broccoli-ml 3.3.0__tar.gz → 4.0.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {broccoli_ml-3.3.0 → broccoli_ml-4.0.0}/PKG-INFO +1 -1
- {broccoli_ml-3.3.0 → broccoli_ml-4.0.0}/broccoli/transformer.py +63 -27
- broccoli_ml-4.0.0/broccoli/utils.py +15 -0
- {broccoli_ml-3.3.0 → broccoli_ml-4.0.0}/broccoli/vit.py +1 -14
- {broccoli_ml-3.3.0 → broccoli_ml-4.0.0}/pyproject.toml +1 -1
- {broccoli_ml-3.3.0 → broccoli_ml-4.0.0}/LICENSE +0 -0
- {broccoli_ml-3.3.0 → broccoli_ml-4.0.0}/README.md +0 -0
- {broccoli_ml-3.3.0 → broccoli_ml-4.0.0}/broccoli/__init__.py +0 -0
- {broccoli_ml-3.3.0 → broccoli_ml-4.0.0}/broccoli/activation.py +0 -0
- {broccoli_ml-3.3.0 → broccoli_ml-4.0.0}/broccoli/cnn.py +0 -0
- {broccoli_ml-3.3.0 → broccoli_ml-4.0.0}/broccoli/linear.py +0 -0
- {broccoli_ml-3.3.0 → broccoli_ml-4.0.0}/broccoli/rope.py +0 -0
- {broccoli_ml-3.3.0 → broccoli_ml-4.0.0}/broccoli/tensor.py +0 -0
|
@@ -4,11 +4,20 @@ from typing import Optional
|
|
|
4
4
|
import torch
|
|
5
5
|
import torch.nn as nn
|
|
6
6
|
import torch.nn.functional as F
|
|
7
|
+
from torch.utils.checkpoint import checkpoint
|
|
7
8
|
|
|
8
9
|
from einops import rearrange
|
|
9
10
|
|
|
10
11
|
from .rope import RotaryEmbedding, apply_rotary_emb
|
|
11
12
|
|
|
13
|
+
try:
|
|
14
|
+
from flash_attn import flash_attn_func
|
|
15
|
+
|
|
16
|
+
FLASH_ATTN = True
|
|
17
|
+
except ImportError:
|
|
18
|
+
pass
|
|
19
|
+
FLASH_ATTN = False
|
|
20
|
+
|
|
12
21
|
|
|
13
22
|
def drop_path(
|
|
14
23
|
x, drop_prob: float = 0.0, training: bool = False, scale_by_keep: bool = True
|
|
@@ -206,32 +215,53 @@ class MHAttention(nn.Module):
|
|
|
206
215
|
q = torch.cat([q_bos, q_img], dim=1)
|
|
207
216
|
k = torch.cat([k_bos, k_img], dim=1)
|
|
208
217
|
|
|
209
|
-
# Divide Q/K/V into heads
|
|
210
|
-
q = rearrange(q, "b t (h d) -> b h t d", h=self.n_heads)
|
|
211
|
-
k = rearrange(k, "b t (h d) -> b h t d", h=self.n_heads)
|
|
212
|
-
v = rearrange(v, "b t (h d) -> b h t d", h=self.n_heads)
|
|
213
|
-
|
|
214
|
-
qk_scores = q @ k.transpose(-1, -2)
|
|
215
|
-
|
|
216
218
|
if self.scaling == "sqrtd":
|
|
217
|
-
|
|
219
|
+
scaling_factor = 1 / math.sqrt(self.head_dim)
|
|
218
220
|
elif self.scaling == "d":
|
|
219
221
|
# for backwards compatibility, per https://github.com/microsoft/mup
|
|
220
|
-
|
|
222
|
+
scaling_factor = 8 / self.head_dim
|
|
221
223
|
else:
|
|
222
224
|
raise ValueError('`scaling` argument to MHAttention must be "d" or "sqrtd"')
|
|
223
225
|
|
|
224
|
-
|
|
225
|
-
|
|
226
|
-
|
|
226
|
+
if FLASH_ATTN:
|
|
227
|
+
# Divide Q/K/V into heads
|
|
228
|
+
q = rearrange(q, "b t (h d) -> b t h d", h=self.n_heads)
|
|
229
|
+
k = rearrange(k, "b t (h d) -> b t h d", h=self.n_heads)
|
|
230
|
+
v = rearrange(v, "b t (h d) -> b t h d", h=self.n_heads)
|
|
231
|
+
|
|
232
|
+
output_with_heads = flash_attn_func(
|
|
233
|
+
q,
|
|
234
|
+
k,
|
|
235
|
+
v,
|
|
236
|
+
dropout_p=self.dropout if self.training else 0.0,
|
|
237
|
+
softmax_scale=scaling_factor,
|
|
238
|
+
causal=self.causal,
|
|
239
|
+
)
|
|
240
|
+
|
|
241
|
+
output_without_heads = rearrange(output_with_heads, "b t h d -> b t (h d)")
|
|
242
|
+
|
|
243
|
+
return self.out_proj(output_without_heads)
|
|
244
|
+
else:
|
|
245
|
+
# Divide Q/K/V into heads
|
|
246
|
+
q = rearrange(q, "b t (h d) -> b h t d", h=self.n_heads)
|
|
247
|
+
k = rearrange(k, "b t (h d) -> b h t d", h=self.n_heads)
|
|
248
|
+
v = rearrange(v, "b t (h d) -> b h t d", h=self.n_heads)
|
|
249
|
+
|
|
250
|
+
qk_scores = q @ k.transpose(-1, -2)
|
|
227
251
|
|
|
228
|
-
|
|
252
|
+
qk_scores *= scaling_factor
|
|
229
253
|
|
|
230
|
-
|
|
254
|
+
# Apply mask if causal (must come before softmax)
|
|
255
|
+
if self.causal:
|
|
256
|
+
qk_scores.masked_fill_(self.mask, float("-inf"))
|
|
231
257
|
|
|
232
|
-
|
|
258
|
+
qk_scores = F.softmax(qk_scores, dim=-1)
|
|
233
259
|
|
|
234
|
-
|
|
260
|
+
output_with_heads = qk_scores @ v
|
|
261
|
+
|
|
262
|
+
output_without_heads = rearrange(output_with_heads, "b h t d -> b t (h d)")
|
|
263
|
+
|
|
264
|
+
return self.out_proj(output_without_heads)
|
|
235
265
|
|
|
236
266
|
|
|
237
267
|
class FeedforwardBlock(nn.Module):
|
|
@@ -259,6 +289,13 @@ class FeedforwardBlock(nn.Module):
|
|
|
259
289
|
self.residual_path = residual_path
|
|
260
290
|
self.post_norm = post_norm
|
|
261
291
|
|
|
292
|
+
if self.residual_path and (output_features < input_features):
|
|
293
|
+
raise ValueError(
|
|
294
|
+
"If the number of output features will be less than "
|
|
295
|
+
"the number of input features, then `residual_path` "
|
|
296
|
+
"should be set to False."
|
|
297
|
+
)
|
|
298
|
+
|
|
262
299
|
if self.post_norm:
|
|
263
300
|
self.layernorm = nn.LayerNorm(output_features)
|
|
264
301
|
|
|
@@ -403,21 +440,20 @@ class TransformerBlock(nn.Module):
|
|
|
403
440
|
def forward(self, x):
|
|
404
441
|
|
|
405
442
|
if self.pre_norm:
|
|
406
|
-
|
|
407
|
-
x = x + self.drop_path(self.attn(
|
|
408
|
-
|
|
409
|
-
x = x + self.drop_path(self.ff
|
|
410
|
-
|
|
443
|
+
x = self.layer_norm_1(x)
|
|
444
|
+
x = x + self.drop_path(self.attn(x, x, x))
|
|
445
|
+
x = self.layer_norm_2(x)
|
|
446
|
+
x = x + self.drop_path(checkpoint(self.ff, x, use_reentrant=False))
|
|
447
|
+
if self.post_norm: # i.e. in addition! Pre and post.
|
|
448
|
+
x = self.layer_norm_3(x)
|
|
449
|
+
elif self.post_norm: # i.e. only, not prenorm, just post
|
|
411
450
|
x = x + self.drop_path(self.attn(x, x, x))
|
|
412
451
|
x = self.layer_norm_1(x)
|
|
413
|
-
x = x + self.drop_path(self.ff
|
|
452
|
+
x = x + self.drop_path(checkpoint(self.ff, x, use_reentrant=False))
|
|
414
453
|
x = self.layer_norm_2(x)
|
|
415
|
-
else:
|
|
454
|
+
else: # Not pre or post norm. Stand well back.
|
|
416
455
|
x = x + self.drop_path(self.attn(x, x, x))
|
|
417
|
-
x = x + self.drop_path(self.ff
|
|
418
|
-
|
|
419
|
-
if self.pre_norm and self.post_norm:
|
|
420
|
-
x = self.layer_norm_3(x)
|
|
456
|
+
x = x + self.drop_path(checkpoint(self.ff, x, use_reentrant=False))
|
|
421
457
|
|
|
422
458
|
return x
|
|
423
459
|
|
|
@@ -0,0 +1,15 @@
|
|
|
1
|
+
import torch.nn as nn
|
|
2
|
+
import torch.nn.functional as F
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
class PadTensor(nn.Module):
|
|
6
|
+
def __init__(self, *args, **kwargs):
|
|
7
|
+
super().__init__()
|
|
8
|
+
self.args = args
|
|
9
|
+
self.kwargs = kwargs
|
|
10
|
+
|
|
11
|
+
def forward(self, x):
|
|
12
|
+
if sum(self.args[0]) == 0:
|
|
13
|
+
return x
|
|
14
|
+
else:
|
|
15
|
+
return F.pad(x, *self.args, **self.kwargs)
|
|
@@ -4,25 +4,12 @@ from typing import Optional
|
|
|
4
4
|
from .transformer import TransformerEncoder, FeedforwardBlock
|
|
5
5
|
from .cnn import SpaceToDepth, calculate_output_spatial_size, spatial_tuple
|
|
6
6
|
from .activation import ReLU, SquaredReLU, GELU, SwiGLU
|
|
7
|
+
from .utils import PadTensor
|
|
7
8
|
|
|
8
9
|
from einops import einsum
|
|
9
10
|
from einops.layers.torch import Rearrange
|
|
10
11
|
|
|
11
12
|
import torch.nn as nn
|
|
12
|
-
import torch.nn.functional as F
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
class PadTensor(nn.Module):
|
|
16
|
-
def __init__(self, *args, **kwargs):
|
|
17
|
-
super().__init__()
|
|
18
|
-
self.args = args
|
|
19
|
-
self.kwargs = kwargs
|
|
20
|
-
|
|
21
|
-
def forward(self, x):
|
|
22
|
-
if sum(self.args[0]) == 0:
|
|
23
|
-
return x
|
|
24
|
-
else:
|
|
25
|
-
return F.pad(x, *self.args, **self.kwargs)
|
|
26
13
|
|
|
27
14
|
|
|
28
15
|
class GetCLSToken(nn.Module):
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|