broccoli-ml 0.18.1__tar.gz → 0.19.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: broccoli-ml
3
- Version: 0.18.1
3
+ Version: 0.19.0
4
4
  Summary: Some useful Pytorch models, circa 2025
5
5
  License: MIT
6
6
  Author: Nicholas Bailey
@@ -14,30 +14,36 @@ class SigmaReparamTensor(nn.Module):
14
14
 
15
15
  super().__init__()
16
16
 
17
- self.tensor = nn.Parameter(init_tensor, requires_grad=True)
17
+ self.sigma_reparam_tensor = nn.Parameter(init_tensor, requires_grad=True)
18
18
 
19
19
  with torch.no_grad():
20
- _, sigma, v_transpose = torch.linalg.svd(self.tensor, full_matrices=False)
20
+ _, sigma, v_transpose = torch.linalg.svd(
21
+ self.sigma_reparam_tensor, full_matrices=False
22
+ )
21
23
 
22
24
  self.register_buffer("approx_spectral_norm", sigma[:1])
23
25
  self.register_buffer("right_singular", v_transpose[0])
24
- self.scale = nn.Parameter(
26
+ self.sigma_reparam_scale = nn.Parameter(
25
27
  self.approx_spectral_norm.clone().detach(), requires_grad=True
26
28
  )
27
29
 
28
30
  def power_iteration(self):
29
31
  with torch.no_grad():
30
- approx_right_singular_transpose = self.tensor.mv(self.right_singular)
32
+ approx_right_singular_transpose = self.sigma_reparam_tensor.mv(
33
+ self.right_singular
34
+ )
31
35
  approx_right_singular_transpose = F.normalize(
32
36
  approx_right_singular_transpose, dim=0
33
37
  )
34
- updated_right_singular = self.tensor.T.mv(approx_right_singular_transpose)
38
+ updated_right_singular = self.sigma_reparam_tensor.T.mv(
39
+ approx_right_singular_transpose
40
+ )
35
41
  updated_right_singular = F.normalize(updated_right_singular, dim=0)
36
42
  self.right_singular.data.copy_(updated_right_singular)
37
43
  rayleigh_quotient = torch.einsum(
38
44
  "m,mn,n->",
39
45
  approx_right_singular_transpose,
40
- self.tensor,
46
+ self.sigma_reparam_tensor,
41
47
  updated_right_singular,
42
48
  )
43
49
  self.approx_spectral_norm.data.copy_(rayleigh_quotient)
@@ -45,4 +51,6 @@ class SigmaReparamTensor(nn.Module):
45
51
  def forward(self):
46
52
  if self.training:
47
53
  self.power_iteration()
48
- return self.scale * (self.tensor / self.approx_spectral_norm)
54
+ return self.sigma_reparam_scale * (
55
+ self.sigma_reparam_tensor / self.approx_spectral_norm
56
+ )
@@ -1,6 +1,6 @@
1
1
  [project]
2
2
  name = "broccoli-ml"
3
- version = "0.18.1"
3
+ version = "0.19.0"
4
4
  description = "Some useful Pytorch models, circa 2025"
5
5
  authors = [
6
6
  {name = "Nicholas Bailey"}
File without changes
File without changes