.5 → cache_dit-0.1.7}/src/cache_dit/cache_factory/first_block_cache/cache_context.py +0 -0
  66. {cache_dit-0.1.5 → cache_dit-0.1.7}/src/cache_dit/cache_factory/first_block_cache/diffusers_adapters/__init__.py +0 -0
  67. {cache_dit-0.1.5 → cache_dit-0.1.7}/src/cache_dit/cache_factory/first_block_cache/diffusers_adapters/cogvideox.py +0 -0
  68. {cache_dit-0.1.5 → cache_dit-0.1.7}/src/cache_dit/cache_factory/first_block_cache/diffusers_adapters/flux.py +0 -0
  69. {cache_dit-0.1.5 → cache_dit-0.1.7}/src/cache_dit/cache_factory/first_block_cache/diffusers_adapters/mochi.py +0 -0
  70. {cache_dit-0.1.5 → cache_dit-0.1.7}/src/cache_dit/cache_factory/first_block_cache/diffusers_adapters/wan.py +0 -0
  71. {cache_dit-0.1.5 → cache_dit-0.1.7}/src/cache_dit/cache_factory/taylorseer.py +0 -0
  72. {cache_dit-0.1.5 → cache_dit-0.1.7}/src/cache_dit/cache_factory/utils.py +0 -0
  73. {cache_dit-0.1.5 → cache_dit-0.1.7}/src/cache_dit/logger.py +0 -0
  74. {cache_dit-0.1.5 → cache_dit-0.1.7}/src/cache_dit/primitives.py +0 -0
  75. {cache_dit-0.1.5 → cache_dit-0.1.7}/src/cache_dit.egg-info/SOURCES.txt +0 -0
  76. {cache_dit-0.1.5 → cache_dit-0.1.7}/src/cache_dit.egg-info/dependency_links.txt +0 -0
  77. {cache_dit-0.1.5 → cache_dit-0.1.7}/src/cache_dit.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: cache_dit
3
- Version: 0.1.5
3
+ Version: 0.1.7
4
4
  Summary: 🤗 CacheDiT: A Training-free and Easy-to-use Cache Acceleration Toolbox for Diffusion Transformers
5
5
  Author: DefTruth, vipshop.com, etc.
6
6
  Maintainer: DefTruth, vipshop.com, etc
@@ -10,9 +10,9 @@ Requires-Python: >=3.10
10
10
  Description-Content-Type: text/markdown
11
11
  License-File: LICENSE
12
12
  Requires-Dist: packaging
13
- Requires-Dist: torch
14
- Requires-Dist: transformers
15
- Requires-Dist: diffusers
13
+ Requires-Dist: torch>=2.5.1
14
+ Requires-Dist: transformers>=4.51.3
15
+ Requires-Dist: diffusers>=0.33.1
16
16
  Provides-Extra: all
17
17
  Provides-Extra: dev
18
18
  Requires-Dist: pre-commit; extra == "dev"
@@ -44,10 +44,10 @@ Dynamic: requires-python
44
44
  <img src=https://img.shields.io/badge/PyPI-pass-brightgreen.svg >
45
45
  <img src=https://static.pepy.tech/badge/cache-dit >
46
46
  <img src=https://img.shields.io/badge/Python-3.10|3.11|3.12-9cf.svg >
47
- <img src=https://img.shields.io/badge/Release-v0.1.5-brightgreen.svg >
47
+ <img src=https://img.shields.io/badge/Release-v0.1.7-brightgreen.svg >
48
48
  </div>
49
49
  <p align="center">
50
- DeepCache is for UNet not DiT. Most DiT cache speedups are complex and not training-free. CacheDiT provides <br>a series of training-free, UNet-style cache accelerators for DiT: DBCache, DBPrune, FBCache, etc.
50
+ DeepCache is for UNet not DiT. Most DiT cache speedups are complex and not training-free. CacheDiT <br>offers a set of training-free cache accelerators for DiT: 🔥DBCache, DBPrune, FBCache, etc🔥
51
51
  </p>
52
52
  </div>
53
53
 
@@ -55,7 +55,7 @@ Dynamic: requires-python
55
55
 
56
56
  <div align="center">
57
57
  <p align="center">
58
- <h3>DBCache: Dual Block Caching for Diffusion Transformers</h3>
58
+ <h3>🔥 DBCache: Dual Block Caching for Diffusion Transformers</h3>
59
59
  </p>
60
60
  </div>
61
61
 
@@ -77,7 +77,7 @@ Dynamic: requires-python
77
77
 
78
78
  <div align="center">
79
79
  <p align="center">
80
- DBCache, <b> L20x4 </b>, Steps: 20, case to show the texture recovery ability of DBCache
80
+ DBCache, <b> L20x4 </b>, Steps: 20, case to show the texture recovery ability of DBCache
81
81
  </p>
82
82
  </div>
83
83
 
@@ -85,7 +85,7 @@ These case studies demonstrate that even with relatively high thresholds (such a
85
85
 
86
86
  <div align="center">
87
87
  <p align="center">
88
- <h3>DBPrune: Dynamic Block Prune with Residual Caching</h3>
88
+ <h3>🔥 DBPrune: Dynamic Block Prune with Residual Caching</h3>
89
89
  </p>
90
90
  </div>
91
91
 
@@ -102,10 +102,10 @@ These case studies demonstrate that even with relatively high thresholds (such a
102
102
  </p>
103
103
  </div>
104
104
 
105
- Moreover, both DBCache and DBPrune are **plug-and-play** solutions that works hand-in-hand with [ParaAttention](https://github.com/chengzeyi/ParaAttention). Users can easily tap into its **Context Parallelism** features for distributed inference.
105
+ Moreover, **CacheDiT** are **plug-and-play** solutions that works hand-in-hand with [ParaAttention](https://github.com/chengzeyi/ParaAttention). Users can easily tap into its **Context Parallelism** features for distributed inference.
106
106
 
107
107
  <p align="center">
108
- ♥️ Please consider to leave a ⭐️ Star to support us ~ ♥️
108
+ ♥️ Please consider to leave a ⭐️ Star to support us ~ ♥️
109
109
  </p>
110
110
 
111
111
  ## ©️Citations
@@ -135,7 +135,7 @@ The **CacheDiT** codebase was adapted from FBCache's implementation at the [Para
135
135
  - [🎉First Block Cache](#fbcache)
136
136
  - [⚡️Dynamic Block Prune](#dbprune)
137
137
  - [🎉Context Parallelism](#context-parallelism)
138
- - [⚡️Torch Compile](#compile)
138
+ - [🔥Torch Compile](#compile)
139
139
  - [🎉Supported Models](#supported)
140
140
  - [👋Contribute](#contribute)
141
141
  - [©️License](#license)
@@ -210,6 +210,17 @@ cache_options = {
210
210
  }
211
211
  ```
212
212
 
213
+ <div align="center">
214
+ <p align="center">
215
+ DBCache, <b> L20x1 </b>, Steps: 28, "A cat holding a sign that says hello world with complex background"
216
+ </p>
217
+ </div>
218
+
219
+ |Baseline(L20x1)|F1B0 (0.08)|F1B0 (0.20)|F8B8 (0.15)|F12B12 (0.20)|F16B16 (0.20)|
220
+ |:---:|:---:|:---:|:---:|:---:|:---:|
221
+ |24.85s|15.59s|8.58s|15.41s|15.11s|17.74s|
222
+ |<img src=https://github.com/vipshop/cache-dit/raw/main/assets/NONE_R0.08_S0.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBCACHE_F1B0S1_R0.08_S11.png width=105px> | <img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBCACHE_F1B0S1_R0.2_S19.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBCACHE_F8B8S1_R0.15_S15.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBCACHE_F12B12S4_R0.2_S16.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBCACHE_F16B16S4_R0.2_S13.png width=105px>|
223
+
213
224
  ## 🎉FBCache: First Block Cache
214
225
 
215
226
  <div id="fbcache"></div>
@@ -323,14 +334,19 @@ apply_cache_on_pipe(pipe, **cache_options)
323
334
  pip3 install para-attn # or install `para-attn` from sources.
324
335
  ```
325
336
 
326
- Then, you can run **DBCache** with **Context Parallelism** on 4 GPUs:
337
+ Then, you can run **DBCache** or **DBPrune** with **Context Parallelism** on 4 GPUs:
327
338
 
328
339
  ```python
340
+ import torch.distributed as dist
329
341
  from diffusers import FluxPipeline
330
342
  from para_attn.context_parallel import init_context_parallel_mesh
331
343
  from para_attn.context_parallel.diffusers_adapters import parallelize_pipe
332
344
  from cache_dit.cache_factory import apply_cache_on_pipe, CacheType
333
345
 
346
+ # Init distributed process group
347
+ dist.init_process_group()
348
+ torch.cuda.set_device(dist.get_rank())
349
+
334
350
  pipe = FluxPipeline.from_pretrained(
335
351
  "black-forest-labs/FLUX.1-dev",
336
352
  torch_dtype=torch.bfloat16,
@@ -343,13 +359,31 @@ parallelize_pipe(
343
359
  )
344
360
  )
345
361
 
346
- # DBCache with F8B8 from this library
362
+ # DBPrune with default options from this library
347
363
  apply_cache_on_pipe(
348
- pipe, **CacheType.default_options(CacheType.DBCache)
364
+ pipe, **CacheType.default_options(CacheType.DBPrune)
349
365
  )
366
+
367
+ dist.destroy_process_group()
350
368
  ```
369
+ Then, run the python test script with `torchrun`:
370
+ ```bash
371
+ torchrun --nproc_per_node=4 parallel_cache.py
372
+ ```
373
+
374
+ <div align="center">
375
+ <p align="center">
376
+ DBPrune, <b> L20x4 </b>, Steps: 28, "A cat holding a sign that says hello world with complex background"
377
+ </p>
378
+ </div>
379
+
380
+ |Baseline(L20x1)|Pruned(24%)|Pruned(35%)|Pruned(38%)|Pruned(45%)|Pruned(60%)|
381
+ |:---:|:---:|:---:|:---:|:---:|:---:|
382
+ |24.85s|19.43s|16.82s|15.95s|14.24s|10.66s|
383
+ |8.54s (L20x4)|7.20s (L20x4)|6.61s (L20x4)|6.09s (L20x4)|5.54s (L20x4)|4.22s (L20x4)|
384
+ |<img src=https://github.com/vipshop/cache-dit/raw/main/assets/NONE_R0.08_S0.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBPRUNE_F1B0_R0.03_P24.0_T19.43s.png width=105px> | <img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBPRUNE_F1B0_R0.04_P34.6_T16.82s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBPRUNE_F1B0_R0.05_P38.3_T15.95s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBPRUNE_F1B0_R0.06_P45.2_T14.24s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBPRUNE_F1B0_R0.2_P59.5_T10.66s.png width=105px>|
351
385
 
352
- ## ⚡️Torch Compile
386
+ ## 🔥Torch Compile
353
387
 
354
388
  <div id="compile"></div>
355
389
 
@@ -357,7 +391,7 @@ apply_cache_on_pipe(
357
391
 
358
392
  ```python
359
393
  apply_cache_on_pipe(
360
- pipe, **CacheType.default_options(CacheType.DBCache)
394
+ pipe, **CacheType.default_options(CacheType.DBPrune)
361
395
  )
362
396
  # Compile the Transformer module
363
397
  pipe.transformer = torch.compile(pipe.transformer)
@@ -368,7 +402,7 @@ However, users intending to use **CacheDiT** for DiT with **dynamic input shapes
368
402
  torch._dynamo.config.recompile_limit = 96 # default is 8
369
403
  torch._dynamo.config.accumulated_recompile_limit = 2048 # default is 256
370
404
  ```
371
- Otherwise, the recompile_limit error may be triggered, causing the module to fall back to eager mode.
405
+ Otherwise, the recompile_limit error may be triggered, causing the module to fall back to eager mode.
372
406
 
373
407
  ## 🎉Supported Models
374
408
 
@@ -381,7 +415,7 @@ Otherwise, the recompile_limit error may be triggered, causing the module to fal
381
415
  ## 👋Contribute
382
416
  <div id="contribute"></div>
383
417
 
384
- How to contribute? Star this repo or check [CONTRIBUTE.md](./CONTRIBUTE.md).
418
+ How to contribute? Star ⭐️ this repo to support us or check [CONTRIBUTE.md](./CONTRIBUTE.md).
385
419
 
386
420
  ## ©️License
387
421
 
@@ -9,10 +9,10 @@
9
9
  <img src=https://img.shields.io/badge/PyPI-pass-brightgreen.svg >
10
10
  <img src=https://static.pepy.tech/badge/cache-dit >
11
11
  <img src=https://img.shields.io/badge/Python-3.10|3.11|3.12-9cf.svg >
12
- <img src=https://img.shields.io/badge/Release-v0.1.5-brightgreen.svg >
12
+ <img src=https://img.shields.io/badge/Release-v0.1.7-brightgreen.svg >
13
13
  </div>
14
14
  <p align="center">
15
- DeepCache is for UNet not DiT. Most DiT cache speedups are complex and not training-free. CacheDiT provides <br>a series of training-free, UNet-style cache accelerators for DiT: DBCache, DBPrune, FBCache, etc.
15
+ DeepCache is for UNet not DiT. Most DiT cache speedups are complex and not training-free. CacheDiT <br>offers a set of training-free cache accelerators for DiT: 🔥DBCache, DBPrune, FBCache, etc🔥
16
16
  </p>
17
17
  </div>
18
18
 
@@ -20,7 +20,7 @@
20
20
 
21
21
  <div align="center">
22
22
  <p align="center">
23
- <h3>DBCache: Dual Block Caching for Diffusion Transformers</h3>
23
+ <h3>🔥 DBCache: Dual Block Caching for Diffusion Transformers</h3>
24
24
  </p>
25
25
  </div>
26
26
 
@@ -42,7 +42,7 @@
42
42
 
43
43
  <div align="center">
44
44
  <p align="center">
45
- DBCache, <b> L20x4 </b>, Steps: 20, case to show the texture recovery ability of DBCache
45
+ DBCache, <b> L20x4 </b>, Steps: 20, case to show the texture recovery ability of DBCache
46
46
  </p>
47
47
  </div>
48
48
 
@@ -50,7 +50,7 @@ These case studies demonstrate that even with relatively high thresholds (such a
50
50
 
51
51
  <div align="center">
52
52
  <p align="center">
53
- <h3>DBPrune: Dynamic Block Prune with Residual Caching</h3>
53
+ <h3>🔥 DBPrune: Dynamic Block Prune with Residual Caching</h3>
54
54
  </p>
55
55
  </div>
56
56
 
@@ -67,10 +67,10 @@ These case studies demonstrate that even with relatively high thresholds (such a
67
67
  </p>
68
68
  </div>
69
69
 
70
- Moreover, both DBCache and DBPrune are **plug-and-play** solutions that works hand-in-hand with [ParaAttention](https://github.com/chengzeyi/ParaAttention). Users can easily tap into its **Context Parallelism** features for distributed inference.
70
+ Moreover, **CacheDiT** are **plug-and-play** solutions that works hand-in-hand with [ParaAttention](https://github.com/chengzeyi/ParaAttention). Users can easily tap into its **Context Parallelism** features for distributed inference.
71
71
 
72
72
  <p align="center">
73
- ♥️ Please consider to leave a ⭐️ Star to support us ~ ♥️
73
+ ♥️ Please consider to leave a ⭐️ Star to support us ~ ♥️
74
74
  </p>
75
75
 
76
76
  ## ©️Citations
@@ -100,7 +100,7 @@ The **CacheDiT** codebase was adapted from FBCache's implementation at the [Para
100
100
  - [🎉First Block Cache](#fbcache)
101
101
  - [⚡️Dynamic Block Prune](#dbprune)
102
102
  - [🎉Context Parallelism](#context-parallelism)
103
- - [⚡️Torch Compile](#compile)
103
+ - [🔥Torch Compile](#compile)
104
104
  - [🎉Supported Models](#supported)
105
105
  - [👋Contribute](#contribute)
106
106
  - [©️License](#license)
@@ -175,6 +175,17 @@ cache_options = {
175
175
  }
176
176
  ```
177
177
 
178
+ <div align="center">
179
+ <p align="center">
180
+ DBCache, <b> L20x1 </b>, Steps: 28, "A cat holding a sign that says hello world with complex background"
181
+ </p>
182
+ </div>
183
+
184
+ |Baseline(L20x1)|F1B0 (0.08)|F1B0 (0.20)|F8B8 (0.15)|F12B12 (0.20)|F16B16 (0.20)|
185
+ |:---:|:---:|:---:|:---:|:---:|:---:|
186
+ |24.85s|15.59s|8.58s|15.41s|15.11s|17.74s|
187
+ |<img src=https://github.com/vipshop/cache-dit/raw/main/assets/NONE_R0.08_S0.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBCACHE_F1B0S1_R0.08_S11.png width=105px> | <img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBCACHE_F1B0S1_R0.2_S19.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBCACHE_F8B8S1_R0.15_S15.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBCACHE_F12B12S4_R0.2_S16.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBCACHE_F16B16S4_R0.2_S13.png width=105px>|
188
+
178
189
  ## 🎉FBCache: First Block Cache
179
190
 
180
191
  <div id="fbcache"></div>
@@ -288,14 +299,19 @@ apply_cache_on_pipe(pipe, **cache_options)
288
299
  pip3 install para-attn # or install `para-attn` from sources.
289
300
  ```
290
301
 
291
- Then, you can run **DBCache** with **Context Parallelism** on 4 GPUs:
302
+ Then, you can run **DBCache** or **DBPrune** with **Context Parallelism** on 4 GPUs:
292
303
 
293
304
  ```python
305
+ import torch.distributed as dist
294
306
  from diffusers import FluxPipeline
295
307
  from para_attn.context_parallel import init_context_parallel_mesh
296
308
  from para_attn.context_parallel.diffusers_adapters import parallelize_pipe
297
309
  from cache_dit.cache_factory import apply_cache_on_pipe, CacheType
298
310
 
311
+ # Init distributed process group
312
+ dist.init_process_group()
313
+ torch.cuda.set_device(dist.get_rank())
314
+
299
315
  pipe = FluxPipeline.from_pretrained(
300
316
  "black-forest-labs/FLUX.1-dev",
301
317
  torch_dtype=torch.bfloat16,
@@ -308,13 +324,31 @@ parallelize_pipe(
308
324
  )
309
325
  )
310
326
 
311
- # DBCache with F8B8 from this library
327
+ # DBPrune with default options from this library
312
328
  apply_cache_on_pipe(
313
- pipe, **CacheType.default_options(CacheType.DBCache)
329
+ pipe, **CacheType.default_options(CacheType.DBPrune)
314
330
  )
331
+
332
+ dist.destroy_process_group()
315
333
  ```
334
+ Then, run the python test script with `torchrun`:
335
+ ```bash
336
+ torchrun --nproc_per_node=4 parallel_cache.py
337
+ ```
338
+
339
+ <div align="center">
340
+ <p align="center">
341
+ DBPrune, <b> L20x4 </b>, Steps: 28, "A cat holding a sign that says hello world with complex background"
342
+ </p>
343
+ </div>
344
+
345
+ |Baseline(L20x1)|Pruned(24%)|Pruned(35%)|Pruned(38%)|Pruned(45%)|Pruned(60%)|
346
+ |:---:|:---:|:---:|:---:|:---:|:---:|
347
+ |24.85s|19.43s|16.82s|15.95s|14.24s|10.66s|
348
+ |8.54s (L20x4)|7.20s (L20x4)|6.61s (L20x4)|6.09s (L20x4)|5.54s (L20x4)|4.22s (L20x4)|
349
+ |<img src=https://github.com/vipshop/cache-dit/raw/main/assets/NONE_R0.08_S0.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBPRUNE_F1B0_R0.03_P24.0_T19.43s.png width=105px> | <img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBPRUNE_F1B0_R0.04_P34.6_T16.82s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBPRUNE_F1B0_R0.05_P38.3_T15.95s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBPRUNE_F1B0_R0.06_P45.2_T14.24s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBPRUNE_F1B0_R0.2_P59.5_T10.66s.png width=105px>|
316
350
 
317
- ## ⚡️Torch Compile
351
+ ## 🔥Torch Compile
318
352
 
319
353
  <div id="compile"></div>
320
354
 
@@ -322,7 +356,7 @@ apply_cache_on_pipe(
322
356
 
323
357
  ```python
324
358
  apply_cache_on_pipe(
325
- pipe, **CacheType.default_options(CacheType.DBCache)
359
+ pipe, **CacheType.default_options(CacheType.DBPrune)
326
360
  )
327
361
  # Compile the Transformer module
328
362
  pipe.transformer = torch.compile(pipe.transformer)
@@ -333,7 +367,7 @@ However, users intending to use **CacheDiT** for DiT with **dynamic input shapes
333
367
  torch._dynamo.config.recompile_limit = 96 # default is 8
334
368
  torch._dynamo.config.accumulated_recompile_limit = 2048 # default is 256
335
369
  ```
336
- Otherwise, the recompile_limit error may be triggered, causing the module to fall back to eager mode.
370
+ Otherwise, the recompile_limit error may be triggered, causing the module to fall back to eager mode.
337
371
 
338
372
  ## 🎉Supported Models
339
373
 
@@ -346,7 +380,7 @@ Otherwise, the recompile_limit error may be triggered, causing the module to fal
346
380
  ## 👋Contribute
347
381
  <div id="contribute"></div>
348
382
 
349
- How to contribute? Star this repo or check [CONTRIBUTE.md](./CONTRIBUTE.md).
383
+ How to contribute? Star ⭐️ this repo to support us or check [CONTRIBUTE.md](./CONTRIBUTE.md).
350
384
 
351
385
  ## ©️License
352
386
 
@@ -16,6 +16,7 @@ def get_args() -> argparse.ArgumentParser:
16
16
  # General arguments
17
17
  parser.add_argument("--steps", type=int, default=28)
18
18
  parser.add_argument("--repeats", type=int, default=2)
19
+ parser.add_argument("--seed", type=int, default=0)
19
20
  parser.add_argument("--cache", type=str, default=None)
20
21
  parser.add_argument("--alter", action="store_true", default=False)
21
22
  parser.add_argument("--l1-diff", action="store_true", default=False)
@@ -26,12 +27,9 @@ def get_args() -> argparse.ArgumentParser:
26
27
  parser.add_argument("--warmup-steps", type=int, default=0)
27
28
  parser.add_argument("--max-cached-steps", type=int, default=-1)
28
29
  parser.add_argument("--max-pruned-steps", type=int, default=-1)
29
- parser.add_argument("--seed", type=int, default=0)
30
- parser.add_argument(
31
- "--compile",
32
- action="store_true",
33
- default=False,
34
- )
30
+ parser.add_argument("--ulysses", type=int, default=None)
31
+ parser.add_argument("--compile", action="store_true", default=False)
32
+ parser.add_argument("--gen-device", type=str, default="cuda")
35
33
  return parser.parse_args()
36
34
 
37
35
 
@@ -116,10 +114,41 @@ def main():
116
114
  args = get_args()
117
115
  logger.info(f"Arguments: {args}")
118
116
 
119
- pipe = FluxPipeline.from_pretrained(
120
- os.environ.get("FLUX_DIR", "black-forest-labs/FLUX.1-dev"),
121
- torch_dtype=torch.bfloat16,
122
- ).to("cuda")
117
+ # Context Parallel from ParaAttention
118
+ if args.ulysses is not None:
119
+ try:
120
+ import torch.distributed as dist
121
+ from para_attn.context_parallel import init_context_parallel_mesh
122
+ from para_attn.context_parallel.diffusers_adapters import parallelize_pipe
123
+
124
+ # Initialize distributed process group
125
+ dist.init_process_group()
126
+ torch.cuda.set_device(dist.get_rank())
127
+
128
+ logger.info(f"Ulysses: {args.ulysses}")
129
+
130
+ pipe = FluxPipeline.from_pretrained(
131
+ os.environ.get("FLUX_DIR", "black-forest-labs/FLUX.1-dev"),
132
+ torch_dtype=torch.bfloat16,
133
+ ).to("cuda")
134
+
135
+ parallelize_pipe(
136
+ pipe, mesh=init_context_parallel_mesh(
137
+ pipe.device.type, max_ulysses_dim_size=args.ulysses
138
+ )
139
+ )
140
+ except ImportError as e:
141
+ logger.error(
142
+ "para-attn is not installed, please install it "
143
+ "with `pip install para-attn.`"
144
+ )
145
+ args.ulysses = None
146
+ raise e
147
+ else:
148
+ pipe = FluxPipeline.from_pretrained(
149
+ os.environ.get("FLUX_DIR", "black-forest-labs/FLUX.1-dev"),
150
+ torch_dtype=torch.bfloat16,
151
+ ).to("cuda")
123
152
 
124
153
  cache_options, cache_type = get_cache_options(args.cache, args)
125
154
 
@@ -149,7 +178,7 @@ def main():
149
178
  image = pipe(
150
179
  "A cat holding a sign that says hello world with complex background",
151
180
  num_inference_steps=args.steps,
152
- generator=torch.Generator("cuda").manual_seed(args.seed),
181
+ generator=torch.Generator(args.gen_device).manual_seed(args.seed),
153
182
  ).images[0]
154
183
  end = time.time()
155
184
  all_times.append(end - start)
@@ -191,19 +220,27 @@ def main():
191
220
  f"Actual Blocks: {actual_blocks}\n"
192
221
  f"Pruned Blocks: {pruned_blocks}"
193
222
  )
223
+ ulysses = 0 if args.ulysses is None else args.ulysses
194
224
  if len(actual_blocks) > 0:
195
225
  save_name = (
196
- f"{cache_type}_R{args.rdt}_P{pruned_ratio:.1f}_"
226
+ f"U{ulysses}_C{int(args.compile)}_{cache_type}_"
227
+ f"R{args.rdt}_P{pruned_ratio:.1f}_"
197
228
  f"T{mean_time:.2f}s.png"
198
229
  )
199
230
  else:
200
231
  save_name = (
201
- f"{cache_type}_R{args.rdt}_S{cached_stepes}_"
232
+ f"U{ulysses}_C{int(args.compile)}_{cache_type}_"
233
+ f"R{args.rdt}_S{cached_stepes}_"
202
234
  f"T{mean_time:.2f}s.png"
203
235
  )
204
236
  image.save(save_name)
205
237
  logger.info(f"Image saved as {save_name}")
206
238
 
239
+ if args.ulysses is not None:
240
+ import torch.distributed as dist
241
+ dist.destroy_process_group()
242
+ logger.info("Distributed process group destroyed.")
243
+
207
244
 
208
245
  if __name__ == "__main__":
209
246
  main()
@@ -1,6 +1,6 @@
1
1
  # Example requirement, can be anything that pip knows
2
2
  # install with `pip install -r requirements.txt`, and make sure that CI does the same
3
3
  packaging
4
- torch
5
- transformers
6
- diffusers
4
+ torch>=2.5.1 # torch 2.7.0 is preferred, but 2.5.1 is the minimum required version
5
+ transformers>=4.51.3
6
+ diffusers>=0.33.1
@@ -17,5 +17,5 @@ __version__: str
17
17
  __version_tuple__: VERSION_TUPLE
18
18
  version_tuple: VERSION_TUPLE
19
19
 
20
- __version__ = version = '0.1.5'
21
- __version_tuple__ = version_tuple = (0, 1, 5)
20
+ __version__ = version = '0.1.7'
21
+ __version_tuple__ = version_tuple = (0, 1, 7)
@@ -562,7 +562,7 @@ class DBPrunedTransformerBlocks(torch.nn.Module):
562
562
  torch._dynamo.graph_break()
563
563
 
564
564
  add_pruned_block(self.pruned_blocks_step)
565
- add_actual_block(self._num_transformer_blocks)
565
+ add_actual_block(self.num_transformer_blocks)
566
566
  patch_pruned_stats(self.transformer)
567
567
 
568
568
  return (
@@ -577,7 +577,7 @@ class DBPrunedTransformerBlocks(torch.nn.Module):
577
577
 
578
578
  @property
579
579
  @torch.compiler.disable
580
- def _num_transformer_blocks(self):
580
+ def num_transformer_blocks(self):
581
581
  # Total number of transformer blocks, including single transformer blocks.
582
582
  num_blocks = len(self.transformer_blocks)
583
583
  if self.single_transformer_blocks is not None:
@@ -597,7 +597,7 @@ class DBPrunedTransformerBlocks(torch.nn.Module):
597
597
  @torch.compiler.disable
598
598
  def _non_prune_blocks_ids(self):
599
599
  # Never prune the first `Fn` and last `Bn` blocks.
600
- num_blocks = self._num_transformer_blocks
600
+ num_blocks = self.num_transformer_blocks
601
601
  Fn_compute_blocks_ = (
602
602
  Fn_compute_blocks()
603
603
  if Fn_compute_blocks() < num_blocks
@@ -627,6 +627,10 @@ class DBPrunedTransformerBlocks(torch.nn.Module):
627
627
  ]
628
628
  return sorted(non_prune_blocks_ids)
629
629
 
630
+ # @torch.compile(dynamic=True)
631
+ # mark this function as compile with dynamic=True will
632
+ # cause precision degradate, so, we choose to disable it
633
+ # now, until we find a better solution or fixed the bug.
630
634
  @torch.compiler.disable
631
635
  def _compute_single_hidden_states_residual(
632
636
  self,
@@ -663,6 +667,10 @@ class DBPrunedTransformerBlocks(torch.nn.Module):
663
667
  single_encoder_hidden_states_residual,
664
668
  )
665
669
 
670
+ # @torch.compile(dynamic=True)
671
+ # mark this function as compile with dynamic=True will
672
+ # cause precision degradate, so, we choose to disable it
673
+ # now, until we find a better solution or fixed the bug.
666
674
  @torch.compiler.disable
667
675
  def _split_single_hidden_states(
668
676
  self,
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: cache_dit
3
- Version: 0.1.5
3
+ Version: 0.1.7
4
4
  Summary: 🤗 CacheDiT: A Training-free and Easy-to-use Cache Acceleration Toolbox for Diffusion Transformers
5
5
  Author: DefTruth, vipshop.com, etc.
6
6
  Maintainer: DefTruth, vipshop.com, etc
@@ -10,9 +10,9 @@ Requires-Python: >=3.10
10
10
  Description-Content-Type: text/markdown
11
11
  License-File: LICENSE
12
12
  Requires-Dist: packaging
13
- Requires-Dist: torch
14
- Requires-Dist: transformers
15
- Requires-Dist: diffusers
13
+ Requires-Dist: torch>=2.5.1
14
+ Requires-Dist: transformers>=4.51.3
15
+ Requires-Dist: diffusers>=0.33.1
16
16
  Provides-Extra: all
17
17
  Provides-Extra: dev
18
18
  Requires-Dist: pre-commit; extra == "dev"
@@ -44,10 +44,10 @@ Dynamic: requires-python
44
44
  <img src=https://img.shields.io/badge/PyPI-pass-brightgreen.svg >
45
45
  <img src=https://static.pepy.tech/badge/cache-dit >
46
46
  <img src=https://img.shields.io/badge/Python-3.10|3.11|3.12-9cf.svg >
47
- <img src=https://img.shields.io/badge/Release-v0.1.5-brightgreen.svg >
47
+ <img src=https://img.shields.io/badge/Release-v0.1.7-brightgreen.svg >
48
48
  </div>
49
49
  <p align="center">
50
- DeepCache is for UNet not DiT. Most DiT cache speedups are complex and not training-free. CacheDiT provides <br>a series of training-free, UNet-style cache accelerators for DiT: DBCache, DBPrune, FBCache, etc.
50
+ DeepCache is for UNet not DiT. Most DiT cache speedups are complex and not training-free. CacheDiT <br>offers a set of training-free cache accelerators for DiT: 🔥DBCache, DBPrune, FBCache, etc🔥
51
51
  </p>
52
52
  </div>
53
53
 
@@ -55,7 +55,7 @@ Dynamic: requires-python
55
55
 
56
56
  <div align="center">
57
57
  <p align="center">
58
- <h3>DBCache: Dual Block Caching for Diffusion Transformers</h3>
58
+ <h3>🔥 DBCache: Dual Block Caching for Diffusion Transformers</h3>
59
59
  </p>
60
60
  </div>
61
61
 
@@ -77,7 +77,7 @@ Dynamic: requires-python
77
77
 
78
78
  <div align="center">
79
79
  <p align="center">
80
- DBCache, <b> L20x4 </b>, Steps: 20, case to show the texture recovery ability of DBCache
80
+ DBCache, <b> L20x4 </b>, Steps: 20, case to show the texture recovery ability of DBCache
81
81
  </p>
82
82
  </div>
83
83
 
@@ -85,7 +85,7 @@ These case studies demonstrate that even with relatively high thresholds (such a
85
85
 
86
86
  <div align="center">
87
87
  <p align="center">
88
- <h3>DBPrune: Dynamic Block Prune with Residual Caching</h3>
88
+ <h3>🔥 DBPrune: Dynamic Block Prune with Residual Caching</h3>
89
89
  </p>
90
90
  </div>
91
91
 
@@ -102,10 +102,10 @@ These case studies demonstrate that even with relatively high thresholds (such a
102
102
  </p>
103
103
  </div>
104
104
 
105
- Moreover, both DBCache and DBPrune are **plug-and-play** solutions that works hand-in-hand with [ParaAttention](https://github.com/chengzeyi/ParaAttention). Users can easily tap into its **Context Parallelism** features for distributed inference.
105
+ Moreover, **CacheDiT** are **plug-and-play** solutions that works hand-in-hand with [ParaAttention](https://github.com/chengzeyi/ParaAttention). Users can easily tap into its **Context Parallelism** features for distributed inference.
106
106
 
107
107
  <p align="center">
108
- ♥️ Please consider to leave a ⭐️ Star to support us ~ ♥️
108
+ ♥️ Please consider to leave a ⭐️ Star to support us ~ ♥️
109
109
  </p>
110
110
 
111
111
  ## ©️Citations
@@ -135,7 +135,7 @@ The **CacheDiT** codebase was adapted from FBCache's implementation at the [Para
135
135
  - [🎉First Block Cache](#fbcache)
136
136
  - [⚡️Dynamic Block Prune](#dbprune)
137
137
  - [🎉Context Parallelism](#context-parallelism)
138
- - [⚡️Torch Compile](#compile)
138
+ - [🔥Torch Compile](#compile)
139
139
  - [🎉Supported Models](#supported)
140
140
  - [👋Contribute](#contribute)
141
141
  - [©️License](#license)
@@ -210,6 +210,17 @@ cache_options = {
210
210
  }
211
211
  ```
212
212
 
213
+ <div align="center">
214
+ <p align="center">
215
+ DBCache, <b> L20x1 </b>, Steps: 28, "A cat holding a sign that says hello world with complex background"
216
+ </p>
217
+ </div>
218
+
219
+ |Baseline(L20x1)|F1B0 (0.08)|F1B0 (0.20)|F8B8 (0.15)|F12B12 (0.20)|F16B16 (0.20)|
220
+ |:---:|:---:|:---:|:---:|:---:|:---:|
221
+ |24.85s|15.59s|8.58s|15.41s|15.11s|17.74s|
222
+ |<img src=https://github.com/vipshop/cache-dit/raw/main/assets/NONE_R0.08_S0.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBCACHE_F1B0S1_R0.08_S11.png width=105px> | <img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBCACHE_F1B0S1_R0.2_S19.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBCACHE_F8B8S1_R0.15_S15.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBCACHE_F12B12S4_R0.2_S16.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBCACHE_F16B16S4_R0.2_S13.png width=105px>|
223
+
213
224
  ## 🎉FBCache: First Block Cache
214
225
 
215
226
  <div id="fbcache"></div>
@@ -323,14 +334,19 @@ apply_cache_on_pipe(pipe, **cache_options)
323
334
  pip3 install para-attn # or install `para-attn` from sources.
324
335
  ```
325
336
 
326
- Then, you can run **DBCache** with **Context Parallelism** on 4 GPUs:
337
+ Then, you can run **DBCache** or **DBPrune** with **Context Parallelism** on 4 GPUs:
327
338
 
328
339
  ```python
340
+ import torch.distributed as dist
329
341
  from diffusers import FluxPipeline
330
342
  from para_attn.context_parallel import init_context_parallel_mesh
331
343
  from para_attn.context_parallel.diffusers_adapters import parallelize_pipe
332
344
  from cache_dit.cache_factory import apply_cache_on_pipe, CacheType
333
345
 
346
+ # Init distributed process group
347
+ dist.init_process_group()
348
+ torch.cuda.set_device(dist.get_rank())
349
+
334
350
  pipe = FluxPipeline.from_pretrained(
335
351
  "black-forest-labs/FLUX.1-dev",
336
352
  torch_dtype=torch.bfloat16,
@@ -343,13 +359,31 @@ parallelize_pipe(
343
359
  )
344
360
  )
345
361
 
346
- # DBCache with F8B8 from this library
362
+ # DBPrune with default options from this library
347
363
  apply_cache_on_pipe(
348
- pipe, **CacheType.default_options(CacheType.DBCache)
364
+ pipe, **CacheType.default_options(CacheType.DBPrune)
349
365
  )
366
+
367
+ dist.destroy_process_group()
350
368
  ```
369
+ Then, run the python test script with `torchrun`:
370
+ ```bash
371
+ torchrun --nproc_per_node=4 parallel_cache.py
372
+ ```
373
+
374
+ <div align="center">
375
+ <p align="center">
376
+ DBPrune, <b> L20x4 </b>, Steps: 28, "A cat holding a sign that says hello world with complex background"
377
+ </p>
378
+ </div>
379
+
380
+ |Baseline(L20x1)|Pruned(24%)|Pruned(35%)|Pruned(38%)|Pruned(45%)|Pruned(60%)|
381
+ |:---:|:---:|:---:|:---:|:---:|:---:|
382
+ |24.85s|19.43s|16.82s|15.95s|14.24s|10.66s|
383
+ |8.54s (L20x4)|7.20s (L20x4)|6.61s (L20x4)|6.09s (L20x4)|5.54s (L20x4)|4.22s (L20x4)|
384
+ |<img src=https://github.com/vipshop/cache-dit/raw/main/assets/NONE_R0.08_S0.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBPRUNE_F1B0_R0.03_P24.0_T19.43s.png width=105px> | <img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBPRUNE_F1B0_R0.04_P34.6_T16.82s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBPRUNE_F1B0_R0.05_P38.3_T15.95s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBPRUNE_F1B0_R0.06_P45.2_T14.24s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBPRUNE_F1B0_R0.2_P59.5_T10.66s.png width=105px>|
351
385
 
352
- ## ⚡️Torch Compile
386
+ ## 🔥Torch Compile
353
387
 
354
388
  <div id="compile"></div>
355
389
 
@@ -357,7 +391,7 @@ apply_cache_on_pipe(
357
391
 
358
392
  ```python
359
393
  apply_cache_on_pipe(
360
- pipe, **CacheType.default_options(CacheType.DBCache)
394
+ pipe, **CacheType.default_options(CacheType.DBPrune)
361
395
  )
362
396
  # Compile the Transformer module
363
397
  pipe.transformer = torch.compile(pipe.transformer)
@@ -368,7 +402,7 @@ However, users intending to use **CacheDiT** for DiT with **dynamic input shapes
368
402
  torch._dynamo.config.recompile_limit = 96 # default is 8
369
403
  torch._dynamo.config.accumulated_recompile_limit = 2048 # default is 256
370
404
  ```
371
- Otherwise, the recompile_limit error may be triggered, causing the module to fall back to eager mode.
405
+ Otherwise, the recompile_limit error may be triggered, causing the module to fall back to eager mode.
372
406
 
373
407
  ## 🎉Supported Models
374
408
 
@@ -381,7 +415,7 @@ Otherwise, the recompile_limit error may be triggered, causing the module to fal
381
415
  ## 👋Contribute
382
416
  <div id="contribute"></div>
383
417
 
384
- How to contribute? Star this repo or check [CONTRIBUTE.md](./CONTRIBUTE.md).
418
+ How to contribute? Star ⭐️ this repo to support us or check [CONTRIBUTE.md](./CONTRIBUTE.md).
385
419
 
386
420
  ## ©️License
387
421
 
@@ -1,7 +1,7 @@
1
1
  packaging
2
- torch
3
- transformers
4
- diffusers
2
+ torch>=2.5.1
3
+ transformers>=4.51.3
4
+ diffusers>=0.33.1
5
5
 
6
6
  [all]
7
7
 
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes