bullishpy 0.50.0__tar.gz → 0.51.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (61) hide show
  1. {bullishpy-0.50.0 → bullishpy-0.51.0}/PKG-INFO +1 -1
  2. {bullishpy-0.50.0 → bullishpy-0.51.0}/bullish/analysis/indicators.py +18 -0
  3. {bullishpy-0.50.0 → bullishpy-0.51.0}/bullish/analysis/predefined_filters.py +108 -32
  4. {bullishpy-0.50.0 → bullishpy-0.51.0}/bullish/app/app.py +21 -26
  5. bullishpy-0.51.0/bullish/database/alembic/versions/260fcff7212e_.py +45 -0
  6. {bullishpy-0.50.0 → bullishpy-0.51.0}/pyproject.toml +1 -1
  7. {bullishpy-0.50.0 → bullishpy-0.51.0}/README.md +0 -0
  8. {bullishpy-0.50.0 → bullishpy-0.51.0}/bullish/__init__.py +0 -0
  9. {bullishpy-0.50.0 → bullishpy-0.51.0}/bullish/analysis/__init__.py +0 -0
  10. {bullishpy-0.50.0 → bullishpy-0.51.0}/bullish/analysis/analysis.py +0 -0
  11. {bullishpy-0.50.0 → bullishpy-0.51.0}/bullish/analysis/backtest.py +0 -0
  12. {bullishpy-0.50.0 → bullishpy-0.51.0}/bullish/analysis/constants.py +0 -0
  13. {bullishpy-0.50.0 → bullishpy-0.51.0}/bullish/analysis/filter.py +0 -0
  14. {bullishpy-0.50.0 → bullishpy-0.51.0}/bullish/analysis/functions.py +0 -0
  15. {bullishpy-0.50.0 → bullishpy-0.51.0}/bullish/analysis/industry_views.py +0 -0
  16. {bullishpy-0.50.0 → bullishpy-0.51.0}/bullish/app/__init__.py +0 -0
  17. {bullishpy-0.50.0 → bullishpy-0.51.0}/bullish/cli.py +0 -0
  18. {bullishpy-0.50.0 → bullishpy-0.51.0}/bullish/database/__init__.py +0 -0
  19. {bullishpy-0.50.0 → bullishpy-0.51.0}/bullish/database/alembic/README +0 -0
  20. {bullishpy-0.50.0 → bullishpy-0.51.0}/bullish/database/alembic/alembic.ini +0 -0
  21. {bullishpy-0.50.0 → bullishpy-0.51.0}/bullish/database/alembic/env.py +0 -0
  22. {bullishpy-0.50.0 → bullishpy-0.51.0}/bullish/database/alembic/script.py.mako +0 -0
  23. {bullishpy-0.50.0 → bullishpy-0.51.0}/bullish/database/alembic/versions/037dbd721317_.py +0 -0
  24. {bullishpy-0.50.0 → bullishpy-0.51.0}/bullish/database/alembic/versions/040b15fba458_.py +0 -0
  25. {bullishpy-0.50.0 → bullishpy-0.51.0}/bullish/database/alembic/versions/08ac1116e055_.py +0 -0
  26. {bullishpy-0.50.0 → bullishpy-0.51.0}/bullish/database/alembic/versions/11d35a452b40_.py +0 -0
  27. {bullishpy-0.50.0 → bullishpy-0.51.0}/bullish/database/alembic/versions/12889a2cbd7d_.py +0 -0
  28. {bullishpy-0.50.0 → bullishpy-0.51.0}/bullish/database/alembic/versions/17e51420e7ad_.py +0 -0
  29. {bullishpy-0.50.0 → bullishpy-0.51.0}/bullish/database/alembic/versions/49c83f9eb5ac_.py +0 -0
  30. {bullishpy-0.50.0 → bullishpy-0.51.0}/bullish/database/alembic/versions/4b0a2f40b7d3_.py +0 -0
  31. {bullishpy-0.50.0 → bullishpy-0.51.0}/bullish/database/alembic/versions/4ee82b171449_.py +0 -0
  32. {bullishpy-0.50.0 → bullishpy-0.51.0}/bullish/database/alembic/versions/5b10ee7604c1_.py +0 -0
  33. {bullishpy-0.50.0 → bullishpy-0.51.0}/bullish/database/alembic/versions/6d252e23f543_.py +0 -0
  34. {bullishpy-0.50.0 → bullishpy-0.51.0}/bullish/database/alembic/versions/73564b60fe24_.py +0 -0
  35. {bullishpy-0.50.0 → bullishpy-0.51.0}/bullish/database/alembic/versions/79bc71ec6f9e_.py +0 -0
  36. {bullishpy-0.50.0 → bullishpy-0.51.0}/bullish/database/alembic/versions/ae444f338124_.py +0 -0
  37. {bullishpy-0.50.0 → bullishpy-0.51.0}/bullish/database/alembic/versions/b76079e9845f_.py +0 -0
  38. {bullishpy-0.50.0 → bullishpy-0.51.0}/bullish/database/alembic/versions/bf6b86dd5463_.py +0 -0
  39. {bullishpy-0.50.0 → bullishpy-0.51.0}/bullish/database/alembic/versions/d0e58e050845_.py +0 -0
  40. {bullishpy-0.50.0 → bullishpy-0.51.0}/bullish/database/alembic/versions/d663166c531d_.py +0 -0
  41. {bullishpy-0.50.0 → bullishpy-0.51.0}/bullish/database/alembic/versions/ec25c8fa449f_.py +0 -0
  42. {bullishpy-0.50.0 → bullishpy-0.51.0}/bullish/database/alembic/versions/ee5baabb35f8_.py +0 -0
  43. {bullishpy-0.50.0 → bullishpy-0.51.0}/bullish/database/alembic/versions/fc191121f522_.py +0 -0
  44. {bullishpy-0.50.0 → bullishpy-0.51.0}/bullish/database/alembic/versions/ff0cc4ba40ec_.py +0 -0
  45. {bullishpy-0.50.0 → bullishpy-0.51.0}/bullish/database/crud.py +0 -0
  46. {bullishpy-0.50.0 → bullishpy-0.51.0}/bullish/database/schemas.py +0 -0
  47. {bullishpy-0.50.0 → bullishpy-0.51.0}/bullish/database/scripts/create_revision.py +0 -0
  48. {bullishpy-0.50.0 → bullishpy-0.51.0}/bullish/database/scripts/stamp.py +0 -0
  49. {bullishpy-0.50.0 → bullishpy-0.51.0}/bullish/database/scripts/upgrade.py +0 -0
  50. {bullishpy-0.50.0 → bullishpy-0.51.0}/bullish/database/settings.py +0 -0
  51. {bullishpy-0.50.0 → bullishpy-0.51.0}/bullish/exceptions.py +0 -0
  52. {bullishpy-0.50.0 → bullishpy-0.51.0}/bullish/figures/__init__.py +0 -0
  53. {bullishpy-0.50.0 → bullishpy-0.51.0}/bullish/figures/figures.py +0 -0
  54. {bullishpy-0.50.0 → bullishpy-0.51.0}/bullish/interface/__init__.py +0 -0
  55. {bullishpy-0.50.0 → bullishpy-0.51.0}/bullish/interface/interface.py +0 -0
  56. {bullishpy-0.50.0 → bullishpy-0.51.0}/bullish/jobs/__init__.py +0 -0
  57. {bullishpy-0.50.0 → bullishpy-0.51.0}/bullish/jobs/app.py +0 -0
  58. {bullishpy-0.50.0 → bullishpy-0.51.0}/bullish/jobs/models.py +0 -0
  59. {bullishpy-0.50.0 → bullishpy-0.51.0}/bullish/jobs/tasks.py +0 -0
  60. {bullishpy-0.50.0 → bullishpy-0.51.0}/bullish/utils/__init__.py +0 -0
  61. {bullishpy-0.50.0 → bullishpy-0.51.0}/bullish/utils/checks.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: bullishpy
3
- Version: 0.50.0
3
+ Version: 0.51.0
4
4
  Summary:
5
5
  Author: aan
6
6
  Author-email: andoludovic.andriamamonjy@gmail.com
@@ -359,6 +359,15 @@ def indicators_factory() -> List[Indicator]:
359
359
  in_use_backtest=True,
360
360
  processing=ProcessingFunction(date=find_last_true_run_start),
361
361
  ),
362
+ Signal(
363
+ name="SMA_50_BELOW_SMA_200",
364
+ description="SMA 50 is below SMA 200",
365
+ type_info="Overbought",
366
+ type=Optional[date],
367
+ function=lambda d: d.SMA_50 < d.SMA_200,
368
+ in_use_backtest=True,
369
+ processing=ProcessingFunction(date=find_last_true_run_start),
370
+ ),
362
371
  Signal(
363
372
  name="PRICE_ABOVE_SMA_50",
364
373
  description="Price is above SMA 50",
@@ -368,6 +377,15 @@ def indicators_factory() -> List[Indicator]:
368
377
  in_use_backtest=True,
369
378
  processing=ProcessingFunction(date=find_last_true_run_start),
370
379
  ),
380
+ Signal(
381
+ name="PRICE_BELOW_SMA_50",
382
+ description="Price is below SMA 50",
383
+ type_info="Overbought",
384
+ type=Optional[date],
385
+ function=lambda d: d.SMA_50 > d.CLOSE,
386
+ in_use_backtest=True,
387
+ processing=ProcessingFunction(date=find_last_true_run_start),
388
+ ),
371
389
  ],
372
390
  ),
373
391
  Indicator(
@@ -119,10 +119,99 @@ class NamedFilterQuery(FilterQuery):
119
119
  | {"name": f"{self.name} ({suffix})", rsi_parameter_name: DATE_THRESHOLD}
120
120
  )
121
121
 
122
+ def _custom_variant(
123
+ self, suffix: str, properties: Dict[str, Any]
124
+ ) -> "NamedFilterQuery":
125
+ return NamedFilterQuery.model_validate(
126
+ self.model_dump() | {"name": f"{self.name} ({suffix})", **properties}
127
+ )
128
+
129
+ def top_performers(self) -> "NamedFilterQuery":
130
+ properties = {
131
+ "volume_above_average": DATE_THRESHOLD,
132
+ "sma_50_above_sma_200": [
133
+ datetime.date.today() - datetime.timedelta(days=5000),
134
+ datetime.date.today(),
135
+ ],
136
+ "weekly_growth": [1, 100],
137
+ "monthly_growth": [8, 100],
138
+ }
139
+ return self._custom_variant("Top Performers", properties)
140
+
141
+ def poor_performers(self) -> "NamedFilterQuery":
142
+ properties = {
143
+ "sma_50_below_sma_200": [
144
+ datetime.date.today() - datetime.timedelta(days=5000),
145
+ datetime.date.today(),
146
+ ],
147
+ "price_below_sma_50": [
148
+ datetime.date.today() - datetime.timedelta(days=5000),
149
+ datetime.date.today(),
150
+ ],
151
+ "monthly_growth": [-100, 0],
152
+ }
153
+ return self._custom_variant("Poor Performers", properties)
154
+
155
+ def short_term_profitability(self) -> "NamedFilterQuery":
156
+ properties = {
157
+ "income": [
158
+ "positive_operating_income",
159
+ "positive_net_income",
160
+ "quarterly_positive_operating_income",
161
+ "quarterly_positive_net_income",
162
+ ],
163
+ "cash_flow": [
164
+ "positive_free_cash_flow",
165
+ "quarterly_positive_free_cash_flow",
166
+ ],
167
+ "eps": [
168
+ "positive_basic_eps",
169
+ "positive_diluted_eps",
170
+ "quarterly_positive_basic_eps",
171
+ "quarterly_positive_diluted_eps",
172
+ ],
173
+ "properties": [
174
+ "positive_return_on_assets",
175
+ "positive_return_on_equity",
176
+ "positive_debt_to_equity",
177
+ "operating_cash_flow_is_higher_than_net_income",
178
+ "quarterly_positive_return_on_assets",
179
+ "quarterly_positive_return_on_equity",
180
+ "quarterly_positive_debt_to_equity",
181
+ "quarterly_operating_cash_flow_is_higher_than_net_income",
182
+ ],
183
+ }
184
+ return self._custom_variant("Short-term profitability", properties)
185
+
186
+ def long_term_profitability(self) -> "NamedFilterQuery":
187
+ properties = {
188
+ "income": [
189
+ "growing_net_income",
190
+ "growing_operating_income",
191
+ "quarterly_growing_net_income",
192
+ "quarterly_growing_operating_income",
193
+ ],
194
+ "cash_flow": [
195
+ "growing_operating_cash_flow",
196
+ "quarterly_growing_operating_cash_flow",
197
+ ],
198
+ "eps": [
199
+ "growing_basic_eps",
200
+ "growing_diluted_eps",
201
+ "quarterly_growing_basic_eps",
202
+ "quarterly_growing_diluted_eps",
203
+ ],
204
+ }
205
+ return self._custom_variant("Long-term profitability", properties)
206
+
122
207
  def variants(self) -> List["NamedFilterQuery"]:
123
- return [
208
+ variants_ = [
124
209
  self.country_variant("Europe", list(get_args(Europe))),
125
210
  self.country_variant("Us", list(get_args(Us))),
211
+ self.country_variant("Europe", list(get_args(Europe))).top_performers(),
212
+ self.country_variant("Us", list(get_args(Us))).top_performers(),
213
+ self.country_variant("Europe", list(get_args(Europe))).poor_performers(),
214
+ self.country_variant("Us", list(get_args(Us))).poor_performers(),
126
215
  self.country_variant("Europe", list(get_args(Europe)))
127
216
  .update_indicator_filter("RSI 30", "rsi_bullish_crossover_30")
128
217
  .update_indicator_filter("MACD", "macd_12_26_9_bullish_crossover"),
@@ -142,6 +231,17 @@ class NamedFilterQuery(FilterQuery):
142
231
  .update_indicator_filter("RSI Neutral", "rsi_neutral")
143
232
  .update_indicator_filter("MACD", "macd_12_26_9_bullish_crossover"),
144
233
  ]
234
+ variants_short_term_profitability = [
235
+ v.short_term_profitability() for v in variants_
236
+ ]
237
+ variants_long_term_profitability = [
238
+ v.long_term_profitability() for v in variants_
239
+ ]
240
+ return [
241
+ *variants_,
242
+ *variants_short_term_profitability,
243
+ *variants_long_term_profitability,
244
+ ]
145
245
 
146
246
 
147
247
  def load_custom_filters() -> List[NamedFilterQuery]:
@@ -174,39 +274,16 @@ SMALL_CAP = NamedFilterQuery(
174
274
  order_by_desc="market_capitalization",
175
275
  ).variants()
176
276
 
177
- TOP_PERFORMERS = NamedFilterQuery(
178
- name="Top Performers",
179
- volume_above_average=DATE_THRESHOLD,
180
- sma_50_above_sma_200=[
181
- datetime.date.today() - datetime.timedelta(days=5000),
182
- datetime.date.today(),
183
- ],
184
- weekly_growth=[1, 100],
185
- monthly_growth=[8, 100],
186
- order_by_desc="market_capitalization",
187
- ).variants()
188
-
189
- TOP_PERFORMERS_YEARLY = NamedFilterQuery(
190
- name="Top Performers Yearly",
191
- sma_50_above_sma_200=[
192
- datetime.date.today() - datetime.timedelta(days=5000),
193
- datetime.date.today(),
194
- ],
195
- price_above_sma_50=[
196
- datetime.date.today() - datetime.timedelta(days=5000),
197
- datetime.date.today(),
198
- ],
199
- volume_above_average=DATE_THRESHOLD,
200
- weekly_growth=[1, 100],
201
- monthly_growth=[8, 100],
202
- yearly_growth=[30, 100],
277
+ LARGE_CAPS = NamedFilterQuery(
278
+ name="Large caps",
203
279
  order_by_desc="market_capitalization",
280
+ market_capitalization=[1e10, 1e14],
204
281
  ).variants()
205
282
 
206
- LARGE_CAPS = NamedFilterQuery(
207
- name="Large caps",
283
+ MID_CAPS = NamedFilterQuery(
284
+ name="Mid-caps",
208
285
  order_by_desc="market_capitalization",
209
- limit="50",
286
+ market_capitalization=[5e8, 1e10],
210
287
  ).variants()
211
288
 
212
289
  NEXT_EARNINGS_DATE = NamedFilterQuery(
@@ -222,10 +299,9 @@ NEXT_EARNINGS_DATE = NamedFilterQuery(
222
299
  def predefined_filters() -> list[NamedFilterQuery]:
223
300
  return [
224
301
  *SMALL_CAP,
225
- *TOP_PERFORMERS,
226
- *TOP_PERFORMERS_YEARLY,
227
302
  *LARGE_CAPS,
228
303
  *NEXT_EARNINGS_DATE,
304
+ *MID_CAPS,
229
305
  *load_custom_filters(),
230
306
  ]
231
307
 
@@ -234,33 +234,28 @@ def load() -> None:
234
234
 
235
235
  @st.dialog("🔍 Filter", width="large")
236
236
  def filter() -> None:
237
+ with st.container(), st.expander("Predefined filters"):
238
+ predefined_filter_names = PredefinedFilters().get_predefined_filter_names()
239
+ option = st.selectbox(
240
+ "Select a predefined filter",
241
+ ["", *predefined_filter_names],
242
+ )
243
+ if option:
244
+ data_ = PredefinedFilters().get_predefined_filter(option)
245
+ st.session_state.filter_query.update(data_)
237
246
  with st.container():
238
- column_1, column_2 = st.columns(2)
239
- with column_1:
240
- # TODO: order here matters
241
- with st.expander("Predefined filters"):
242
- predefined_filter_names = (
243
- PredefinedFilters().get_predefined_filter_names()
244
- )
245
- option = st.selectbox(
246
- "Select a predefined filter",
247
- ["", *predefined_filter_names],
248
- )
249
- if option:
250
- data_ = PredefinedFilters().get_predefined_filter(option)
251
- st.session_state.filter_query.update(data_)
252
- with st.expander("Technical Analysis"):
253
- for filter in TechnicalAnalysisFilters:
254
- with st.expander(filter._description): # type: ignore
255
- build_filter(filter, st.session_state.filter_query)
256
-
257
- with column_2:
258
- with st.expander("Fundamental Analysis"):
259
- for filter in FundamentalAnalysisFilters:
260
- with st.expander(filter._description): # type: ignore
261
- build_filter(filter, st.session_state.filter_query)
262
- with st.expander("General filter"):
263
- build_filter(GeneralFilter, st.session_state.filter_query)
247
+
248
+ with st.expander("Technical Analysis"):
249
+ for filter in TechnicalAnalysisFilters:
250
+ with st.expander(filter._description): # type: ignore
251
+ build_filter(filter, st.session_state.filter_query)
252
+
253
+ with st.expander("Fundamental Analysis"):
254
+ for filter in FundamentalAnalysisFilters:
255
+ with st.expander(filter._description): # type: ignore
256
+ build_filter(filter, st.session_state.filter_query)
257
+ with st.expander("General filter"):
258
+ build_filter(GeneralFilter, st.session_state.filter_query)
264
259
 
265
260
  if st.button("🔍 Apply"):
266
261
  query = FilterQuery.model_validate(st.session_state.filter_query)
@@ -0,0 +1,45 @@
1
+ """
2
+
3
+ Revision ID: 260fcff7212e
4
+ Revises: 4ee82b171449
5
+ Create Date: 2025-08-11 10:08:17.582390
6
+
7
+ """
8
+
9
+ from typing import Sequence, Union
10
+
11
+ from alembic import op
12
+ import sqlalchemy as sa
13
+ from sqlalchemy.dialects import sqlite
14
+
15
+ # revision identifiers, used by Alembic.
16
+ revision: str = "260fcff7212e"
17
+ down_revision: Union[str, None] = "4ee82b171449"
18
+ branch_labels: Union[str, Sequence[str], None] = None
19
+ depends_on: Union[str, Sequence[str], None] = None
20
+
21
+
22
+ def upgrade() -> None:
23
+ # ### commands auto generated by Alembic - please adjust! ###
24
+ with op.batch_alter_table("analysis", schema=None) as batch_op:
25
+ batch_op.add_column(sa.Column("sma_50_below_sma_200", sa.Date(), nullable=True))
26
+ batch_op.add_column(sa.Column("price_below_sma_50", sa.Date(), nullable=True))
27
+ batch_op.create_index(
28
+ "ix_analysis_price_below_sma_50", ["price_below_sma_50"], unique=False
29
+ )
30
+ batch_op.create_index(
31
+ "ix_analysis_sma_50_below_sma_200", ["sma_50_below_sma_200"], unique=False
32
+ )
33
+
34
+ # ### end Alembic commands ###
35
+
36
+
37
+ def downgrade() -> None:
38
+ # ### commands auto generated by Alembic - please adjust! ###
39
+ with op.batch_alter_table("analysis", schema=None) as batch_op:
40
+ batch_op.drop_index("ix_analysis_sma_50_below_sma_200")
41
+ batch_op.drop_index("ix_analysis_price_below_sma_50")
42
+ batch_op.drop_column("price_below_sma_50")
43
+ batch_op.drop_column("sma_50_below_sma_200")
44
+
45
+ # ### end Alembic commands ###
@@ -1,6 +1,6 @@
1
1
  [tool.poetry]
2
2
  name = "bullishpy"
3
- version = "0.50.0"
3
+ version = "0.51.0"
4
4
  description = ""
5
5
  authors = ["aan <andoludovic.andriamamonjy@gmail.com>"]
6
6
  readme = "README.md"
File without changes
File without changes