buildz 0.6.58__tar.gz → 0.6.60__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {buildz-0.6.58/buildz.egg-info → buildz-0.6.60}/PKG-INFO +1 -1
- {buildz-0.6.58 → buildz-0.6.60}/buildz/__init__.py +1 -1
- buildz-0.6.60/buildz/gpuz/test/report.txt +50 -0
- buildz-0.6.60/buildz/gpuz/test/test_middle.py +118 -0
- buildz-0.6.60/buildz/gpuz/test/test_middle_conv.py +118 -0
- buildz-0.6.60/buildz/gpuz/test/test_middle_conv1.py +120 -0
- buildz-0.6.60/buildz/gpuz/torch/__init__.py +8 -0
- buildz-0.6.60/buildz/gpuz/torch/middlez.py +181 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/netz/mhttp/__init__.py +1 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/netz/mhttp/caps.py +6 -28
- buildz-0.6.60/buildz/netz/mhttp/gateway.py +90 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/netz/mhttp/mhttp.py +23 -15
- buildz-0.6.60/buildz/netz/mhttp/mhttps.py +28 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/netz/mhttp/proxy.py +32 -13
- buildz-0.6.60/buildz/netz/test/test_gw.py +33 -0
- {buildz-0.6.58 → buildz-0.6.60/buildz.egg-info}/PKG-INFO +1 -1
- {buildz-0.6.58 → buildz-0.6.60}/buildz.egg-info/SOURCES.txt +9 -0
- {buildz-0.6.58 → buildz-0.6.60}/setup.py +1 -1
- {buildz-0.6.58 → buildz-0.6.60}/LICENSE +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/MANIFEST.in +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/README.md +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/__main__.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/argx.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/argz/__init__.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/argz/argz.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/argz/callz.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/argz/conf_argz.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/argz/conf_callz.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/argz/evalx.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/argz/init.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/argz/test.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/argz/test_call.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/argz_bk/__init__.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/argz_bk/argz.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/argz_bk/build.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/argz_bk/callz.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/argz_bk/evalx.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/argz_bk/test.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/argz_bk/test_obj.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/argz_bk/tests/conf.js +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/argz_bk/testx.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/auto/__init__.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/auto/cache.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/auto/config.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/auto/dbs.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/auto/deal.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/auto/deal_list.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/auto/deal_type.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/auto/defs.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/auto/factory.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/auto/init.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/auto/log.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/auto/request.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/auto/run.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/auto/save.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/auto/test/res/cache/cache.js +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/auto/test/res/config/base.js +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/auto/test/res/config/config.js +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/auto/test/res/data/fp.js +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/auto/test/res/data/item1.js +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/auto/test/res/data/item2.js +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/auto/test/res/data/test.js +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/auto/test/test.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/auto/test/xtest.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/auto/verify.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/base.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/cachez/__init__.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/cachez/cache.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/cmd.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/confz.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/db/__init__.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/db/__main__.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/db/dv/__init__.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/db/dv/basez.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/db/dv/clickhousez.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/db/dv/lib/readme +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/db/dv/mysqlz.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/db/dv/oraclez.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/db/dv/orm.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/db/dv/postgresqlz.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/db/dv/sqlite3z.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/db/dv/structz.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/db/install.txt +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/db/run.conf +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/db/runz.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/db/tls.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/demo/ioc/deal.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/demo/ioc/help.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/demo/myers/deal.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/demo/myers/help.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/demo/res/conf/ioc.js +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/demo/res/conf/main.js +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/demo/res/conf/myers.js +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/demo/res/conf/search.js +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/demo/res/conf/xf.js +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/demo/res/help/default.js +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/demo/res/help/ioc.js +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/demo/res/help/myers.js +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/demo/res/help/search.js +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/demo/res/help/xf.js +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/demo/res/test.js +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/demo/search/deal.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/demo/search/help.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/demo/test.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/demo/xf/deal.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/demo/xf/help.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/dz/__init__.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/dz/mapz.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/evalz/__init__.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/evalz/evalz.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/evalz/res/default.js +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/evalz/test.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/fz/__init__.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/fz/dirz.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/fz/fhs.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/fz/fio.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/fz/lsf.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/html/__init__.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/html/test/demo.html +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/html/test/test.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/html/xml.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/ioc/__init__.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/ioc/base.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/ioc/init.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/ioc/ioc/base.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/ioc/ioc/conf.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/ioc/ioc/confs.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/ioc/ioc/decorator.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/ioc/ioc/loads.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/ioc/ioc/single.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/ioc/ioc_deal/base.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/ioc/ioc_deal/branch.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/ioc/ioc_deal/call.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/ioc/ioc_deal/calls.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/ioc/ioc_deal/conf/branch_lists.js +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/ioc/ioc_deal/conf/call_defaults.js +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/ioc/ioc_deal/conf/call_lists.js +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/ioc/ioc_deal/conf/calls_defaults.js +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/ioc/ioc_deal/conf/calls_lists.js +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/ioc/ioc_deal/conf/deal_lists.js +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/ioc/ioc_deal/conf/deals.js +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/ioc/ioc_deal/conf/env_lists.js +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/ioc/ioc_deal/conf/ioc_lists.js +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/ioc/ioc_deal/conf/iocf_lists.js +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/ioc/ioc_deal/conf/join_lists.js +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/ioc/ioc_deal/conf/list_lists.js +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/ioc/ioc_deal/conf/map_lists.js +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/ioc/ioc_deal/conf/mcall_defaults.js +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/ioc/ioc_deal/conf/mcall_lists.js +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/ioc/ioc_deal/conf/obj_cst_lists.js +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/ioc/ioc_deal/conf/obj_defaults.js +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/ioc/ioc_deal/conf/obj_lists.js +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/ioc/ioc_deal/conf/obj_set_lists.js +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/ioc/ioc_deal/conf/ovar_lists.js +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/ioc/ioc_deal/conf/ref_lists.js +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/ioc/ioc_deal/conf/refs_lists.js +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/ioc/ioc_deal/conf/var_lists.js +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/ioc/ioc_deal/conf/xfile_defaults.js +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/ioc/ioc_deal/conf/xfile_lists.js +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/ioc/ioc_deal/deal.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/ioc/ioc_deal/demo.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/ioc/ioc_deal/env.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/ioc/ioc_deal/init.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/ioc/ioc_deal/ioc.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/ioc/ioc_deal/iocf.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/ioc/ioc_deal/join.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/ioc/ioc_deal/list.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/ioc/ioc_deal/map.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/ioc/ioc_deal/mcall.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/ioc/ioc_deal/obj.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/ioc/ioc_deal/ovar.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/ioc/ioc_deal/ref.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/ioc/ioc_deal/refs.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/ioc/ioc_deal/val.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/ioc/ioc_deal/var.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/ioc/ioc_deal/xfile.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/ioc/wrap.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/iocz/__init__.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/iocz/base.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/iocz/conf/base.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/iocz/conf/conf.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/iocz/conf/mg.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/iocz/conf/unit.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/iocz/conf/up.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/iocz/conf_deal/attr.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/iocz/conf_deal/base.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/iocz/conf_deal/call.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/iocz/conf_deal/cvar.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/iocz/conf_deal/deal.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/iocz/conf_deal/env.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/iocz/conf_deal/ioc.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/iocz/conf_deal/method.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/iocz/conf_deal/obj.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/iocz/conf_deal/ref.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/iocz/conf_deal/val.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/iocz/init.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/iocz/ioc/__init__.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/iocz/ioc/base.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/iocz/ioc/builds.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/iocz/ioc/confs.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/iocz/ioc/datas.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/iocz/ioc/dataset.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/iocz/ioc/encapes.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/iocz/ioc/envs.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/iocz/ioc/ids.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/iocz/ioc/init.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/iocz/ioc/mg.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/iocz/ioc/single.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/iocz/ioc/sys_envs.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/iocz/ioc/tdata.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/iocz/ioc/tdict.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/iocz/ioc/unit.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/iocz/ioc/vars.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/iocz/ioc_deal/base.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/iocz/ioc_deal/deal.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/iocz/ioc_deal/ioc.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/iocz/ioc_deal/obj.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/iocz/ioc_deal/ref.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/iocz/ioc_deal/val.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/iocz/test/test.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/iocz/wrap/base.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/iocz/wrap/default_wraps.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/iocz/wrap/env.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/iocz/wrap/obj.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/iocz/wrap/wraps.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/logz.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/netz/__init__.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/netz/mhttp/record.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/netz/sslz/__init__.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/netz/sslz/gen.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/netz/sslz/gen.pyi +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/netz/test/__main__.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/netz/test/test.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/netz/test/test_cli.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/pathz.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/pyz.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/tls.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/tools.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/tz/__init__.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/tz/myers_diff.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/tz/test_xfind.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/tz/time/__init__.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/tz/time/timez.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/tz/tio/__init__.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/tz/tio/base.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/tz/tio/getch.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/tz/tio/lx.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/tz/tio/test.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/tz/tio/win.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/tz/xfind.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/__init__.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/__main__.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/base.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/code.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/code_modify.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/copy_old.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/file.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/loader/base.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/loader/buffer.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/loader/deal/listz.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/loader/deal/lr.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/loader/deal/lrval.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/loader/deal/mapz.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/loader/deal/nextz.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/loader/deal/reval.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/loader/deal/setz.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/loader/deal/spc.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/loader/deal/spt.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/loader/deal/strz.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/loader/exp.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/loader/item.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/loader/mg.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/loader/pos.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/loaderz/base.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/loaderz/buffer.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/loaderz/deal/listmapz.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/loaderz/deal/listz.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/loaderz/deal/lr.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/loaderz/deal/lrval.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/loaderz/deal/mapz.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/loaderz/deal/nextz.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/loaderz/deal/reval.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/loaderz/deal/setz.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/loaderz/deal/spc.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/loaderz/deal/spt.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/loaderz/deal/strz.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/loaderz/deal/strz_new.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/loaderz/deal/strz_old.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/loaderz/exp.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/loaderz/item.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/loaderz/mg.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/loaderz/pos.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/loaderz/test.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/loaderz/test1.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/loaderz_nexp/base.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/loaderz_nexp/buffer.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/loaderz_nexp/deal/listmapz.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/loaderz_nexp/deal/listz.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/loaderz_nexp/deal/lr.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/loaderz_nexp/deal/lrval.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/loaderz_nexp/deal/mapz.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/loaderz_nexp/deal/nextz.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/loaderz_nexp/deal/reval.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/loaderz_nexp/deal/setz.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/loaderz_nexp/deal/spc.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/loaderz_nexp/deal/spt.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/loaderz_nexp/deal/strz.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/loaderz_nexp/deal/strz_new.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/loaderz_nexp/deal/strz_old.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/loaderz_nexp/exp.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/loaderz_nexp/item.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/loaderz_nexp/mg.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/loaderz_nexp/pos.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/loaderz_nexp/test.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/loaderz_nexp/test1.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/mapz.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/read.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/readz.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/readz_nexp.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/stack.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/write.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/writer/base.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/writer/conf.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/writer/deal/jsonval.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/writer/deal/listmapz.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/writer/deal/listz.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/writer/deal/mapz.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/writer/deal/reval.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/writer/deal/strz.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/writer/itemz.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/writer/mg.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/writerz/base.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/writerz/conf.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/writerz/deal/jsonval.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/writerz/deal/listmapz.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/writerz/deal/listz.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/writerz/deal/mapz.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/writerz/deal/reval.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/writerz/deal/strz.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/writerz/itemz.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/writerz/mg.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/writerz/test.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/writerz/testx.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/writez.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xf/xargs.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xz/__init__.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xz/conf.js +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xz/data.js +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xz/test.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz/xz/trs.py +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz.egg-info/dependency_links.txt +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/buildz.egg-info/top_level.txt +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/notes/notes.txt +0 -0
- {buildz-0.6.58 → buildz-0.6.60}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: buildz
|
3
|
-
Version: 0.6.
|
3
|
+
Version: 0.6.60
|
4
4
|
Summary: 配置读写(基于json格式进行简化)、ioc、以及其他工具代码。a json-base file format's read and write code by python, and codes to read and product object from configure file in such format(ioc), and other tool codes
|
5
5
|
Home-page: https://github.com/buildCodeZ/buildz
|
6
6
|
Author: Zzz
|
@@ -0,0 +1,50 @@
|
|
1
|
+
|
2
|
+
测试结果:
|
3
|
+
结论是:大概能达到纯显卡(75W,更高的没测)二分之一或三分之一的性能,显存不够的可以用用,主要是卷积层,卷积层cpu计算耗时很大,并且神经网络参数相对较少,线性层感觉cpu和显卡本来就差不太多
|
4
|
+
|
5
|
+
环境:
|
6
|
+
笔记本(游戏本)
|
7
|
+
显卡: RTX4060 8GB 75W残血版
|
8
|
+
CPU: i7-13700H
|
9
|
+
内存: 16GB
|
10
|
+
|
11
|
+
1)线性层测试:
|
12
|
+
模型:
|
13
|
+
float32,120层,每层的输入输出维度都是2000,数据量1.789GB,每个线性层后面加一个LeakyReLU激活函数
|
14
|
+
数据:
|
15
|
+
60个数据,每个数据2000维度,分成两个批量(每个批量30个数据),数据量0.000447GB
|
16
|
+
|
17
|
+
训练一次(两个批量的数据)平均耗时
|
18
|
+
纯显卡: 4.13秒
|
19
|
+
纯CPU耗时: 14.7秒
|
20
|
+
模型分层,轮流传显卡里计算: 3.67秒(因为显存足够,实际上等于纯显卡)
|
21
|
+
模型分层,显卡已经被使用2.3GB: 6.5秒
|
22
|
+
模型分层,显卡已经被使用3.9GB: 9.5秒
|
23
|
+
|
24
|
+
2)卷积测试:
|
25
|
+
模型:
|
26
|
+
float32,60层,卷积核输入输出channel都是3,卷积核大小5,数据量0.00005GB,每个线性层后面加一个LeakyReLU激活函数
|
27
|
+
数据:
|
28
|
+
20个数据,每个数据3个通道*512宽*512高,分成两个批量(每个批量10个数据),数据量0.059GB
|
29
|
+
|
30
|
+
训练一次(两个批量的数据)平均耗时
|
31
|
+
纯显卡: 1.52秒
|
32
|
+
纯CPU耗时: 41秒
|
33
|
+
模型分层,轮流传显卡里计算: 3.36秒(因为显存足够,实际上等于纯显卡)
|
34
|
+
纯显卡,显卡已经被使用3.9GB: 23秒(cuda+torch奇葩的地方出现了,猜测是在显存不够的时候,舍弃一些计算反向梯度要用的缓存,反向梯度的时候重新计算,导致时间开销增大很多)
|
35
|
+
模型分层,显卡已经被使用3.9GB: 3.3秒
|
36
|
+
|
37
|
+
|
38
|
+
|
39
|
+
3)卷积测试1(test_middle_conv1.py):
|
40
|
+
模型:
|
41
|
+
float32,22层网络,卷积核大小5,每层网络两层卷积(30通道到60通道一层卷积,60通道回到30通道一层卷积)再加一个LeakyReLU激活函数,数据量0.0074GB,每个线性层后面加一个LeakyReLU激活函数
|
42
|
+
数据:
|
43
|
+
6个数据,每个数据30个通道*512宽*512高,分成三个批量(每个批量2个数据),数据量0.059GB
|
44
|
+
|
45
|
+
训练一次(两个批量的数据)平均耗时
|
46
|
+
纯显卡: 3.73秒
|
47
|
+
纯CPU耗时: 44秒
|
48
|
+
模型分层,轮流传显卡里计算: 7.5秒(因为显存足够,实际上等于纯显卡)
|
49
|
+
纯显卡,显卡已经被使用3.9GB: 116秒
|
50
|
+
模型分层,显卡已经被使用3.9GB: 7.7秒
|
@@ -0,0 +1,118 @@
|
|
1
|
+
#
|
2
|
+
|
3
|
+
from buildz.gpuz.torch import CacheModel
|
4
|
+
import sys
|
5
|
+
import torch,time
|
6
|
+
from torch import nn,optim
|
7
|
+
from torch.utils.data import DataLoader, Dataset
|
8
|
+
cpu = torch.device('cpu')
|
9
|
+
cuda = cpu
|
10
|
+
if torch.cuda.is_available():
|
11
|
+
cuda = torch.device('cuda')
|
12
|
+
def sz(tensor):
|
13
|
+
return tensor.element_size()*tensor.nelement()
|
14
|
+
class Model(nn.Module):
|
15
|
+
def __init__(self, dims, num):
|
16
|
+
super().__init__()
|
17
|
+
#nets = [nn.Conv2d(3, 3, 5, padding=2) for i in range(num)]
|
18
|
+
nets=[]
|
19
|
+
for i in range(num):
|
20
|
+
nets.append(nn.Linear(dims,dims))
|
21
|
+
nets.append(nn.LeakyReLU())
|
22
|
+
#nets = [nn.Linear(dims,dims) for i in range(num)]
|
23
|
+
print(f"nets:{len(nets)}")
|
24
|
+
self.nets = nn.Sequential(*nets)
|
25
|
+
def forward(self, inputs):
|
26
|
+
return self.nets(inputs)
|
27
|
+
def size(self):
|
28
|
+
total = 0.0
|
29
|
+
for net in self.nets:
|
30
|
+
if not hasattr(net, "weight"):
|
31
|
+
continue
|
32
|
+
w = net.weight
|
33
|
+
b = net.bias
|
34
|
+
total+=sz(w)+sz(b)
|
35
|
+
return total
|
36
|
+
|
37
|
+
pass
|
38
|
+
class TestDataset(Dataset):
|
39
|
+
def __init__(self, n, dims):
|
40
|
+
self.n = n
|
41
|
+
self.dims = dims
|
42
|
+
self.datas = torch.rand(n, dims)
|
43
|
+
print(f"data size: {sz(self.datas)/1024/1024/1024} GB")
|
44
|
+
def __len__(self):
|
45
|
+
return self.n
|
46
|
+
def __getitem__(self, i):
|
47
|
+
return self.datas[i]
|
48
|
+
return torch.rand(self.dims)
|
49
|
+
|
50
|
+
pass
|
51
|
+
def fc_opt(net, opt):
|
52
|
+
#torch.nn.utils.clip_grad_norm_(net.parameters(), max_norm=1.0)
|
53
|
+
opt.step()
|
54
|
+
def test():
|
55
|
+
nets=10
|
56
|
+
dims=2000
|
57
|
+
trains = 5
|
58
|
+
datas = 60
|
59
|
+
batch=30
|
60
|
+
lr=0.0001
|
61
|
+
win_size=3
|
62
|
+
num = 12
|
63
|
+
mds = [Model(dims, nets) for i in range(num)]
|
64
|
+
mds_sz = [md.size() for md in mds]
|
65
|
+
print(f"Model Size: {sum(mds_sz)/1024/1024/1024} GB")
|
66
|
+
opts =[optim.Adam(md.parameters(), lr=lr) for md in mds]
|
67
|
+
cuda=cpu
|
68
|
+
ds = TestDataset(datas, dims)
|
69
|
+
dl = DataLoader(ds, batch)
|
70
|
+
#return
|
71
|
+
loss_fn = torch.nn.MSELoss()
|
72
|
+
print("start train")
|
73
|
+
nets= []
|
74
|
+
for md in mds:
|
75
|
+
nets+=md.nets
|
76
|
+
gmodel = nn.Sequential(*nets)
|
77
|
+
gmodel = gmodel.to(cuda)
|
78
|
+
gopt = optim.Adam(gmodel.parameters(), lr=lr)
|
79
|
+
gmodel.train()
|
80
|
+
#with torch.no_grad():
|
81
|
+
for i in range(trains):
|
82
|
+
total_loss = 0
|
83
|
+
curr=time.time()
|
84
|
+
for dt in dl:
|
85
|
+
dt=dt.to(cuda)
|
86
|
+
gopt.zero_grad()
|
87
|
+
out = gmodel(dt)
|
88
|
+
loss = loss_fn(out, dt)
|
89
|
+
print(f"loss: {loss, type(loss)}")
|
90
|
+
loss.backward()
|
91
|
+
gopt.step()
|
92
|
+
total_loss+=loss.item()
|
93
|
+
sec = time.time()-curr
|
94
|
+
print("train:", i, "loss:", total_loss/len(dl), "time:", sec)
|
95
|
+
del gmodel,gopt
|
96
|
+
torch.cuda.empty_cache()
|
97
|
+
input("start middle:")
|
98
|
+
md = CacheModel(cuda, cpu, mds, opts, win_size, fc_opt)
|
99
|
+
md.nfc("train")
|
100
|
+
#with torch.no_grad():
|
101
|
+
for i in range(trains):
|
102
|
+
total_loss = 0
|
103
|
+
curr=time.time()
|
104
|
+
for dt in dl:
|
105
|
+
dt=dt.to(cuda)
|
106
|
+
[opt.zero_grad() for opt in opts]
|
107
|
+
out = md.do_forward(dt)
|
108
|
+
loss = loss_fn(out, dt)
|
109
|
+
print(f"loss: {loss, type(loss)}")
|
110
|
+
md.do_backward(lambda : loss.backward())
|
111
|
+
total_loss+=loss.item()
|
112
|
+
sec = time.time()-curr
|
113
|
+
print("train:", i, "loss:", total_loss/len(dl), "time:", sec)
|
114
|
+
|
115
|
+
|
116
|
+
|
117
|
+
pass
|
118
|
+
test()
|
@@ -0,0 +1,118 @@
|
|
1
|
+
#
|
2
|
+
|
3
|
+
from buildz.gpuz.torch import CacheModel
|
4
|
+
import sys
|
5
|
+
import torch,time
|
6
|
+
from torch import nn,optim
|
7
|
+
from torch.utils.data import DataLoader, Dataset
|
8
|
+
cpu = torch.device('cpu')
|
9
|
+
cuda = cpu
|
10
|
+
if torch.cuda.is_available():
|
11
|
+
cuda = torch.device('cuda')
|
12
|
+
def sz(tensor):
|
13
|
+
return tensor.element_size()*tensor.nelement()
|
14
|
+
class Model(nn.Module):
|
15
|
+
def __init__(self, dims, num):
|
16
|
+
super().__init__()
|
17
|
+
#nets = [nn.Conv2d(3, 3, 5, padding=2) for i in range(num)]
|
18
|
+
nets=[]
|
19
|
+
for i in range(num):
|
20
|
+
nets.append(nn.Conv2d(3, 3, 5, padding=2))
|
21
|
+
nets.append(nn.LeakyReLU())
|
22
|
+
#nets = [nn.Linear(dims,dims) for i in range(num)]
|
23
|
+
print(f"nets:{len(nets)}")
|
24
|
+
self.nets = nn.Sequential(*nets)
|
25
|
+
def forward(self, inputs):
|
26
|
+
return self.nets(inputs)
|
27
|
+
def size(self):
|
28
|
+
total = 0.0
|
29
|
+
for net in self.nets:
|
30
|
+
if not hasattr(net, "weight"):
|
31
|
+
continue
|
32
|
+
w = net.weight
|
33
|
+
b = net.bias
|
34
|
+
total+=sz(w)+sz(b)
|
35
|
+
return total
|
36
|
+
|
37
|
+
pass
|
38
|
+
class TestDataset(Dataset):
|
39
|
+
def __init__(self, n, dims):
|
40
|
+
self.n = n
|
41
|
+
self.dims = dims
|
42
|
+
self.datas = torch.rand(n, 3,dims,dims)
|
43
|
+
print(f"data size: {sz(self.datas)/1024/1024/1024} GB")
|
44
|
+
def __len__(self):
|
45
|
+
return self.n
|
46
|
+
def __getitem__(self, i):
|
47
|
+
return self.datas[i]
|
48
|
+
return torch.rand(self.dims)
|
49
|
+
|
50
|
+
pass
|
51
|
+
def fc_opt(net, opt):
|
52
|
+
#torch.nn.utils.clip_grad_norm_(net.parameters(), max_norm=1.0)
|
53
|
+
opt.step()
|
54
|
+
def test():
|
55
|
+
nets=5
|
56
|
+
dims=512
|
57
|
+
trains = 5
|
58
|
+
datas = 20
|
59
|
+
batch=10
|
60
|
+
lr=0.0001
|
61
|
+
win_size=3
|
62
|
+
num = 12
|
63
|
+
mds = [Model(dims, nets) for i in range(num)]
|
64
|
+
mds_sz = [md.size() for md in mds]
|
65
|
+
print(f"Model Size: {sum(mds_sz)/1024/1024/1024} GB")
|
66
|
+
opts =[optim.Adam(md.parameters(), lr=lr) for md in mds]
|
67
|
+
#cuda=cpu
|
68
|
+
ds = TestDataset(datas, dims)
|
69
|
+
dl = DataLoader(ds, batch)
|
70
|
+
#return
|
71
|
+
loss_fn = torch.nn.MSELoss()
|
72
|
+
print("start train")
|
73
|
+
nets= []
|
74
|
+
for md in mds:
|
75
|
+
nets+=md.nets
|
76
|
+
gmodel = nn.Sequential(*nets)
|
77
|
+
gmodel = gmodel.to(cuda)
|
78
|
+
gopt = optim.Adam(gmodel.parameters(), lr=lr)
|
79
|
+
gmodel.train()
|
80
|
+
#with torch.no_grad():
|
81
|
+
for i in range(trains):
|
82
|
+
total_loss = 0
|
83
|
+
curr=time.time()
|
84
|
+
for dt in dl:
|
85
|
+
dt=dt.to(cuda)
|
86
|
+
gopt.zero_grad()
|
87
|
+
out = gmodel(dt)
|
88
|
+
loss = loss_fn(out, dt)
|
89
|
+
print(f"loss: {loss, type(loss)}")
|
90
|
+
loss.backward()
|
91
|
+
gopt.step()
|
92
|
+
total_loss+=loss.item()
|
93
|
+
sec = time.time()-curr
|
94
|
+
print("train:", i, "loss:", total_loss/len(dl), "time:", sec)
|
95
|
+
del gmodel,gopt
|
96
|
+
torch.cuda.empty_cache()
|
97
|
+
input("start middle:")
|
98
|
+
md = CacheModel(cuda, cpu, mds, opts, win_size, fc_opt)
|
99
|
+
md.nfc("train")
|
100
|
+
#with torch.no_grad():
|
101
|
+
for i in range(trains):
|
102
|
+
total_loss = 0
|
103
|
+
curr=time.time()
|
104
|
+
for dt in dl:
|
105
|
+
dt=dt.to(cuda)
|
106
|
+
[opt.zero_grad() for opt in opts]
|
107
|
+
out = md.do_forward(dt)
|
108
|
+
loss = loss_fn(out, dt)
|
109
|
+
print(f"loss: {loss, type(loss)}")
|
110
|
+
md.do_backward(lambda : loss.backward())
|
111
|
+
total_loss+=loss.item()
|
112
|
+
sec = time.time()-curr
|
113
|
+
print("train:", i, "loss:", total_loss/len(dl), "time:", sec)
|
114
|
+
|
115
|
+
|
116
|
+
|
117
|
+
pass
|
118
|
+
test()
|
@@ -0,0 +1,120 @@
|
|
1
|
+
#
|
2
|
+
|
3
|
+
import sys
|
4
|
+
from buildz.gpuz.torch import CacheModel
|
5
|
+
import torch,time
|
6
|
+
from torch import nn,optim
|
7
|
+
from torch.utils.data import DataLoader, Dataset
|
8
|
+
cpu = torch.device('cpu')
|
9
|
+
cuda = cpu
|
10
|
+
if torch.cuda.is_available():
|
11
|
+
cuda = torch.device('cuda')
|
12
|
+
def sz(tensor):
|
13
|
+
return tensor.element_size()*tensor.nelement()
|
14
|
+
class ConvModel(nn.Module):
|
15
|
+
def __init__(self, dims, num, ins_channels, middle_channels):
|
16
|
+
super().__init__()
|
17
|
+
nets=[]
|
18
|
+
for i in range(num):
|
19
|
+
nets.append(nn.Conv2d(ins_channels, middle_channels, 5, padding=2))
|
20
|
+
nets.append(nn.Conv2d(middle_channels, ins_channels, 5, padding=2))
|
21
|
+
nets.append(nn.LeakyReLU())
|
22
|
+
print(f"nets:{len(nets)}")
|
23
|
+
self.nets = nn.Sequential(*nets)
|
24
|
+
def forward(self, inputs):
|
25
|
+
return self.nets(inputs)
|
26
|
+
def size(self):
|
27
|
+
total = 0.0
|
28
|
+
for net in self.nets:
|
29
|
+
if not hasattr(net, "weight"):
|
30
|
+
continue
|
31
|
+
w = net.weight
|
32
|
+
b = net.bias
|
33
|
+
total+=sz(w)+sz(b)
|
34
|
+
return total
|
35
|
+
|
36
|
+
pass
|
37
|
+
class TestDataset(Dataset):
|
38
|
+
def __init__(self, n, dims, channels):
|
39
|
+
self.n = n
|
40
|
+
self.dims = dims
|
41
|
+
self.datas = torch.rand(n, channels, dims,dims)
|
42
|
+
print(f"data size: {sz(self.datas)/1024/1024/1024} GB")
|
43
|
+
def __len__(self):
|
44
|
+
return self.n
|
45
|
+
def __getitem__(self, i):
|
46
|
+
return self.datas[i]
|
47
|
+
return torch.rand(self.dims)
|
48
|
+
|
49
|
+
pass
|
50
|
+
def fc_opt(net, opt):
|
51
|
+
torch.nn.utils.clip_grad_norm_(net.parameters(), max_norm=1.0)
|
52
|
+
opt.step()
|
53
|
+
def test():
|
54
|
+
nets=2
|
55
|
+
channels=30
|
56
|
+
middle_channels = 60
|
57
|
+
dims=512
|
58
|
+
trains = 5
|
59
|
+
datas = 6
|
60
|
+
batch=2
|
61
|
+
lr=0.0001
|
62
|
+
win_size=3
|
63
|
+
num_conv = 11
|
64
|
+
num_ln = 3
|
65
|
+
mds = [ConvModel(dims, nets, channels, middle_channels) for i in range(num_conv)]
|
66
|
+
mds_sz = [md.size() for md in mds]
|
67
|
+
print(f"Model Size: {sum(mds_sz)/1024/1024/1024} GB")
|
68
|
+
opts =[optim.Adam(md.parameters(), lr=lr) for md in mds]
|
69
|
+
#cuda=cpu
|
70
|
+
ds = TestDataset(datas, dims, channels)
|
71
|
+
dl = DataLoader(ds, batch)
|
72
|
+
#return
|
73
|
+
loss_fn = torch.nn.MSELoss()
|
74
|
+
print("start train")
|
75
|
+
# nets= []
|
76
|
+
# for md in mds:
|
77
|
+
# nets+=md.nets
|
78
|
+
# gmodel = nn.Sequential(*nets)
|
79
|
+
# gmodel = gmodel.to(cuda)
|
80
|
+
# gopt = optim.Adam(gmodel.parameters(), lr=lr)
|
81
|
+
# gmodel.train()
|
82
|
+
# #with torch.no_grad():
|
83
|
+
# for i in range(trains):
|
84
|
+
# total_loss = 0
|
85
|
+
# curr=time.time()
|
86
|
+
# for dt in dl:
|
87
|
+
# dt=dt.to(cuda)
|
88
|
+
# gopt.zero_grad()
|
89
|
+
# out = gmodel(dt)
|
90
|
+
# loss = loss_fn(out, dt)
|
91
|
+
# print(f"loss: {loss, type(loss)}")
|
92
|
+
# loss.backward()
|
93
|
+
# gopt.step()
|
94
|
+
# total_loss+=loss.item()
|
95
|
+
# sec = time.time()-curr
|
96
|
+
# print("train:", i, "loss:", total_loss/len(dl), "time:", sec)
|
97
|
+
# del gmodel,gopt
|
98
|
+
# torch.cuda.empty_cache()
|
99
|
+
# input("start middle:")
|
100
|
+
md = CacheModel(cuda, cpu, mds, opts, win_size, fc_opt)
|
101
|
+
md.nfc("train")
|
102
|
+
#with torch.no_grad():
|
103
|
+
for i in range(trains):
|
104
|
+
total_loss = 0
|
105
|
+
curr=time.time()
|
106
|
+
for dt in dl:
|
107
|
+
dt=dt.to(cuda)
|
108
|
+
[opt.zero_grad() for opt in opts] #这一步不必也扔gpu里计算吧,直接这样写了
|
109
|
+
out = md.do_forward(dt)
|
110
|
+
loss = loss_fn(out, dt)
|
111
|
+
print(f"loss: {loss, type(loss)}")
|
112
|
+
md.do_backward(lambda : loss.backward())
|
113
|
+
total_loss+=loss.item()
|
114
|
+
sec = time.time()-curr
|
115
|
+
print("train:", i, "loss:", total_loss/len(dl), "time:", sec)
|
116
|
+
|
117
|
+
|
118
|
+
|
119
|
+
pass
|
120
|
+
test()
|
@@ -0,0 +1,181 @@
|
|
1
|
+
#
|
2
|
+
import torch
|
3
|
+
from torch import nn
|
4
|
+
import threading as th
|
5
|
+
class CacheModel:
|
6
|
+
'''
|
7
|
+
用处:显存不够,同时模型可以拆成多个小模型线性连接的时候,可以用本代码,本代码会在forward和backward的时候自动把小的多层网络轮流放到gpu里计算,计算完再转cpu里
|
8
|
+
需要使用者手动将多层网络拆分成多个更小一点的多层网络
|
9
|
+
测试代码见test_moddle_conv1.py
|
10
|
+
大概有纯显卡二分之一到三分之一的性能,起码比cpu好,尤其是进行卷积计算,比cpu好太多
|
11
|
+
代码例子:
|
12
|
+
|
13
|
+
from buildz.gpuz.torch import CacheModel
|
14
|
+
from torch import nn,optim
|
15
|
+
model1 = nn.Sequential(*[nn.Linear(1024,1024) for i in range(10)])
|
16
|
+
model2 = nn.Sequential(*[nn.Linear(1024,1024) for i in range(10)])
|
17
|
+
model3 = nn.Sequential(*[nn.Linear(1024,1024) for i in range(10)])
|
18
|
+
opt1 = optim.Adam(model1.parameters(), lr=0.001)
|
19
|
+
opt2 = optim.Adam(model2.parameters(), lr=0.001)
|
20
|
+
opt3 = optim.Adam(model3.parameters(), lr=0.001)
|
21
|
+
models = [model1,model2,model3]
|
22
|
+
opts = [opt1,opt2,opt3]
|
23
|
+
loss_fn = torch.nn.MSELoss()
|
24
|
+
def opt_step(net, opt):
|
25
|
+
# 如果模型只是用来测试,不做训练,可以不传该函数,同时opts传入空就可以
|
26
|
+
# 对模型的一些其他优化,可以写可以不写,主要是调用opt.step()进行当前小模型的模型训练
|
27
|
+
# torch.nn.utils.clip_grad_norm_(net.parameters(), max_norm=1.0)
|
28
|
+
opt.step()
|
29
|
+
cmodel = CacheModel(torch.device('cuda'), torch.device('cpu'),models,opts,3,opt_step)
|
30
|
+
|
31
|
+
# 训练:
|
32
|
+
[md.train() for md in models]
|
33
|
+
for inputs,targets in dataloader: #批量数据集,这个自己实现
|
34
|
+
[opt.zero_grad() for opt in opts]
|
35
|
+
outs = cmodel.do_forward(inputs)
|
36
|
+
loss = loss_fn(outs, targets)
|
37
|
+
cmodel.do_backward(lambda: loss.backward())
|
38
|
+
# opt.step()在do_backward里会自动调用
|
39
|
+
print(loss.item())
|
40
|
+
|
41
|
+
# 测试:
|
42
|
+
with torch.no_grad():
|
43
|
+
outputs = cmodel.do_forward(inputs)
|
44
|
+
print(outputs)
|
45
|
+
'''
|
46
|
+
def __init__(self, gdv, cdv, nets, opts, win_size = 1, backward_deal = None):
|
47
|
+
'''
|
48
|
+
gdv: 显卡设备,应该传入torch.device('cuda')
|
49
|
+
cdv: CPU设备,应该传入torch.device('cpu')
|
50
|
+
gdv和cdv如果都传入torch.device('cpu'),则是完全CPU存储和计算
|
51
|
+
如果都传入torch.device('cuda'),则是完全显卡存储和计算
|
52
|
+
'''
|
53
|
+
self.gdv = gdv
|
54
|
+
self.cdv = cdv
|
55
|
+
# event和condition未使用,本来打算做成多线程,但python线程一次只能有一个在运行,抢占有点严重,待修改
|
56
|
+
self.event = th.Event()
|
57
|
+
self.condition=th.Condition()
|
58
|
+
[net.register_full_backward_hook(self.hook_backward) for net in nets]
|
59
|
+
self.nets = nets
|
60
|
+
self.size = len(nets)
|
61
|
+
self.ctxs = [[] for i in range(self.size)]
|
62
|
+
self.size_1 = self.size-1
|
63
|
+
self.opts = opts
|
64
|
+
self.win_size = win_size
|
65
|
+
self.backward_deal = backward_deal
|
66
|
+
self.base = -1
|
67
|
+
self.curr = 0
|
68
|
+
self.last = -1
|
69
|
+
self.running = False
|
70
|
+
def hook_pack(self, dt):
|
71
|
+
# forward时候为了后面计算梯度存的缓存,放到列表里方便转cpu和gpu
|
72
|
+
self.ctxs[self.curr].append(dt)
|
73
|
+
return len(self.ctxs[self.curr])-1
|
74
|
+
def hook_unpack(self, x):
|
75
|
+
dt = self.ctxs[self.curr][x]
|
76
|
+
return dt
|
77
|
+
def nfc(self, fc, *a,**b):
|
78
|
+
[getattr(net, fc)(*a,**b) for net in self.nets]
|
79
|
+
def reset(self):
|
80
|
+
for i in range(self.base,self.last+1):
|
81
|
+
self.nets[i].to(self.cdv)
|
82
|
+
self.ctxs_to(i, self.cdv)
|
83
|
+
self.base,self.last=-1,-1
|
84
|
+
def ctxs_to(self, i, dv):
|
85
|
+
if dv is None:
|
86
|
+
self.ctxs[i] = []
|
87
|
+
else:
|
88
|
+
self.ctxs[i] = [k.to(dv) for k in self.ctxs[i]]
|
89
|
+
def copy_backward(self):
|
90
|
+
if self.last<self.curr:
|
91
|
+
self.reset()
|
92
|
+
if self.base==0:
|
93
|
+
return False
|
94
|
+
if self.last<0:
|
95
|
+
self.nets[self.size_1].to(self.gdv)
|
96
|
+
self.last = self.size_1
|
97
|
+
self.base = self.size_1
|
98
|
+
diff = self.win_size-(self.last-self.base+1)
|
99
|
+
diff = min(diff, self.base)
|
100
|
+
for i in range(diff):
|
101
|
+
self.nets[self.base-1].to(self.gdv)
|
102
|
+
self.ctxs_to(self.base-1, self.gdv)
|
103
|
+
self.base-=1
|
104
|
+
rels = self.last-self.curr
|
105
|
+
for i in range(rels):
|
106
|
+
self.nets[self.last].to(self.cdv)
|
107
|
+
self.ctxs_to(self.last, None)
|
108
|
+
self.last-=1
|
109
|
+
return True
|
110
|
+
def copy_forward(self):
|
111
|
+
if self.base>self.curr:
|
112
|
+
self.reset()
|
113
|
+
if self.last==self.size_1:
|
114
|
+
return False
|
115
|
+
if self.base<0:
|
116
|
+
self.nets[0].to(self.gdv)
|
117
|
+
self.base=0
|
118
|
+
self.last=0
|
119
|
+
diff = self.win_size-(self.last-self.base+1)
|
120
|
+
diff = min(diff, self.size_1-self.last)
|
121
|
+
for i in range(diff):
|
122
|
+
self.nets[self.last+1].to(self.gdv)
|
123
|
+
self.last+=1
|
124
|
+
rels = self.curr-self.base
|
125
|
+
for i in range(rels):
|
126
|
+
self.nets[self.base].to(self.cdv)
|
127
|
+
self.ctxs_to(self.base, self.cdv)
|
128
|
+
self.base+=1
|
129
|
+
return True
|
130
|
+
def th_copy_forward(self):
|
131
|
+
while self.copy_forward():
|
132
|
+
self.event.set()
|
133
|
+
self.running = False
|
134
|
+
def th_copy_backward(self):
|
135
|
+
while self.copy_backward():
|
136
|
+
self.event.set()
|
137
|
+
def wait(self):
|
138
|
+
with self.condition:
|
139
|
+
self.condition.notify()
|
140
|
+
self.event.wait()
|
141
|
+
def do_forward(self, inputs):
|
142
|
+
# while self.running:
|
143
|
+
# import time
|
144
|
+
# time.sleep(0.01)
|
145
|
+
# t = th.Thread(target=self.th_copy_forward, daemon=True)
|
146
|
+
# self.running = True
|
147
|
+
# t.start()
|
148
|
+
self.ctxs = [[] for i in range(self.size)]
|
149
|
+
with torch.autograd.graph.saved_tensors_hooks(self.hook_pack, self.hook_unpack):
|
150
|
+
rst = self.forward(inputs)
|
151
|
+
return rst
|
152
|
+
def forward(self, inputs):
|
153
|
+
for self.curr in range(len(self.nets)):
|
154
|
+
while not (self.base<=self.curr<=self.last):
|
155
|
+
self.copy_forward()
|
156
|
+
#self.wait()
|
157
|
+
inputs = self.nets[self.curr](inputs)
|
158
|
+
return inputs
|
159
|
+
def wrap_backward_deal(self, i):
|
160
|
+
if self.backward_deal is None:
|
161
|
+
return
|
162
|
+
try:
|
163
|
+
self.backward_deal(self.nets[i], self.opts[i])
|
164
|
+
finally:
|
165
|
+
pass
|
166
|
+
def hook_backward(self, model, ins, outs):
|
167
|
+
if self.backward_curr<self.size_1:
|
168
|
+
self.wrap_backward_deal(self.backward_curr+1)
|
169
|
+
self.curr = self.backward_curr
|
170
|
+
while not (self.base<=self.backward_curr<=self.last):
|
171
|
+
#self.wait()
|
172
|
+
self.copy_backward()
|
173
|
+
self.backward_curr-=1
|
174
|
+
def do_backward(self, fc):
|
175
|
+
self.backward_curr=self.curr
|
176
|
+
# t = th.Thread(target=self.th_copy_backward,daemon=True)
|
177
|
+
# t.start()
|
178
|
+
fc()
|
179
|
+
self.wrap_backward_deal(0)
|
180
|
+
|
181
|
+
pass
|
@@ -1,5 +1,5 @@
|
|
1
1
|
|
2
|
-
from . import proxy,mhttp
|
2
|
+
from . import proxy,mhttp,mhttps
|
3
3
|
import socket, threading
|
4
4
|
log = mhttp.log
|
5
5
|
from buildz import xf
|
@@ -72,9 +72,7 @@ class CapsDealer(proxy.ProxyDealer):
|
|
72
72
|
def context(self, hostname):
|
73
73
|
if hostname not in self.contexts:
|
74
74
|
fp_cert, fp_prv, pwd = self.sign(hostname)
|
75
|
-
|
76
|
-
context.load_cert_chain(fp_cert, fp_prv, password=pwd)
|
77
|
-
self.contexts[hostname]=context
|
75
|
+
self.contexts[hostname]=mhttps.load_server_context(fp_cert, fp_prv, pwd)
|
78
76
|
return self.contexts[hostname]
|
79
77
|
def deal_channel(self, skt_cli, skt_srv):
|
80
78
|
#self.wskt.closefile()
|
@@ -92,7 +90,7 @@ class CapsDealer(proxy.ProxyDealer):
|
|
92
90
|
line, headers, data_size = mhttp.http_recv(skt_cli)
|
93
91
|
if line is None:
|
94
92
|
continue
|
95
|
-
self.
|
93
|
+
self.deals[None](skt_cli, line, headers, data_size, skt_srv)
|
96
94
|
except Exception as exp:
|
97
95
|
log.debug(f"channel exp: {exp}")
|
98
96
|
log.warn(f"traceback: {traceback.format_exc()}")
|
@@ -110,29 +108,9 @@ class CapsProxy(proxy.Proxy):
|
|
110
108
|
# context = ssl.SSLContext(ssl.PROTOCOL_TLS_SERVER)
|
111
109
|
# context.load_cert_chain(fp_sign, fp_prv, password=password)
|
112
110
|
self.ca = fp_sign, fp_prv, password
|
113
|
-
|
114
|
-
# 导入根证书,需要单个根证书文件cafile或者根证书文件夹capath或者根证书数据cadata
|
115
|
-
# cadata是证书数据,不清楚能不能多个证书字节码拼在一起
|
116
|
-
srv_context = ssl.SSLContext(ssl.PROTOCOL_TLS_SERVER)
|
117
|
-
srv_context.load_verify_locations(cafile=cafile, capath=capath, cadata=cadata)
|
118
|
-
srv_context.check_hostname = check_hostname
|
119
|
-
else:
|
120
|
-
# 不会校验服务端https证书是否有效,可能有风险?
|
121
|
-
srv_context = ssl._create_unverified_context(ssl.PROTOCOL_TLS_CLIENT)
|
122
|
-
#self.context = context
|
123
|
-
self.srv_context = srv_context
|
111
|
+
self.srv_context = mhttps.load_verify_context(cafile, capath, cadata,check_hostname)
|
124
112
|
if dp_cache is None:
|
125
113
|
dp_cache = "./res/certs"
|
126
114
|
self.dp_cache = dp_cache
|
127
|
-
def
|
128
|
-
self.
|
129
|
-
skt = socket.socket()
|
130
|
-
skt.bind(self.addr)
|
131
|
-
skt.listen(self.listen)
|
132
|
-
self.skt = skt
|
133
|
-
while self.running:
|
134
|
-
skt,addr = self.skt.accept()
|
135
|
-
deal = CapsDealer(skt, self.ca, self.srv_context, record=self.record.clone(), dp_cache = self.dp_cache)
|
136
|
-
th = threading.Thread(target=deal,daemon=True)
|
137
|
-
th.start()
|
138
|
-
self.ths.append(th)
|
115
|
+
def make_dealer(self, skt, addr):
|
116
|
+
return CapsDealer(skt, self.ca, self.srv_context, record=self.record.clone(), dp_cache = self.dp_cache)
|