bulk-chain 0.24.1__tar.gz → 0.25.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (32) hide show
  1. {bulk_chain-0.24.1 → bulk_chain-0.25.0}/PKG-INFO +37 -25
  2. {bulk_chain-0.24.1 → bulk_chain-0.25.0}/README.md +36 -23
  3. bulk_chain-0.25.0/bulk_chain/api.py +79 -0
  4. bulk_chain-0.25.0/bulk_chain/core/llm_base.py +52 -0
  5. {bulk_chain-0.24.1 → bulk_chain-0.25.0}/bulk_chain/core/service_args.py +25 -6
  6. bulk_chain-0.25.0/bulk_chain/core/service_batch.py +51 -0
  7. {bulk_chain-0.24.1 → bulk_chain-0.25.0}/bulk_chain/core/service_data.py +4 -0
  8. bulk_chain-0.25.0/bulk_chain/core/service_dict.py +10 -0
  9. bulk_chain-0.25.0/bulk_chain/core/service_json.py +10 -0
  10. {bulk_chain-0.24.1 → bulk_chain-0.25.0}/bulk_chain/core/service_llm.py +9 -9
  11. {bulk_chain-0.24.1 → bulk_chain-0.25.0}/bulk_chain/core/service_schema.py +1 -2
  12. bulk_chain-0.25.0/bulk_chain/infer.py +191 -0
  13. {bulk_chain-0.24.1 → bulk_chain-0.25.0}/bulk_chain.egg-info/PKG-INFO +37 -25
  14. {bulk_chain-0.24.1 → bulk_chain-0.25.0}/bulk_chain.egg-info/SOURCES.txt +4 -3
  15. {bulk_chain-0.24.1 → bulk_chain-0.25.0}/setup.py +1 -1
  16. bulk_chain-0.25.0/test/test_api.py +42 -0
  17. bulk_chain-0.25.0/test/test_cmdargs.py +20 -0
  18. bulk_chain-0.24.1/bulk_chain/core/llm_base.py +0 -13
  19. bulk_chain-0.24.1/bulk_chain/core/provider_sqlite.py +0 -78
  20. bulk_chain-0.24.1/bulk_chain/core/service_csv.py +0 -57
  21. bulk_chain-0.24.1/bulk_chain/core/service_json.py +0 -26
  22. bulk_chain-0.24.1/bulk_chain/infer.py +0 -173
  23. bulk_chain-0.24.1/bulk_chain.egg-info/requires.txt +0 -1
  24. bulk_chain-0.24.1/test/test_cmdargs.py +0 -9
  25. {bulk_chain-0.24.1 → bulk_chain-0.25.0}/LICENSE +0 -0
  26. {bulk_chain-0.24.1 → bulk_chain-0.25.0}/bulk_chain/__init__.py +0 -0
  27. {bulk_chain-0.24.1 → bulk_chain-0.25.0}/bulk_chain/core/__init__.py +0 -0
  28. {bulk_chain-0.24.1 → bulk_chain-0.25.0}/bulk_chain/core/utils.py +0 -0
  29. {bulk_chain-0.24.1 → bulk_chain-0.25.0}/bulk_chain.egg-info/dependency_links.txt +0 -0
  30. {bulk_chain-0.24.1 → bulk_chain-0.25.0}/bulk_chain.egg-info/top_level.txt +0 -0
  31. {bulk_chain-0.24.1 → bulk_chain-0.25.0}/setup.cfg +0 -0
  32. {bulk_chain-0.24.1 → bulk_chain-0.25.0}/test/test_args_seeking.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: bulk_chain
3
- Version: 0.24.1
3
+ Version: 0.25.0
4
4
  Summary: A lightweight, no-strings-attached Chain-of-Thought framework for your LLM, ensuring reliable results for bulk input requests.
5
5
  Home-page: https://github.com/nicolay-r/bulk-chain
6
6
  Author: Nicolay Rusnachenko
@@ -15,32 +15,42 @@ Classifier: Topic :: Text Processing :: Linguistic
15
15
  Requires-Python: >=3.6
16
16
  Description-Content-Type: text/markdown
17
17
  License-File: LICENSE
18
- Requires-Dist: tqdm
19
18
 
20
- # bulk-chain 0.24.1
19
+ # bulk-chain 0.25.0
21
20
  ![](https://img.shields.io/badge/Python-3.9-brightgreen.svg)
22
21
  [![](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/nicolay-r/bulk-chain/blob/master/bulk_chain_tutorial.ipynb)
23
22
  [![twitter](https://img.shields.io/twitter/url/https/shields.io.svg?style=social)](https://x.com/nicolayr_/status/1847969224636961033)
23
+ [![PyPI downloads](https://img.shields.io/pypi/dm/bulk-chain.svg)](https://pypistats.org/packages/bulk-chain)
24
24
 
25
25
  <p align="center">
26
26
  <img src="logo.png"/>
27
27
  </p>
28
28
 
29
- A lightweight, no-strings-attached **[Chain-of-Thought](https://arxiv.org/abs/2201.11903) framework** for your LLM, ensuring reliable results for bulk input requests stored in `CSV` / `JSONL` / `sqlite`.
30
- It allows applying series of prompts formed into `schema` (See [related section](#chain-of-thought-schema))
29
+ A lightweight, no-strings-attached **framework** for your LLM that allows applying [Chain-of-Thought](https://arxiv.org/abs/2201.11903) prompt `schema` (See [related section](#chain-of-thought-schema)) towards a massive textual collections.
31
30
 
32
- ### Features
31
+ ### Main Features
33
32
  * ✅ **No-strings**: you're free to LLM dependencies and flexible `venv` customization.
34
- * ✅ **Provides iterator over infinite amount of input contexts** served in `CSV`/`JSONL`.
35
- * ✅ **Progress caching**: withstanding exception during LLM calls by using `sqlite3` engine for caching LLM answers;
36
33
  * ✅ **Support schemas descriptions** for Chain-of-Thought concept.
34
+ * ✅ **Provides iterator over infinite amount of input contexts** served in `CSV`/`JSONL`.
35
+
36
+ ### Extra Features
37
+ * ✅ **Progress caching [for remote LLMs]**: withstanding exception during LLM calls by using `sqlite3` engine for caching LLM answers;
38
+
37
39
 
38
40
  # Installation
39
41
 
42
+ From PyPI:
43
+
40
44
  ```bash
41
45
  pip install bulk-chain
42
46
  ```
43
47
 
48
+ or latest version from here:
49
+
50
+ ```bash
51
+ pip install git+https://github.com/nicolay-r/bulk-chain@master
52
+ ```
53
+
44
54
  ## Chain-of-Thought Schema
45
55
 
46
56
  To declare Chain-of-Though (CoT) schema, this project exploits `JSON` format.
@@ -63,35 +73,37 @@ Below, is an example on how to declare your own schema:
63
73
  }
64
74
  ```
65
75
 
66
- Another templates are available [here](/ext/schema/thor_cot_schema.json).
76
+ Another templates are available [here](/ext/schema/).
67
77
 
68
78
  # Usage
69
79
 
70
- Just **three** simple steps:
80
+ Preliminary steps:
71
81
 
72
- 1. Define your [CoT Schema](#chain-of-thought-schema), or fetch it as shown below:
73
- ```bash
74
- !wget https://raw.githubusercontent.com/nicolay-r/bulk-chain/refs/heads/master/ext/schema/default.json
75
- ```
76
- 2. Fetch or write your own **model** or pick the one [preset here](/ext/):
77
- ```bash
78
- !wget https://raw.githubusercontent.com/nicolay-r/bulk-chain/refs/heads/master/ext/flan_t5.py
79
- ```
82
+ 1. Define your [schema](#chain-of-thought-schema) ([Example for Sentiment Analysis](/ext/schema/thor_cot_schema.json)))
83
+ 2. Wrap or pick **LLM model** from the [list of presets](/ext/).
84
+
85
+ ## API
86
+
87
+ Please take a look at the [**related Wiki page**](https://github.com/nicolay-r/bulk-chain/wiki)
88
+
89
+ ## Shell
90
+
91
+ > **NOTE:** You have to install `source-iter` package
80
92
 
81
- 3. Launch inference in (chat mode):
82
93
  ```bash
83
- !python -m bulk_chain.infer \
84
- --schema "default.json" \
85
- --adapter "dynamic:flan_t5.py:FlanT5" \
86
- %% \
87
- --device "cpu" \
94
+ python3 -m bulk_chain.infer \
95
+ --src "<PATH-TO-YOUR-CSV-or-JSONL>" \
96
+ --schema "ext/schema/default.json" \
97
+ --adapter "dynamic:ext/replicate.py:Replicate" \
98
+ %%m \
99
+ --api_token "<REPLICATE-API-TOKEN>" \
88
100
  --temp 0.1
89
101
  ```
90
102
 
91
103
  # Embed your LLM
92
104
 
93
105
  All you have to do is to implement `BaseLM` class, that includes:
94
- * `__init__` -- for initialization;
106
+ * `__init__` -- for setting up *batching mode support* and (optional) *model name*;
95
107
  * `ask(prompt)` -- infer your model with the given `prompt`.
96
108
 
97
109
  See examples with models [here](/ext).
@@ -1,27 +1,38 @@
1
- # bulk-chain 0.24.1
1
+ # bulk-chain 0.25.0
2
2
  ![](https://img.shields.io/badge/Python-3.9-brightgreen.svg)
3
3
  [![](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/nicolay-r/bulk-chain/blob/master/bulk_chain_tutorial.ipynb)
4
4
  [![twitter](https://img.shields.io/twitter/url/https/shields.io.svg?style=social)](https://x.com/nicolayr_/status/1847969224636961033)
5
+ [![PyPI downloads](https://img.shields.io/pypi/dm/bulk-chain.svg)](https://pypistats.org/packages/bulk-chain)
5
6
 
6
7
  <p align="center">
7
8
  <img src="logo.png"/>
8
9
  </p>
9
10
 
10
- A lightweight, no-strings-attached **[Chain-of-Thought](https://arxiv.org/abs/2201.11903) framework** for your LLM, ensuring reliable results for bulk input requests stored in `CSV` / `JSONL` / `sqlite`.
11
- It allows applying series of prompts formed into `schema` (See [related section](#chain-of-thought-schema))
11
+ A lightweight, no-strings-attached **framework** for your LLM that allows applying [Chain-of-Thought](https://arxiv.org/abs/2201.11903) prompt `schema` (See [related section](#chain-of-thought-schema)) towards a massive textual collections.
12
12
 
13
- ### Features
13
+ ### Main Features
14
14
  * ✅ **No-strings**: you're free to LLM dependencies and flexible `venv` customization.
15
- * ✅ **Provides iterator over infinite amount of input contexts** served in `CSV`/`JSONL`.
16
- * ✅ **Progress caching**: withstanding exception during LLM calls by using `sqlite3` engine for caching LLM answers;
17
15
  * ✅ **Support schemas descriptions** for Chain-of-Thought concept.
16
+ * ✅ **Provides iterator over infinite amount of input contexts** served in `CSV`/`JSONL`.
17
+
18
+ ### Extra Features
19
+ * ✅ **Progress caching [for remote LLMs]**: withstanding exception during LLM calls by using `sqlite3` engine for caching LLM answers;
20
+
18
21
 
19
22
  # Installation
20
23
 
24
+ From PyPI:
25
+
21
26
  ```bash
22
27
  pip install bulk-chain
23
28
  ```
24
29
 
30
+ or latest version from here:
31
+
32
+ ```bash
33
+ pip install git+https://github.com/nicolay-r/bulk-chain@master
34
+ ```
35
+
25
36
  ## Chain-of-Thought Schema
26
37
 
27
38
  To declare Chain-of-Though (CoT) schema, this project exploits `JSON` format.
@@ -44,35 +55,37 @@ Below, is an example on how to declare your own schema:
44
55
  }
45
56
  ```
46
57
 
47
- Another templates are available [here](/ext/schema/thor_cot_schema.json).
58
+ Another templates are available [here](/ext/schema/).
48
59
 
49
60
  # Usage
50
61
 
51
- Just **three** simple steps:
62
+ Preliminary steps:
52
63
 
53
- 1. Define your [CoT Schema](#chain-of-thought-schema), or fetch it as shown below:
54
- ```bash
55
- !wget https://raw.githubusercontent.com/nicolay-r/bulk-chain/refs/heads/master/ext/schema/default.json
56
- ```
57
- 2. Fetch or write your own **model** or pick the one [preset here](/ext/):
58
- ```bash
59
- !wget https://raw.githubusercontent.com/nicolay-r/bulk-chain/refs/heads/master/ext/flan_t5.py
60
- ```
64
+ 1. Define your [schema](#chain-of-thought-schema) ([Example for Sentiment Analysis](/ext/schema/thor_cot_schema.json)))
65
+ 2. Wrap or pick **LLM model** from the [list of presets](/ext/).
66
+
67
+ ## API
68
+
69
+ Please take a look at the [**related Wiki page**](https://github.com/nicolay-r/bulk-chain/wiki)
70
+
71
+ ## Shell
72
+
73
+ > **NOTE:** You have to install `source-iter` package
61
74
 
62
- 3. Launch inference in (chat mode):
63
75
  ```bash
64
- !python -m bulk_chain.infer \
65
- --schema "default.json" \
66
- --adapter "dynamic:flan_t5.py:FlanT5" \
67
- %% \
68
- --device "cpu" \
76
+ python3 -m bulk_chain.infer \
77
+ --src "<PATH-TO-YOUR-CSV-or-JSONL>" \
78
+ --schema "ext/schema/default.json" \
79
+ --adapter "dynamic:ext/replicate.py:Replicate" \
80
+ %%m \
81
+ --api_token "<REPLICATE-API-TOKEN>" \
69
82
  --temp 0.1
70
83
  ```
71
84
 
72
85
  # Embed your LLM
73
86
 
74
87
  All you have to do is to implement `BaseLM` class, that includes:
75
- * `__init__` -- for initialization;
88
+ * `__init__` -- for setting up *batching mode support* and (optional) *model name*;
76
89
  * `ask(prompt)` -- infer your model with the given `prompt`.
77
90
 
78
91
  See examples with models [here](/ext).
@@ -0,0 +1,79 @@
1
+ import os
2
+ from itertools import chain
3
+
4
+ from bulk_chain.core.llm_base import BaseLM
5
+ from bulk_chain.core.service_batch import BatchIterator, BatchService
6
+ from bulk_chain.core.service_data import DataService
7
+ from bulk_chain.core.service_dict import DictionaryService
8
+ from bulk_chain.core.service_json import JsonService
9
+ from bulk_chain.core.service_schema import SchemaService
10
+
11
+
12
+ INFER_MODES = {
13
+ "default": lambda llm, prompt, limit_prompt=None: llm.ask_core(
14
+ prompt[:limit_prompt] if limit_prompt is not None else prompt),
15
+ "batch": lambda llm, batch, limit_prompt=None: llm.ask_core(
16
+ DataService.limit_prompts(batch, limit=limit_prompt))
17
+ }
18
+
19
+
20
+ CWD = os.getcwd()
21
+
22
+
23
+ def _update_batch_content(c, batch, schema, infer_func):
24
+ assert (isinstance(batch, list))
25
+ assert (isinstance(c, str))
26
+
27
+ if c in schema.p2r:
28
+ for batch_item in batch:
29
+ batch_item[c] = DataService.get_prompt_text(prompt=batch_item[c]["prompt"], data_dict=batch_item)
30
+ if c in schema.r2p:
31
+ p_column = schema.r2p[c]
32
+ # This instruction takes a lot of time in a non-batching mode.
33
+ BatchService.handle_param_as_batch(batch=batch,
34
+ src_param=p_column,
35
+ tgt_param=c,
36
+ handle_func=lambda b: infer_func(b))
37
+
38
+
39
+ def _infer_batch(batch, schema, infer_func, cols=None):
40
+ assert (isinstance(batch, list))
41
+ assert (callable(infer_func))
42
+
43
+ if len(batch) == 0:
44
+ return batch
45
+
46
+ if cols is None:
47
+ first_item = batch[0]
48
+ cols = first_item.keys() if cols is None else cols
49
+
50
+ for c in cols:
51
+ _update_batch_content(c=c, batch=batch, schema=schema, infer_func=infer_func)
52
+
53
+ return batch
54
+
55
+
56
+ def iter_content(input_dicts_it, llm, schema, batch_size=1, return_batch=True, limit_prompt=None):
57
+ """ This method represent Python API aimed at application of `llm` towards
58
+ iterator of input_dicts via cache_target that refers to the SQLite using
59
+ the given `schema`
60
+ """
61
+ assert (isinstance(llm, BaseLM))
62
+
63
+ # Quick initialization of the schema.
64
+ if isinstance(schema, str):
65
+ schema = JsonService.read(schema)
66
+ if isinstance(schema, dict):
67
+ schema = SchemaService(json_data=schema)
68
+
69
+ prompts_it = map(
70
+ lambda data: DictionaryService.custom_update(src_dict=data, other_dict=schema.cot_args),
71
+ input_dicts_it
72
+ )
73
+
74
+ content_it = (_infer_batch(batch=batch,
75
+ infer_func=lambda batch: INFER_MODES["batch"](llm, batch, limit_prompt),
76
+ schema=schema)
77
+ for batch in BatchIterator(prompts_it, batch_size=batch_size))
78
+
79
+ yield from content_it if return_batch else chain.from_iterable(content_it)
@@ -0,0 +1,52 @@
1
+ import logging
2
+ import time
3
+
4
+ from bulk_chain.core.utils import format_model_name
5
+
6
+
7
+ class BaseLM(object):
8
+
9
+ def __init__(self, name=None, attempts=None, delay_sec=1, enable_log=True,
10
+ support_batching=False, **kwargs):
11
+
12
+ self.__name = name
13
+ self.__attempts = 1 if attempts is None else attempts
14
+ self.__delay_sec = delay_sec
15
+ self.__support_batching = support_batching
16
+
17
+ if enable_log:
18
+ self.__logger = logging.getLogger(__name__)
19
+ logging.basicConfig(level=logging.INFO)
20
+
21
+ def ask_core(self, batch):
22
+
23
+ for i in range(self.__attempts):
24
+ try:
25
+ if self.__support_batching:
26
+ # Launch in batch mode.
27
+ content = self.ask(batch)
28
+ else:
29
+ # Launch in non-batch mode.
30
+ assert len(batch) == 1, "The LM does not support batching," \
31
+ f" while size of the content is {len(batch)} which is not equal 1. " \
32
+ f"Please enable batch-supporting or set required inference settings."
33
+ content = batch[0]
34
+
35
+ response = self.ask(content)
36
+
37
+ # Wrapping into batch the response in the case of non-batching mode.
38
+ return response if self.__support_batching else [response]
39
+
40
+ except Exception as e:
41
+ if self.__logger is not None:
42
+ self.__logger.info("Unable to infer the result. Try {} out of {}.".format(i, self.__attempts))
43
+ self.__logger.info(e)
44
+ time.sleep(self.__delay_sec)
45
+
46
+ raise Exception("Can't infer")
47
+
48
+ def ask(self, content):
49
+ raise NotImplemented()
50
+
51
+ def name(self):
52
+ return format_model_name(self.__name)
@@ -33,14 +33,33 @@ class CmdArgsService:
33
33
  yield __release()
34
34
 
35
35
  @staticmethod
36
- def partition_list(lst, sep):
36
+ def __find_suffix_ind(lst, idx_from, end_prefix):
37
+ for i in range(idx_from, len(lst)):
38
+ if lst[i].startswith(end_prefix):
39
+ return i
40
+ return len(lst)
41
+
42
+ @staticmethod
43
+ def extract_native_args(lst, end_prefix):
44
+ return lst[:CmdArgsService.__find_suffix_ind(lst, idx_from=0, end_prefix=end_prefix)]
45
+
46
+ @staticmethod
47
+ def find_grouped_args(lst, starts_with, end_prefix):
37
48
  """Slices a list in two, cutting on index matching "sep"
38
49
  """
39
- if sep in lst:
40
- idx = lst.index(sep)
41
- return (lst[:idx], lst[idx+1:])
42
- else:
43
- return (lst[:], None)
50
+
51
+ # Checking the presence of starts_with.
52
+ # We have to return empty content in the case of absence starts_with in the lst.
53
+ if starts_with not in lst:
54
+ return []
55
+
56
+ # Assigning start index.
57
+ idx_from = lst.index(starts_with) + 1
58
+
59
+ # Assigning end index.
60
+ idx_to = CmdArgsService.__find_suffix_ind(lst, idx_from=idx_from, end_prefix=end_prefix)
61
+
62
+ return lst[idx_from:idx_to]
44
63
 
45
64
  @staticmethod
46
65
  def args_to_dict(args):
@@ -0,0 +1,51 @@
1
+ class BatchService(object):
2
+
3
+ @staticmethod
4
+ def handle_param_as_batch(batch, src_param, tgt_param, handle_func):
5
+ assert (isinstance(batch, list))
6
+ assert (isinstance(src_param, str))
7
+ assert (callable(handle_func))
8
+
9
+ _batch = [item[src_param] for item in batch]
10
+
11
+ # Do handling for the batch.
12
+ _handled_batch = handle_func(_batch)
13
+ assert (isinstance(_handled_batch, list))
14
+
15
+ # Apply changes.
16
+ for i, item in enumerate(batch):
17
+ item[tgt_param] = _handled_batch[i]
18
+
19
+
20
+ class BatchIterator:
21
+
22
+ def __init__(self, data_iter, batch_size, end_value=None):
23
+ assert(isinstance(batch_size, int) and batch_size > 0)
24
+ assert(callable(end_value) or end_value is None)
25
+ self.__data_iter = data_iter
26
+ self.__index = 0
27
+ self.__batch_size = batch_size
28
+ self.__end_value = end_value
29
+
30
+ def __iter__(self):
31
+ return self
32
+
33
+ def __next__(self):
34
+ buffer = []
35
+ while True:
36
+ try:
37
+ data = next(self.__data_iter)
38
+ except StopIteration:
39
+ break
40
+ buffer.append(data)
41
+ if len(buffer) == self.__batch_size:
42
+ break
43
+
44
+ if len(buffer) > 0:
45
+ self.__index += 1
46
+ return buffer
47
+
48
+ if self.__end_value is None:
49
+ raise StopIteration
50
+ else:
51
+ return self.__end_value()
@@ -20,3 +20,7 @@ class DataService(object):
20
20
  field_names = list(parse_fields_func(prompt))
21
21
  return DataService.compose_prompt_text(
22
22
  prompt=prompt, data_dict=data_dict, field_names=field_names)
23
+
24
+ @staticmethod
25
+ def limit_prompts(prompts_list, limit=None):
26
+ return [p[:limit] if limit is not None else p for p in prompts_list]
@@ -0,0 +1,10 @@
1
+ class DictionaryService:
2
+
3
+ @staticmethod
4
+ def custom_update(src_dict, other_dict):
5
+ for k, v in other_dict.items():
6
+ if k in src_dict:
7
+ raise Exception(f"The key `{k}` is already defined in both dicts with values: "
8
+ f"`{src_dict[k]}` (src) and `{v}` (other)")
9
+ src_dict[k] = v
10
+ return src_dict
@@ -0,0 +1,10 @@
1
+ import json
2
+
3
+
4
+ class JsonService(object):
5
+
6
+ @staticmethod
7
+ def read(src):
8
+ assert (isinstance(src, str))
9
+ with open(src, "r") as f:
10
+ return json.load(f)
@@ -4,9 +4,6 @@ from bulk_chain.core.llm_base import BaseLM
4
4
  from bulk_chain.core.service_data import DataService
5
5
  from bulk_chain.core.utils import iter_params
6
6
 
7
- logger = logging.getLogger(__name__)
8
- logging.basicConfig(level=logging.INFO)
9
-
10
7
 
11
8
  def pad_str(text, pad):
12
9
  return text.rjust(len(text) + pad, ' ')
@@ -27,9 +24,12 @@ def nice_output(text, width, pad=4, remove_new_line=False):
27
24
 
28
25
 
29
26
  def chat_with_lm(lm, chain=None, model_name=None):
30
- assert(isinstance(lm, BaseLM))
31
- assert(isinstance(chain, list))
32
- assert(isinstance(model_name, str) or model_name is None)
27
+ assert (isinstance(lm, BaseLM))
28
+ assert (isinstance(chain, list))
29
+ assert (isinstance(model_name, str) or model_name is None)
30
+
31
+ logger = logging.getLogger(__name__)
32
+ logging.basicConfig(level=logging.INFO)
33
33
 
34
34
  do_exit = False
35
35
  model_name = model_name if model_name is not None else "agent"
@@ -74,9 +74,9 @@ def chat_with_lm(lm, chain=None, model_name=None):
74
74
  logger.info(nice_output(actual_prompt, pad=pad*2, remove_new_line=True, width=80))
75
75
 
76
76
  # Response.
77
- response = lm.ask(actual_prompt)
77
+ response_batch = lm.ask_core(batch=[actual_prompt])
78
78
  logger.info(pad_str(f"{model_name} (resp)->", pad=pad))
79
- logger.info(nice_output(response, pad=pad*2, remove_new_line=False, width=80))
79
+ logger.info(nice_output(response_batch[0], pad=pad * 2, remove_new_line=False, width=80))
80
80
 
81
81
  # Collecting the answer for the next turn.
82
- data_dict[prompt_args["out"]] = response
82
+ data_dict[prompt_args["out"]] = response_batch[0]
@@ -2,12 +2,11 @@ class SchemaService(object):
2
2
 
3
3
  def __init__(self, json_data):
4
4
  self.src = json_data
5
- self.name = self.src["name"]
6
5
  self.r2p, self.p2r, self.cot_args, self.chain = SchemaService.__init_schema(prompts=json_data["schema"])
7
6
 
8
7
  @classmethod
9
8
  def from_prompt(cls, prompt):
10
- prompt_schema = {"name": "prompt", "schema": [{"prompt": prompt, "out": "response", "in": "prompt"}]}
9
+ prompt_schema = {"schema": [{"prompt": prompt, "out": "response", "in": "prompt"}]}
11
10
  return cls(prompt_schema)
12
11
 
13
12
  @staticmethod