bspy 4.1__tar.gz → 4.3__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {bspy-4.1 → bspy-4.3}/PKG-INFO +14 -6
- {bspy-4.1 → bspy-4.3}/README.md +12 -4
- {bspy-4.1 → bspy-4.3}/bspy/__init__.py +3 -0
- {bspy-4.1 → bspy-4.3}/bspy/_spline_domain.py +94 -30
- {bspy-4.1 → bspy-4.3}/bspy/_spline_evaluation.py +80 -21
- {bspy-4.1 → bspy-4.3}/bspy/_spline_fitting.py +205 -49
- {bspy-4.1 → bspy-4.3}/bspy/_spline_intersection.py +442 -283
- {bspy-4.1 → bspy-4.3}/bspy/_spline_operations.py +93 -74
- {bspy-4.1 → bspy-4.3}/bspy/hyperplane.py +13 -9
- {bspy-4.1 → bspy-4.3}/bspy/manifold.py +10 -5
- {bspy-4.1 → bspy-4.3}/bspy/solid.py +22 -15
- {bspy-4.1 → bspy-4.3}/bspy/spline.py +195 -53
- {bspy-4.1 → bspy-4.3}/bspy/splineOpenGLFrame.py +346 -303
- bspy-4.3/bspy/spline_block.py +460 -0
- {bspy-4.1 → bspy-4.3}/bspy/viewer.py +26 -16
- {bspy-4.1 → bspy-4.3}/bspy.egg-info/PKG-INFO +14 -6
- {bspy-4.1 → bspy-4.3}/bspy.egg-info/SOURCES.txt +1 -0
- {bspy-4.1 → bspy-4.3}/setup.cfg +2 -2
- {bspy-4.1 → bspy-4.3}/LICENSE +0 -0
- {bspy-4.1 → bspy-4.3}/bspy.egg-info/dependency_links.txt +0 -0
- {bspy-4.1 → bspy-4.3}/bspy.egg-info/requires.txt +0 -0
- {bspy-4.1 → bspy-4.3}/bspy.egg-info/top_level.txt +0 -0
- {bspy-4.1 → bspy-4.3}/pyproject.toml +0 -0
{bspy-4.1 → bspy-4.3}/PKG-INFO
RENAMED
|
@@ -1,13 +1,13 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: bspy
|
|
3
|
-
Version: 4.
|
|
3
|
+
Version: 4.3
|
|
4
4
|
Summary: Library for manipulating and rendering non-uniform B-splines
|
|
5
5
|
Home-page: http://github.com/ericbrec/BSpy
|
|
6
6
|
Author: Eric Brechner
|
|
7
7
|
Author-email: ericbrec@msn.com
|
|
8
8
|
License: MIT
|
|
9
9
|
Project-URL: Bug Tracker, http://github.com/ericbrec/BSpy/issues
|
|
10
|
-
Keywords:
|
|
10
|
+
Keywords: bspline,B-spline,nub,solid,solid modeling,geometry,csg,opengl,tkinter
|
|
11
11
|
Classifier: License :: OSI Approved :: MIT License
|
|
12
12
|
Classifier: Environment :: Win32 (MS Windows)
|
|
13
13
|
Classifier: Environment :: Console
|
|
@@ -34,14 +34,22 @@ Library for manipulating and rendering B-spline curves, surfaces, and multidimen
|
|
|
34
34
|
|
|
35
35
|
The [Manifold](https://ericbrec.github.io/BSpy/bspy/manifold.html) abstract base class for [Hyperplane](https://ericbrec.github.io/BSpy/bspy/hyperplane.html) and [Spline](https://ericbrec.github.io/BSpy/bspy/spline.html).
|
|
36
36
|
|
|
37
|
-
The [Spline](https://ericbrec.github.io/BSpy/bspy/spline.html) class has a method to fit multidimensional data for
|
|
38
|
-
|
|
37
|
+
The [Spline](https://ericbrec.github.io/BSpy/bspy/spline.html) class has a method to fit multidimensional data for scalar and vector functions of single and multiple variables. It also can fit splines to functions, to solutions for ordinary differential equations (ODEs), and to geodesics.
|
|
38
|
+
Spline has methods to create points, lines, circular arcs, spheres, cones, cylinders, tori, ruled surfaces, surfaces of revolution, and four-sided patches.
|
|
39
39
|
Other methods add, subtract, and multiply splines, as well as confine spline curves to a given range.
|
|
40
|
-
There are methods to evaluate spline values, derivatives, integrals,
|
|
40
|
+
There are methods to evaluate spline values, derivatives, normals, integrals, continuity, curvature, and the Jacobian, as well as methods that return spline representations of derivatives, normals, integrals, graphs, and convolutions.
|
|
41
|
+
In addition, there are methods to manipulate the domain of splines, including trim, join, split, reparametrize, transpose, reverse, add and remove knots, elevate and extrapolate, and fold and unfold.
|
|
42
|
+
There are methods to manipulate the range of splines, including dot product, cross product, translate, rotate, scale, and transform.
|
|
43
|
+
Finally, there are methods to compute the zeros and contours of a spline and to intersect two splines.
|
|
44
|
+
Splines can be saved and loaded in json format.
|
|
41
45
|
|
|
42
46
|
The [Hyperplane](https://ericbrec.github.io/BSpy/bspy/hyperplane.html) class has methods to create individual hyperplanes in any dimension, along with axis-aligned hyperplanes and hypercubes.
|
|
43
47
|
|
|
44
|
-
The [Solid](https://ericbrec.github.io/BSpy/bspy/solid.html) class has methods to construct n-dimensional solids from trimmed [Manifold](https://ericbrec.github.io/BSpy/bspy/manifold.html) boundaries. Each solid consists of a list of boundaries and a Boolean value that indicates if the solid contains infinity. Each [Boundary](https://ericbrec.github.io/BSpy/bspy/solid.html) consists of a manifold (currently a [Hyperplane](https://ericbrec.github.io/BSpy/bspy/hyperplane.html) or [Spline](https://ericbrec.github.io/BSpy/bspy/spline.html)) and a domain solid that trims the manifold. Solids have methods to form the intersection, union, difference, and complement of solids. There are methods to compute point containment, winding numbers, surface integrals, and volume integrals. There are also methods to translate, transform, and slice solids.
|
|
48
|
+
The [Solid](https://ericbrec.github.io/BSpy/bspy/solid.html) class has methods to construct n-dimensional solids from trimmed [Manifold](https://ericbrec.github.io/BSpy/bspy/manifold.html) boundaries. Each solid consists of a list of boundaries and a Boolean value that indicates if the solid contains infinity. Each [Boundary](https://ericbrec.github.io/BSpy/bspy/solid.html) consists of a manifold (currently a [Hyperplane](https://ericbrec.github.io/BSpy/bspy/hyperplane.html) or [Spline](https://ericbrec.github.io/BSpy/bspy/spline.html)) and a domain solid that trims the manifold. Solids have methods to form the intersection, union, difference, and complement of solids. There are methods to compute point containment, winding numbers, surface integrals, and volume integrals. There are also methods to translate, transform, and slice solids. Solids can be saved and loaded in json format.
|
|
49
|
+
|
|
50
|
+
The [SplineBlock](https://ericbrec.github.io/BSpy/bspy/spline_block.html) class has methods to process an array-like collection of splines that represent a system of equations. There are highly-optimized methods to compute the contours and zeros of a spline block, as well as a variety of methods to manipulate and evaluate a spline block and its derivatives.
|
|
51
|
+
|
|
52
|
+
The [BSpyConvert](https://pypi.org/project/BSpyConvert/) package converts BSpy splines and solid models to and from [OpenCascade (OCCT)](https://dev.opencascade.org/) equivalents and a variety of geometry and CAD file formats, including STEP, IGES, and STL.
|
|
45
53
|
|
|
46
54
|
The [SplineOpenGLFrame](https://ericbrec.github.io/BSpy/bspy/splineOpenGLFrame.html) class is an
|
|
47
55
|
[OpenGLFrame](https://pypi.org/project/pyopengltk/) with custom shaders to render spline curves and surfaces. Spline surfaces with more
|
{bspy-4.1 → bspy-4.3}/README.md
RENAMED
|
@@ -3,14 +3,22 @@ Library for manipulating and rendering B-spline curves, surfaces, and multidimen
|
|
|
3
3
|
|
|
4
4
|
The [Manifold](https://ericbrec.github.io/BSpy/bspy/manifold.html) abstract base class for [Hyperplane](https://ericbrec.github.io/BSpy/bspy/hyperplane.html) and [Spline](https://ericbrec.github.io/BSpy/bspy/spline.html).
|
|
5
5
|
|
|
6
|
-
The [Spline](https://ericbrec.github.io/BSpy/bspy/spline.html) class has a method to fit multidimensional data for
|
|
7
|
-
|
|
6
|
+
The [Spline](https://ericbrec.github.io/BSpy/bspy/spline.html) class has a method to fit multidimensional data for scalar and vector functions of single and multiple variables. It also can fit splines to functions, to solutions for ordinary differential equations (ODEs), and to geodesics.
|
|
7
|
+
Spline has methods to create points, lines, circular arcs, spheres, cones, cylinders, tori, ruled surfaces, surfaces of revolution, and four-sided patches.
|
|
8
8
|
Other methods add, subtract, and multiply splines, as well as confine spline curves to a given range.
|
|
9
|
-
There are methods to evaluate spline values, derivatives, integrals,
|
|
9
|
+
There are methods to evaluate spline values, derivatives, normals, integrals, continuity, curvature, and the Jacobian, as well as methods that return spline representations of derivatives, normals, integrals, graphs, and convolutions.
|
|
10
|
+
In addition, there are methods to manipulate the domain of splines, including trim, join, split, reparametrize, transpose, reverse, add and remove knots, elevate and extrapolate, and fold and unfold.
|
|
11
|
+
There are methods to manipulate the range of splines, including dot product, cross product, translate, rotate, scale, and transform.
|
|
12
|
+
Finally, there are methods to compute the zeros and contours of a spline and to intersect two splines.
|
|
13
|
+
Splines can be saved and loaded in json format.
|
|
10
14
|
|
|
11
15
|
The [Hyperplane](https://ericbrec.github.io/BSpy/bspy/hyperplane.html) class has methods to create individual hyperplanes in any dimension, along with axis-aligned hyperplanes and hypercubes.
|
|
12
16
|
|
|
13
|
-
The [Solid](https://ericbrec.github.io/BSpy/bspy/solid.html) class has methods to construct n-dimensional solids from trimmed [Manifold](https://ericbrec.github.io/BSpy/bspy/manifold.html) boundaries. Each solid consists of a list of boundaries and a Boolean value that indicates if the solid contains infinity. Each [Boundary](https://ericbrec.github.io/BSpy/bspy/solid.html) consists of a manifold (currently a [Hyperplane](https://ericbrec.github.io/BSpy/bspy/hyperplane.html) or [Spline](https://ericbrec.github.io/BSpy/bspy/spline.html)) and a domain solid that trims the manifold. Solids have methods to form the intersection, union, difference, and complement of solids. There are methods to compute point containment, winding numbers, surface integrals, and volume integrals. There are also methods to translate, transform, and slice solids.
|
|
17
|
+
The [Solid](https://ericbrec.github.io/BSpy/bspy/solid.html) class has methods to construct n-dimensional solids from trimmed [Manifold](https://ericbrec.github.io/BSpy/bspy/manifold.html) boundaries. Each solid consists of a list of boundaries and a Boolean value that indicates if the solid contains infinity. Each [Boundary](https://ericbrec.github.io/BSpy/bspy/solid.html) consists of a manifold (currently a [Hyperplane](https://ericbrec.github.io/BSpy/bspy/hyperplane.html) or [Spline](https://ericbrec.github.io/BSpy/bspy/spline.html)) and a domain solid that trims the manifold. Solids have methods to form the intersection, union, difference, and complement of solids. There are methods to compute point containment, winding numbers, surface integrals, and volume integrals. There are also methods to translate, transform, and slice solids. Solids can be saved and loaded in json format.
|
|
18
|
+
|
|
19
|
+
The [SplineBlock](https://ericbrec.github.io/BSpy/bspy/spline_block.html) class has methods to process an array-like collection of splines that represent a system of equations. There are highly-optimized methods to compute the contours and zeros of a spline block, as well as a variety of methods to manipulate and evaluate a spline block and its derivatives.
|
|
20
|
+
|
|
21
|
+
The [BSpyConvert](https://pypi.org/project/BSpyConvert/) package converts BSpy splines and solid models to and from [OpenCascade (OCCT)](https://dev.opencascade.org/) equivalents and a variety of geometry and CAD file formats, including STEP, IGES, and STL.
|
|
14
22
|
|
|
15
23
|
The [SplineOpenGLFrame](https://ericbrec.github.io/BSpy/bspy/splineOpenGLFrame.html) class is an
|
|
16
24
|
[OpenGLFrame](https://pypi.org/project/pyopengltk/) with custom shaders to render spline curves and surfaces. Spline surfaces with more
|
|
@@ -12,6 +12,8 @@ Available subpackages
|
|
|
12
12
|
`bspy.spline` : Provides the `Spline` subclass of `Manifold` that models, represents, and processes
|
|
13
13
|
piecewise polynomial tensor product functions (spline functions) as linear combinations of B-splines.
|
|
14
14
|
|
|
15
|
+
`bspy.spline_block` : Provides the `SplineBlock` class that processes an array-like collection of splines which represent a system of equations.
|
|
16
|
+
|
|
15
17
|
`bspy.splineOpenGLFrame` : Provides the `SplineOpenGLFrame` class, a tkinter `OpenGLFrame` with shaders to display splines.
|
|
16
18
|
|
|
17
19
|
`bspy.viewer` : Provides the `Viewer` tkinter app (`tkinter.Tk`) that hosts a `SplineOpenGLFrame`, a listbox full of
|
|
@@ -22,5 +24,6 @@ from bspy.solid import Solid, Boundary
|
|
|
22
24
|
from bspy.manifold import Manifold
|
|
23
25
|
from bspy.hyperplane import Hyperplane
|
|
24
26
|
from bspy.spline import Spline
|
|
27
|
+
from bspy.spline_block import SplineBlock
|
|
25
28
|
from bspy.splineOpenGLFrame import SplineOpenGLFrame
|
|
26
29
|
from bspy.viewer import Viewer, Graphics
|
|
@@ -310,26 +310,73 @@ def fold(self, foldedInd):
|
|
|
310
310
|
coefficientlessSpline = type(self)(len(coefficientlessOrder), 0, coefficientlessOrder, coefficientlessNCoef, coefficientlessKnots, coefficientlessCoefs, self.metadata)
|
|
311
311
|
return foldedSpline, coefficientlessSpline
|
|
312
312
|
|
|
313
|
-
def insert_knots(self,
|
|
314
|
-
if not(len(
|
|
315
|
-
knotsList = list(self.knots)
|
|
316
|
-
coefs = self.coefs
|
|
317
|
-
|
|
318
|
-
|
|
319
|
-
|
|
320
|
-
|
|
321
|
-
|
|
322
|
-
|
|
323
|
-
|
|
313
|
+
def insert_knots(self, newKnotList):
|
|
314
|
+
if not(len(newKnotList) == self.nInd): raise ValueError("Invalid newKnots")
|
|
315
|
+
knotsList = list(self.knots) # Create a new knot list
|
|
316
|
+
coefs = self.coefs # Set initial value for coefs to check later if it's changed
|
|
317
|
+
|
|
318
|
+
# Insert new knots into each independent variable.
|
|
319
|
+
for ind, (order, knots, newKnots) in enumerate(zip(self.order, self.knots, newKnotList)):
|
|
320
|
+
coefs = coefs.swapaxes(0, ind + 1) # Swap dependent and independent variable (swap back later)
|
|
321
|
+
degree = order - 1
|
|
322
|
+
for knot in newKnots:
|
|
323
|
+
# Determine new knot multiplicity.
|
|
324
|
+
if np.isscalar(knot):
|
|
325
|
+
multiplicity = 1
|
|
324
326
|
else:
|
|
325
|
-
|
|
326
|
-
|
|
327
|
-
|
|
328
|
-
|
|
329
|
-
|
|
330
|
-
|
|
331
|
-
|
|
332
|
-
|
|
327
|
+
multiplicity = knot[1]
|
|
328
|
+
knot = knot[0]
|
|
329
|
+
if multiplicity < 1:
|
|
330
|
+
continue
|
|
331
|
+
|
|
332
|
+
# Check if knot and its total multiplicity is valid.
|
|
333
|
+
if knot < knots[degree] or knot > knots[-order]:
|
|
334
|
+
raise ValueError(f"Knot insertion outside domain: {knot}")
|
|
335
|
+
position = np.searchsorted(knots, knot, 'right')
|
|
336
|
+
oldMultiplicity = 0
|
|
337
|
+
for k in knots[position - 1::-1]:
|
|
338
|
+
if knot == k:
|
|
339
|
+
oldMultiplicity += 1
|
|
340
|
+
else:
|
|
341
|
+
break
|
|
342
|
+
if oldMultiplicity + multiplicity > order:
|
|
343
|
+
raise ValueError("Knot multiplicity > order")
|
|
344
|
+
|
|
345
|
+
# Initialize oldCoefs and expanded coefs array with multiplicity new coefficients, as well as some indices.
|
|
346
|
+
oldCoefs = coefs[position - order:position].copy()
|
|
347
|
+
lastKnotIndex = position - oldMultiplicity
|
|
348
|
+
firstCoefIndex = position - degree
|
|
349
|
+
coefs = np.insert(coefs, firstCoefIndex, oldCoefs[:multiplicity], axis=0)
|
|
350
|
+
# Compute inserted coefficients (multiplicity of them) and the degree - oldMultiplicity - 1 number of changed coefficients.
|
|
351
|
+
for j in range(multiplicity):
|
|
352
|
+
# Allocate new coefficients for the current multiplicity.
|
|
353
|
+
size = degree - oldMultiplicity - j
|
|
354
|
+
if size < 1:
|
|
355
|
+
# Full multiplicity knot, so use oldCoefs.
|
|
356
|
+
coefs[firstCoefIndex + j] = oldCoefs[0]
|
|
357
|
+
else:
|
|
358
|
+
# Otherwise, allocate space for newCoefs.
|
|
359
|
+
newCoefs = np.empty((size, *coefs.shape[1:]), coefs.dtype)
|
|
360
|
+
|
|
361
|
+
# Compute the new coefficients.
|
|
362
|
+
for i, k in zip(range(size), range(lastKnotIndex - size, lastKnotIndex)):
|
|
363
|
+
alpha = (knot - knots[k]) / (knots[k + degree - j] - knots[k])
|
|
364
|
+
newCoefs[i] = (1.0 - alpha) * oldCoefs[i] + alpha * oldCoefs[i + 1]
|
|
365
|
+
|
|
366
|
+
# Assign the ends of the new coefficients into their respective positions.
|
|
367
|
+
coefs[firstCoefIndex + j] = newCoefs[0]
|
|
368
|
+
if size > 1:
|
|
369
|
+
coefs[lastKnotIndex + multiplicity - j - 2] = newCoefs[-1]
|
|
370
|
+
oldCoefs = newCoefs
|
|
371
|
+
|
|
372
|
+
# Assign remaining computed coefficients (the ones in the middle).
|
|
373
|
+
if size > 2:
|
|
374
|
+
coefs[firstCoefIndex + multiplicity:firstCoefIndex + multiplicity + size - 2] = newCoefs[1:-1]
|
|
375
|
+
|
|
376
|
+
# Insert the inserted coefficients and inserted knots.
|
|
377
|
+
knotsList[ind] = knots = np.insert(knots, position, (knot,) * multiplicity)
|
|
378
|
+
|
|
379
|
+
coefs = coefs.swapaxes(0, ind + 1) # Swap back
|
|
333
380
|
|
|
334
381
|
if self.coefs is coefs:
|
|
335
382
|
return self
|
|
@@ -535,10 +582,12 @@ def transpose(self, axes=None):
|
|
|
535
582
|
def trim(self, newDomain):
|
|
536
583
|
if not(len(newDomain) == self.nInd): raise ValueError("Invalid newDomain")
|
|
537
584
|
if self.nInd < 1: return self
|
|
538
|
-
newDomain = np.array(newDomain, self.knots[0].dtype) # Force dtype and convert None to nan
|
|
585
|
+
newDomain = np.array(newDomain, self.knots[0].dtype, copy=True) # Force dtype and convert None to nan
|
|
586
|
+
epsilon = np.finfo(newDomain.dtype).eps
|
|
539
587
|
|
|
540
588
|
# Step 1: Determine the knots to insert at the new domain bounds.
|
|
541
589
|
newKnotsList = []
|
|
590
|
+
noChange = True
|
|
542
591
|
for (order, knots, bounds) in zip(self.order, self.knots, newDomain):
|
|
543
592
|
if not(len(bounds) == 2): raise ValueError("Invalid newDomain")
|
|
544
593
|
unique, counts = np.unique(knots, return_counts=True)
|
|
@@ -548,28 +597,43 @@ def trim(self, newDomain):
|
|
|
548
597
|
if not np.isnan(bounds[0]):
|
|
549
598
|
if not(knots[order - 1] <= bounds[0] <= knots[-order]): raise ValueError("Invalid newDomain")
|
|
550
599
|
leftBound = True
|
|
551
|
-
multiplicity = order
|
|
552
600
|
i = np.searchsorted(unique, bounds[0])
|
|
553
|
-
if unique[i]
|
|
554
|
-
|
|
555
|
-
|
|
601
|
+
if unique[i] - bounds[0] < epsilon:
|
|
602
|
+
bounds[0] = unique[i]
|
|
603
|
+
multiplicity = order - counts[i]
|
|
604
|
+
elif i > 0 and bounds[0] - unique[i - 1] < epsilon:
|
|
605
|
+
bounds[0] = unique[i - 1]
|
|
606
|
+
multiplicity = order - counts[i - 1]
|
|
607
|
+
else:
|
|
608
|
+
multiplicity = order
|
|
609
|
+
if multiplicity > 0:
|
|
610
|
+
newKnots.append((bounds[0], multiplicity))
|
|
611
|
+
noChange = False
|
|
556
612
|
|
|
557
613
|
if not np.isnan(bounds[1]):
|
|
558
614
|
if not(knots[order - 1] <= bounds[1] <= knots[-order]): raise ValueError("Invalid newDomain")
|
|
559
615
|
if leftBound:
|
|
560
616
|
if not(bounds[0] < bounds[1]): raise ValueError("Invalid newDomain")
|
|
561
|
-
multiplicity = order
|
|
562
617
|
i = np.searchsorted(unique, bounds[1])
|
|
563
|
-
if unique[i]
|
|
564
|
-
|
|
565
|
-
|
|
618
|
+
if unique[i] - bounds[1] < epsilon:
|
|
619
|
+
bounds[1] = unique[i]
|
|
620
|
+
multiplicity = order - counts[i]
|
|
621
|
+
elif i > 0 and bounds[1] - unique[i - 1] < epsilon:
|
|
622
|
+
bounds[1] = unique[i - 1]
|
|
623
|
+
multiplicity = order - counts[i - i]
|
|
624
|
+
else:
|
|
625
|
+
multiplicity = order
|
|
626
|
+
if multiplicity > 0:
|
|
627
|
+
newKnots.append((bounds[1], multiplicity))
|
|
628
|
+
noChange = False
|
|
566
629
|
|
|
567
630
|
newKnotsList.append(newKnots)
|
|
568
631
|
|
|
632
|
+
if noChange:
|
|
633
|
+
return self
|
|
634
|
+
|
|
569
635
|
# Step 2: Insert the knots.
|
|
570
636
|
spline = self.insert_knots(newKnotsList)
|
|
571
|
-
if spline is self:
|
|
572
|
-
return spline
|
|
573
637
|
|
|
574
638
|
# Step 3: Trim the knots and coefficients.
|
|
575
639
|
knotsList = []
|
|
@@ -1,4 +1,5 @@
|
|
|
1
1
|
import numpy as np
|
|
2
|
+
import scipy as sp
|
|
2
3
|
|
|
3
4
|
def bspline_values(knot, knots, splineOrder, u, derivativeOrder = 0, taylorCoefs = False):
|
|
4
5
|
basis = np.zeros(splineOrder, knots.dtype)
|
|
@@ -25,10 +26,61 @@ def bspline_values(knot, knots, splineOrder, u, derivativeOrder = 0, taylorCoefs
|
|
|
25
26
|
b += 1
|
|
26
27
|
return knot, basis
|
|
27
28
|
|
|
29
|
+
def composed_integral(self, integrand = None, domain = None):
|
|
30
|
+
# Determine domain and check its validity
|
|
31
|
+
actualDomain = self.domain()
|
|
32
|
+
if domain is None:
|
|
33
|
+
domain = actualDomain
|
|
34
|
+
else:
|
|
35
|
+
for iInd in range(self.nInd):
|
|
36
|
+
if domain[iInd, 0] < actualDomain[iInd, 0] or \
|
|
37
|
+
domain[iInd, 1] > actualDomain[iInd, 1]:
|
|
38
|
+
raise ValueError("Can't integrate beyond the domain of the spline")
|
|
39
|
+
|
|
40
|
+
# Determine breakpoints for quadrature intervals; require functions to be analytic
|
|
41
|
+
|
|
42
|
+
uniqueKnots = []
|
|
43
|
+
for iInd in range(self.nInd):
|
|
44
|
+
iStart = np.searchsorted(self.knots[iInd], domain[iInd, 0], side = 'right')
|
|
45
|
+
iEnd = np.searchsorted(self.knots[iInd], domain[iInd, 1], side = 'right')
|
|
46
|
+
uniqueKnots.append(np.unique(np.insert(self.knots[iInd], [iStart, iEnd], domain[iInd])[iStart : iEnd + 2]))
|
|
47
|
+
|
|
48
|
+
# Set integrand function if none is given
|
|
49
|
+
if integrand is None:
|
|
50
|
+
integrand = lambda x : 1.0
|
|
51
|
+
|
|
52
|
+
# Set tolerance
|
|
53
|
+
tolerance = 1.0e-13 / self.nInd
|
|
54
|
+
|
|
55
|
+
# Establish the callback function
|
|
56
|
+
def composedIntegrand(u, nIndSoFar, uValues):
|
|
57
|
+
uValues[nIndSoFar] = u
|
|
58
|
+
nIndSoFar += 1
|
|
59
|
+
if self.nInd == nIndSoFar:
|
|
60
|
+
total = integrand(self(uValues)) * \
|
|
61
|
+
np.prod(np.linalg.svd(self.jacobian(uValues), compute_uv = False))
|
|
62
|
+
else:
|
|
63
|
+
total = 0.0
|
|
64
|
+
for ix in range(len(uniqueKnots[nIndSoFar]) - 1):
|
|
65
|
+
value = sp.integrate.quad(composedIntegrand, uniqueKnots[nIndSoFar][ix],
|
|
66
|
+
uniqueKnots[nIndSoFar][ix + 1], (nIndSoFar, uValues),
|
|
67
|
+
epsabs = tolerance, epsrel = tolerance)
|
|
68
|
+
total += value[0]
|
|
69
|
+
return total
|
|
70
|
+
|
|
71
|
+
# Compute the value by calling the callback routine
|
|
72
|
+
total = composedIntegrand(0.0, -1, self.nInd * [0.0])
|
|
73
|
+
return total
|
|
74
|
+
|
|
75
|
+
def continuity(self):
|
|
76
|
+
multiplicity = np.array([np.max(np.unique(knots, return_counts = True)[1][1 : -1]) for knots in self.knots])
|
|
77
|
+
continuity = self.order - multiplicity - 1
|
|
78
|
+
return continuity
|
|
79
|
+
|
|
28
80
|
def curvature(self, uv):
|
|
81
|
+
if self.nDep == 1:
|
|
82
|
+
self = self.graph()
|
|
29
83
|
if self.nInd == 1:
|
|
30
|
-
if self.nDep == 1:
|
|
31
|
-
self = self.graph()
|
|
32
84
|
fp = self.derivative([1], uv)
|
|
33
85
|
fpp = self.derivative([2], uv)
|
|
34
86
|
fpDotFp = fp @ fp
|
|
@@ -38,7 +90,21 @@ def curvature(self, uv):
|
|
|
38
90
|
numerator = fp[0] * fpp[1] - fp[1] * fpp[0]
|
|
39
91
|
else:
|
|
40
92
|
numerator = np.sqrt((fpp @ fpp) * fpDotFp - fpDotFpp ** 2)
|
|
41
|
-
return numerator / denom
|
|
93
|
+
return numerator / denom
|
|
94
|
+
if self.nInd == 2:
|
|
95
|
+
su = self.derivative([1, 0], uv)
|
|
96
|
+
sv = self.derivative([0, 1], uv)
|
|
97
|
+
normal = self.normal(uv)
|
|
98
|
+
suu = self.derivative([2, 0], uv)
|
|
99
|
+
suv = self.derivative([1, 1], uv)
|
|
100
|
+
svv = self.derivative([0, 2], uv)
|
|
101
|
+
E = su @ su
|
|
102
|
+
F = su @ sv
|
|
103
|
+
G = sv @ sv
|
|
104
|
+
L = suu @ normal
|
|
105
|
+
M = suv @ normal
|
|
106
|
+
N = svv @ normal
|
|
107
|
+
return (L * N - M ** 2) / (E * G - F ** 2)
|
|
42
108
|
|
|
43
109
|
def derivative(self, with_respect_to, uvw):
|
|
44
110
|
# Make work for scalar valued functions
|
|
@@ -107,6 +173,8 @@ def greville(self, ind = 0):
|
|
|
107
173
|
for ix in range(1, self.order[ind]):
|
|
108
174
|
knotAverages = knotAverages + myKnots[ix : ix + self.nCoef[ind]]
|
|
109
175
|
knotAverages /= (self.order[ind] - 1)
|
|
176
|
+
domain = self.domain()[ind]
|
|
177
|
+
knotAverages = np.minimum(domain[1], np.maximum(domain[0], knotAverages))
|
|
110
178
|
return knotAverages
|
|
111
179
|
|
|
112
180
|
def integral(self, with_respect_to, uvw1, uvw2, returnSpline = False):
|
|
@@ -150,8 +218,8 @@ def normal(self, uvw, normalize=True, indices=None):
|
|
|
150
218
|
|
|
151
219
|
if abs(self.nInd - self.nDep) != 1: raise ValueError("The number of independent variables must be one different than the number of dependent variables.")
|
|
152
220
|
|
|
153
|
-
# Evaluate the
|
|
154
|
-
tangentSpace = self.
|
|
221
|
+
# Evaluate the Jacobian at the point.
|
|
222
|
+
tangentSpace = self.jacobian(uvw)
|
|
155
223
|
|
|
156
224
|
# Record the larger dimension and ensure it comes first.
|
|
157
225
|
if self.nInd > self.nDep:
|
|
@@ -161,15 +229,15 @@ def normal(self, uvw, normalize=True, indices=None):
|
|
|
161
229
|
nDep = self.nDep
|
|
162
230
|
|
|
163
231
|
# Compute the normal using cofactors (determinants of subsets of the tangent space).
|
|
164
|
-
sign = -1 if self.metadata.get("flipNormal", False) else 1
|
|
232
|
+
sign = -1 if hasattr(self, "metadata") and self.metadata.get("flipNormal", False) else 1
|
|
233
|
+
dtype = self.coefs.dtype if hasattr(self, "coefs") else self.coefsDtype
|
|
165
234
|
if indices is None:
|
|
166
235
|
indices = range(nDep)
|
|
167
|
-
normal = np.empty(nDep,
|
|
236
|
+
normal = np.empty(nDep, dtype)
|
|
168
237
|
else:
|
|
169
|
-
normal = np.empty(len(indices),
|
|
170
|
-
for i in indices:
|
|
171
|
-
normal[
|
|
172
|
-
sign *= -1
|
|
238
|
+
normal = np.empty(len(indices), dtype)
|
|
239
|
+
for ix, i in enumerate(indices):
|
|
240
|
+
normal[ix] = sign * ((-1) ** i) * np.linalg.det(tangentSpace[[j for j in range(nDep) if i != j]])
|
|
173
241
|
|
|
174
242
|
# Normalize the result as needed.
|
|
175
243
|
if normalize:
|
|
@@ -180,13 +248,4 @@ def normal(self, uvw, normalize=True, indices=None):
|
|
|
180
248
|
def range_bounds(self):
|
|
181
249
|
# Assumes self.nDep is the first value in self.coefs.shape
|
|
182
250
|
bounds = [[coefficient.min(), coefficient.max()] for coefficient in self.coefs]
|
|
183
|
-
return np.array(bounds, self.coefs.dtype)
|
|
184
|
-
|
|
185
|
-
def tangent_space(self, uvw):
|
|
186
|
-
tangentSpace = np.empty((self.nDep, self.nInd), self.coefs.dtype)
|
|
187
|
-
wrt = [0] * self.nInd
|
|
188
|
-
for i in range(self.nInd):
|
|
189
|
-
wrt[i] = 1
|
|
190
|
-
tangentSpace[:, i] = self.derivative(wrt, uvw)
|
|
191
|
-
wrt[i] = 0
|
|
192
|
-
return tangentSpace
|
|
251
|
+
return np.array(bounds, self.coefs.dtype)
|