braindecode 1.3.0.dev176728557__tar.gz → 1.3.0.dev179592623__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of braindecode might be problematic. Click here for more details.

Files changed (134) hide show
  1. {braindecode-1.3.0.dev176728557/braindecode.egg-info → braindecode-1.3.0.dev179592623}/PKG-INFO +1 -1
  2. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/models/atcnet.py +6 -6
  3. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/models/biot.py +1 -1
  4. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/models/eegnet.py +4 -3
  5. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/models/summary.csv +6 -6
  6. braindecode-1.3.0.dev179592623/braindecode/version.py +1 -0
  7. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623/braindecode.egg-info}/PKG-INFO +1 -1
  8. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode.egg-info/SOURCES.txt +1 -1
  9. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/docs/install/install.rst +1 -1
  10. braindecode-1.3.0.dev176728557/docs/models/categorization/llm.rst → braindecode-1.3.0.dev179592623/docs/models/categorization/lbm.rst +6 -6
  11. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/docs/models/models_categorization.rst +7 -7
  12. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/docs/models/models_table.rst +4 -4
  13. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/docs/whats_new.rst +2 -0
  14. braindecode-1.3.0.dev176728557/braindecode/version.py +0 -1
  15. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/LICENSE.txt +0 -0
  16. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/MANIFEST.in +0 -0
  17. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/NOTICE.txt +0 -0
  18. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/README.rst +0 -0
  19. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/__init__.py +0 -0
  20. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/augmentation/__init__.py +0 -0
  21. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/augmentation/base.py +0 -0
  22. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/augmentation/functional.py +0 -0
  23. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/augmentation/transforms.py +0 -0
  24. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/classifier.py +0 -0
  25. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/datasets/__init__.py +0 -0
  26. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/datasets/base.py +0 -0
  27. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/datasets/bbci.py +0 -0
  28. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/datasets/bcicomp.py +0 -0
  29. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/datasets/bids.py +0 -0
  30. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/datasets/experimental.py +0 -0
  31. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/datasets/mne.py +0 -0
  32. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/datasets/moabb.py +0 -0
  33. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/datasets/nmt.py +0 -0
  34. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/datasets/sleep_physio_challe_18.py +0 -0
  35. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/datasets/sleep_physionet.py +0 -0
  36. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/datasets/tuh.py +0 -0
  37. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/datasets/xy.py +0 -0
  38. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/datautil/__init__.py +0 -0
  39. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/datautil/serialization.py +0 -0
  40. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/datautil/util.py +0 -0
  41. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/eegneuralnet.py +0 -0
  42. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/functional/__init__.py +0 -0
  43. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/functional/functions.py +0 -0
  44. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/functional/initialization.py +0 -0
  45. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/models/__init__.py +0 -0
  46. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/models/attentionbasenet.py +0 -0
  47. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/models/attn_sleep.py +0 -0
  48. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/models/base.py +0 -0
  49. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/models/contrawr.py +0 -0
  50. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/models/ctnet.py +0 -0
  51. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/models/deep4.py +0 -0
  52. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/models/deepsleepnet.py +0 -0
  53. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/models/eegconformer.py +0 -0
  54. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/models/eeginception_erp.py +0 -0
  55. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/models/eeginception_mi.py +0 -0
  56. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/models/eegitnet.py +0 -0
  57. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/models/eegminer.py +0 -0
  58. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/models/eegnex.py +0 -0
  59. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/models/eegsimpleconv.py +0 -0
  60. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/models/eegtcnet.py +0 -0
  61. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/models/fbcnet.py +0 -0
  62. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/models/fblightconvnet.py +0 -0
  63. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/models/fbmsnet.py +0 -0
  64. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/models/hybrid.py +0 -0
  65. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/models/ifnet.py +0 -0
  66. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/models/labram.py +0 -0
  67. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/models/msvtnet.py +0 -0
  68. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/models/sccnet.py +0 -0
  69. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/models/shallow_fbcsp.py +0 -0
  70. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/models/signal_jepa.py +0 -0
  71. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/models/sinc_shallow.py +0 -0
  72. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/models/sleep_stager_blanco_2020.py +0 -0
  73. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/models/sleep_stager_chambon_2018.py +0 -0
  74. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/models/sparcnet.py +0 -0
  75. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/models/syncnet.py +0 -0
  76. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/models/tcn.py +0 -0
  77. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/models/tidnet.py +0 -0
  78. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/models/tsinception.py +0 -0
  79. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/models/usleep.py +0 -0
  80. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/models/util.py +0 -0
  81. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/modules/__init__.py +0 -0
  82. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/modules/activation.py +0 -0
  83. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/modules/attention.py +0 -0
  84. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/modules/blocks.py +0 -0
  85. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/modules/convolution.py +0 -0
  86. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/modules/filter.py +0 -0
  87. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/modules/layers.py +0 -0
  88. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/modules/linear.py +0 -0
  89. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/modules/parametrization.py +0 -0
  90. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/modules/stats.py +0 -0
  91. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/modules/util.py +0 -0
  92. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/modules/wrapper.py +0 -0
  93. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/preprocessing/__init__.py +0 -0
  94. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/preprocessing/mne_preprocess.py +0 -0
  95. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/preprocessing/preprocess.py +0 -0
  96. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/preprocessing/windowers.py +0 -0
  97. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/regressor.py +0 -0
  98. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/samplers/__init__.py +0 -0
  99. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/samplers/base.py +0 -0
  100. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/samplers/ssl.py +0 -0
  101. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/training/__init__.py +0 -0
  102. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/training/callbacks.py +0 -0
  103. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/training/losses.py +0 -0
  104. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/training/scoring.py +0 -0
  105. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/util.py +0 -0
  106. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/visualization/__init__.py +0 -0
  107. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/visualization/confusion_matrices.py +0 -0
  108. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode/visualization/gradients.py +0 -0
  109. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode.egg-info/dependency_links.txt +0 -0
  110. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode.egg-info/requires.txt +0 -0
  111. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/braindecode.egg-info/top_level.txt +0 -0
  112. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/docs/Makefile +0 -0
  113. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/docs/_templates/autosummary/class.rst +0 -0
  114. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/docs/_templates/autosummary/function.rst +0 -0
  115. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/docs/api.rst +0 -0
  116. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/docs/cite.rst +0 -0
  117. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/docs/conf.py +0 -0
  118. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/docs/help.rst +0 -0
  119. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/docs/index.rst +0 -0
  120. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/docs/install/install_pip.rst +0 -0
  121. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/docs/install/install_source.rst +0 -0
  122. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/docs/models/categorization/attention.rst +0 -0
  123. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/docs/models/categorization/channel.rst +0 -0
  124. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/docs/models/categorization/convolution.rst +0 -0
  125. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/docs/models/categorization/filterbank.rst +0 -0
  126. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/docs/models/categorization/gnn.rst +0 -0
  127. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/docs/models/categorization/interpretable.rst +0 -0
  128. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/docs/models/categorization/recurrent.rst +0 -0
  129. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/docs/models/categorization/spd.rst +0 -0
  130. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/docs/models/models.rst +0 -0
  131. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/docs/models/models_visualization.rst +0 -0
  132. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/docs/sg_execution_times.rst +0 -0
  133. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/pyproject.toml +0 -0
  134. {braindecode-1.3.0.dev176728557 → braindecode-1.3.0.dev179592623}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: braindecode
3
- Version: 1.3.0.dev176728557
3
+ Version: 1.3.0.dev179592623
4
4
  Summary: Deep learning software to decode EEG, ECG or MEG signals
5
5
  Author-email: Robin Tibor Schirrmeister <robintibor@gmail.com>
6
6
  Maintainer-email: Alexandre Gramfort <agramfort@meta.com>, Bruno Aristimunha Pinto <b.aristimunha@gmail.com>, Robin Tibor Schirrmeister <robintibor@gmail.com>
@@ -370,7 +370,7 @@ class ATCNet(EEGModuleMixin, nn.Module):
370
370
  nn.Sequential(
371
371
  *[
372
372
  _TCNResidualBlock(
373
- in_channels=self.F2,
373
+ in_channels=self.F2 if i == 0 else self.tcn_n_filters,
374
374
  kernel_size=self.tcn_kernel_size,
375
375
  n_filters=self.tcn_n_filters,
376
376
  dropout=self.tcn_dropout,
@@ -388,7 +388,7 @@ class ATCNet(EEGModuleMixin, nn.Module):
388
388
  self.final_layer = nn.ModuleList(
389
389
  [
390
390
  MaxNormLinear(
391
- in_features=self.F2 * self.n_windows,
391
+ in_features=self.tcn_n_filters * self.n_windows,
392
392
  out_features=self.n_outputs,
393
393
  max_norm_val=self.max_norm_const,
394
394
  )
@@ -398,7 +398,7 @@ class ATCNet(EEGModuleMixin, nn.Module):
398
398
  self.final_layer = nn.ModuleList(
399
399
  [
400
400
  MaxNormLinear(
401
- in_features=self.F2,
401
+ in_features=self.tcn_n_filters,
402
402
  out_features=self.n_outputs,
403
403
  max_norm_val=self.max_norm_const,
404
404
  )
@@ -695,8 +695,8 @@ class _TCNResidualBlock(nn.Module):
695
695
  # Reshape the input for the residual connection when necessary
696
696
  if in_channels != n_filters:
697
697
  self.reshaping_conv = nn.Conv1d(
698
- in_channels=in_channels,
699
- out_channels=n_filters,
698
+ in_channels=in_channels, # Specify input channels
699
+ out_channels=n_filters, # Specify output channels
700
700
  kernel_size=1,
701
701
  padding="same",
702
702
  )
@@ -716,7 +716,7 @@ class _TCNResidualBlock(nn.Module):
716
716
  out = self.activation(out)
717
717
  out = self.drop2(out)
718
718
 
719
- out = self.reshaping_conv(out)
719
+ X = self.reshaping_conv(X)
720
720
 
721
721
  # ----- Residual connection -----
722
722
  out = X + out
@@ -17,7 +17,7 @@ class BIOT(EEGModuleMixin, nn.Module):
17
17
 
18
18
  BIOT: Cross-data Biosignal Learning in the Wild.
19
19
 
20
- BIOT is a large language model for biosignal classification. It is
20
+ BIOT is a large brain model for biosignal classification. It is
21
21
  a wrapper around the `BIOTEncoder` and `ClassificationHead` modules.
22
22
 
23
23
  It is designed for N-dimensional biosignal data such as EEG, ECG, etc.
@@ -23,10 +23,11 @@ class EEGNet(EEGModuleMixin, nn.Sequential):
23
23
  """EEGNet model from Lawhern et al. (2018) [Lawhern2018]_.
24
24
 
25
25
  :bdg-success:`Convolution`
26
+
26
27
  .. figure:: https://content.cld.iop.org/journals/1741-2552/15/5/056013/revision2/jneaace8cf01_hr.jpg
27
- :align: center
28
- :alt: EEGNet Architecture
29
- :width: 600px
28
+ :align: center
29
+ :alt: EEGNet Architecture
30
+ :width: 600px
30
31
 
31
32
  .. rubric:: Architectural Overview
32
33
 
@@ -2,7 +2,7 @@
2
2
  ATCNet,General,Classification,250,"n_chans, n_outputs, n_times",113732,"ATCNet(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Recurrent,Small Attention"
3
3
  AttentionBaseNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",3692,"AttentionBaseNet(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Small Attention"
4
4
  BDTCN,Normal Abnormal,Classification,100,"n_chans, n_outputs, n_times",456502,"BDTCN(n_chans=21, n_outputs=2, n_times=6000, n_blocks=5, n_filters=55, kernel_size=16)","Convolution,Recurrent"
5
- BIOT,"Sleep Staging, Epilepsy",Classification,200,"n_chans, n_outputs",3183879,"BIOT(n_chans=2, n_outputs=5, n_times=6000)","Large Language Model"
5
+ BIOT,"Sleep Staging, Epilepsy",Classification,200,"n_chans, n_outputs",3183879,"BIOT(n_chans=2, n_outputs=5, n_times=6000)","Large Brain Model"
6
6
  ContraWR,Sleep Staging,"Classification, Embedding",125,"n_chans, n_outputs, sfreq",1160165,"ContraWR(n_chans=2, n_outputs=5, n_times=3750, emb_size=256, sfreq=125)",Convolution
7
7
  CTNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",26900,"CTNet(n_chans=22, n_outputs=4, n_times=1000, n_filters_time=8, kernel_size=16, heads=2, emb_size=16)","Convolution,Small Attention"
8
8
  Deep4Net,General,Classification,250,"n_chans, n_outputs, n_times",282879,"Deep4Net(n_chans=22, n_outputs=4, n_times=1000)","Convolution"
@@ -16,13 +16,13 @@ EEGNeX,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times",55940,"EEG
16
16
  EEGMiner,Emotion Recognition,Classification,128,"n_chans, n_outputs, n_times, sfreq",7572,"EEGMiner(n_chans=62, n_outputs=2, n_times=2560, sfreq=128)","Convolution,Interpretability"
17
17
  EEGSimpleConv,Motor Imagery,Classification,80,"n_chans, n_outputs, sfreq",730404,"EEGSimpleConv(n_chans=22, n_outputs=4, n_times=320, sfreq=80)","Convolution"
18
18
  EEGTCNet,Motor Imagery,Classification,250,"n_chans, n_outputs",4516,"EEGTCNet(n_chans=22, n_outputs=4, n_times=1000, kern_length=32)","Convolution,Recurrent"
19
- Labram,General,"Classification, Embedding",200,"n_chans, n_outputs, n_times",5866180,"Labram(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,Large Language Model"
19
+ Labram,General,"Classification, Embedding",200,"n_chans, n_outputs, n_times",5866180,"Labram(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,Large Brain Model"
20
20
  MSVTNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",75494," MSVTNet(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Recurrent,Small Attention"
21
21
  SCCNet,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times, sfreq",12070,"SCCNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=125)","Convolution"
22
- SignalJEPA,"Motor Imagery, ERP, SSVEP",Embedding,128,"n_times, chs_info",3456882,"SignalJEPA(n_times=512, chs_info=Lee2019_MI().get_data(subjects=[1])[1]['0']['1train'].info[""chs""][:62])","Convolution,Channel,Large Language Model"
23
- SignalJEPA_Contextual,"Motor Imagery, ERP, SSVEP",Classification,128,"n_outputs, n_times, chs_info",3459184,"SignalJEPA_Contextual(n_outputs=2, input_window_seconds=4.19, sfreq=128, chs_info=Lee2019_MI().get_data(subjects=[1])[1]['0']['1train'].info[""chs""][:62])","Convolution,Channel,Large Language Model"
24
- SignalJEPA_PostLocal,"Motor Imagery, ERP, SSVEP",Classification,128,"n_chans, n_outputs, n_times",16142,"SignalJEPA_PostLocal(n_chans=62, n_outputs=2, input_window_seconds=4.19, sfreq=128)","Convolution,Channel,Large Language Model"
25
- SignalJEPA_PreLocal,"Motor Imagery, ERP, SSVEP",Classification,128,"n_outputs, n_times, chs_info",16142,"SignalJEPA_PreLocal(n_chans=62, n_outputs=2, input_window_seconds=4.19, sfreq=128)","Convolution,Channel,Large Language Model"
22
+ SignalJEPA,"Motor Imagery, ERP, SSVEP",Embedding,128,"n_times, chs_info",3456882,"SignalJEPA(n_times=512, chs_info=Lee2019_MI().get_data(subjects=[1])[1]['0']['1train'].info[""chs""][:62])","Convolution,Channel,Large Brain Model"
23
+ SignalJEPA_Contextual,"Motor Imagery, ERP, SSVEP",Classification,128,"n_outputs, n_times, chs_info",3459184,"SignalJEPA_Contextual(n_outputs=2, input_window_seconds=4.19, sfreq=128, chs_info=Lee2019_MI().get_data(subjects=[1])[1]['0']['1train'].info[""chs""][:62])","Convolution,Channel,Large Brain Model"
24
+ SignalJEPA_PostLocal,"Motor Imagery, ERP, SSVEP",Classification,128,"n_chans, n_outputs, n_times",16142,"SignalJEPA_PostLocal(n_chans=62, n_outputs=2, input_window_seconds=4.19, sfreq=128)","Convolution,Channel,Large Brain Model"
25
+ SignalJEPA_PreLocal,"Motor Imagery, ERP, SSVEP",Classification,128,"n_outputs, n_times, chs_info",16142,"SignalJEPA_PreLocal(n_chans=62, n_outputs=2, input_window_seconds=4.19, sfreq=128)","Convolution,Channel,Large Brain Model"
26
26
  SincShallowNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",21892,"SincShallowNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,Interpretability"
27
27
  ShallowFBCSPNet,General,Classification,250,"n_chans, n_outputs, n_times",46084,"ShallowFBCSPNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution"
28
28
  SleepStagerBlanco2020,Sleep Staging,Classification,100,"n_chans, n_outputs, n_times",2845,"SleepStagerBlanco2020(n_chans=2, n_outputs=5, n_times=3000, sfreq=100)","Convolution"
@@ -0,0 +1 @@
1
+ __version__ = "1.3.0.dev179592623"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: braindecode
3
- Version: 1.3.0.dev176728557
3
+ Version: 1.3.0.dev179592623
4
4
  Summary: Deep learning software to decode EEG, ECG or MEG signals
5
5
  Author-email: Robin Tibor Schirrmeister <robintibor@gmail.com>
6
6
  Maintainer-email: Alexandre Gramfort <agramfort@meta.com>, Bruno Aristimunha Pinto <b.aristimunha@gmail.com>, Robin Tibor Schirrmeister <robintibor@gmail.com>
@@ -127,6 +127,6 @@ docs/models/categorization/convolution.rst
127
127
  docs/models/categorization/filterbank.rst
128
128
  docs/models/categorization/gnn.rst
129
129
  docs/models/categorization/interpretable.rst
130
- docs/models/categorization/llm.rst
130
+ docs/models/categorization/lbm.rst
131
131
  docs/models/categorization/recurrent.rst
132
132
  docs/models/categorization/spd.rst
@@ -4,7 +4,7 @@
4
4
  Installation
5
5
  ================
6
6
 
7
- Braindecode is written in Python 3, specifically for version 3.8 or above.
7
+ Braindecode is written in Python 3, specifically for version 3.10 or above.
8
8
 
9
9
  The package is distributed via Python package index (`PyPI <braindecode-pypi_>`_), and you can access the
10
10
  source code via `Github <braindecode-github_>`_ repository.
@@ -4,21 +4,21 @@
4
4
 
5
5
  .. _models:
6
6
 
7
- |llm-icon| Large Language Models
7
+ |lbm-icon| Large Brain Models
8
8
  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
9
9
 
10
- .. |llm-icon| image:: ../../_static/model_cat/llm.png
10
+ .. |lbm-icon| image:: ../../_static/model_cat/lbm.png
11
11
  :height: 56px
12
- :alt: Large Language Models icon
12
+ :alt: Large Brain Models icon
13
13
  :class: heading-icon no-scaled-link
14
14
 
15
- :bdg-danger:`Large Transformer Models`
15
+ :bdg-danger:`Large Brain Models`
16
16
 
17
- .. figure:: ../../_static/model_connection/litmap_llm.png
17
+ .. figure:: ../../_static/model_connection/litmap_lbm.png
18
18
  :width: 100%
19
19
  :align: center
20
20
 
21
- Figure: `LitMap <https://app.litmaps.com/shared/e33fb41d-bc98-407f-9372-437f2b59a140>`__ **with large transformer model layers, last updated 26/08/2025.** Each node is a paper; rightward means more recently published, upward more cited, and links show amount of citation with logaritm scale.
21
+ Figure: `LitMap <https://app.litmaps.com/shared/e33fb41d-bc98-407f-9372-437f2b59a140>`__ **with large brain model layers, last updated 26/08/2025.** Each node is a paper; rightward means more recently published, upward more cited, and links show amount of citation with logaritm scale.
22
22
 
23
23
 
24
24
  .. include:: ../links.inc
@@ -21,7 +21,7 @@ How these *core* :math:`\ell` sequence transformations are structured and combin
21
21
 
22
22
  Here, we categorize the main families of brain decoding models based on their core components and design philosophies.
23
23
  The categories are not mutually exclusive, but an indication of what governs that neural network model; many models blend elements from multiple families to leverage their combined strengths.
24
- Beginning directly, the categories are nine: :bdg-success:`Convolution`, :bdg-secondary:`Recurrent`, :bdg-info:`Small Attention`, :bdg-primary:`Filterbank`, :bdg-warning:`Interpretability`, :bdg-danger:`Large Language Model`, :bdg-light:`Graph Neural Network`, :bdg-dark:`Symmetric Positive-Definite` and :bdg-dark-line:`Channel`.
24
+ Beginning directly, the categories are nine: :bdg-success:`Convolution`, :bdg-secondary:`Recurrent`, :bdg-info:`Small Attention`, :bdg-primary:`Filterbank`, :bdg-warning:`Interpretability`, :bdg-danger:`Large Brain Model`, :bdg-light:`Graph Neural Network`, :bdg-dark:`Symmetric Positive-Definite` and :bdg-dark-line:`Channel`.
25
25
 
26
26
  At the moment, not all the categories are implemented, validated, and tested, but there are some that are noteworthy for introducing or popularizing concepts or layer designs that can take decoding further.
27
27
 
@@ -111,18 +111,18 @@ More details about each categories can be found in the respective sections below
111
111
 
112
112
  Learns on covariance/connectivity as SPD matrices using BiMap/ReEig/LogEig layers.
113
113
 
114
- .. grid-item-card:: |lightbulb| Large Transformer Models
114
+ .. grid-item-card:: |lightbulb| Large Brain Models
115
115
  :shadow: sm
116
116
 
117
- :bdg-danger:`Large Language Model`
117
+ :bdg-danger:`Large Brain Model`
118
118
 
119
- .. figure:: ../_static/model_cat/llm.png
119
+ .. figure:: ../_static/model_cat/lbm.png
120
120
  :width: 90%
121
121
  :align: center
122
122
  :alt: Diagram of transformer models
123
123
  :class: no-scaled-link
124
124
 
125
- Large-scale transformer layers require self-supervised pre-training to work effectively.
125
+ Large-scale brain model layers require self-supervised pre-training to work effectively.
126
126
 
127
127
  .. grid-item-card:: |share-nodes| Graph Neural Network
128
128
  :shadow: sm
@@ -160,7 +160,7 @@ More details about each categories can be found in the respective sections below
160
160
  - **Filterbank-style models** (:bdg-primary:`Filterbank`) explicitly decompose signals into multiple bands before (or while) learning, echoing the classic FBCSP pipeline; examples include :class:`FBCNet` and :class:`FBMSNet` (:cite:label:`mane2021fbcnet,liu2022fbmsnet`).
161
161
  - **Interpretability-by-design** (:bdg-warning:`Interpretability`) architectures expose physiologically meaningful primitives (e.g., band-pass/sinc filters, variance or connectivity features), enabling direct neuroscientific inspection; see :class:`SincShallowNet` and :class:`EEGMiner` (:cite:label:`borra2020interpretable,ludwig2024eegminer`).
162
162
  - **SPD / Riemannian** (:bdg-dark:`SPD`) methods operate on covariance (or connectivity) matrices as points on the SPD manifold, combining layers such as BiMap, ReEig, and LogEig; deep SPD networks and Riemannian classifiers motivate this family (:cite:label:`huang2017riemannian`). *(Coming soon in a dedicate repository.)*
163
- - **Large-model / Transformer** (:bdg-danger:`Large Language Model`) approaches pretrain attention-based encoders on diverse biosignals and fine-tune for EEG tasks; e.g., :class:`BIOT` (:cite:label:`yang2023biot`). These typically need a heavily self-supervised pre-training before decoding.
163
+ - **Large-model / Transformer** (:bdg-danger:`Large Brain Model`) approaches pretrain attention-based encoders on diverse biosignals and fine-tune for EEG tasks; e.g., :class:`BIOT` (:cite:label:`yang2023biot`), :class:`Labram` (:cite:label:`jiang2024large`). These typically need a heavily self-supervised pre-training before decoding.
164
164
  - **Graph neural networks** (:bdg-light:`Graph Neural Network`) treat channels/regions as nodes with learned (static or dynamic) edges to model functional connectivity explicitly; representative EEG-GNN, more common in the epileptic decoding (:cite:label:`klepl2024graph`).
165
165
  - **Channel-domain robustness** (:bdg-dark-line:`Channel`) techniques target variability in electrode layouts by learning montage-agnostic or channel-selective layers (e.g., dynamic spatial filtering, differentiable channel re-ordering); these strategies improve cross-setup generalization :class:`SignalJEPA` (:cite:label:`guetschel2024sjepa,chen2024eegprogress`).
166
166
 
@@ -194,7 +194,7 @@ We appreciate your contributions to expanding the library!
194
194
  categorization/filterbank
195
195
  categorization/interpretable
196
196
  categorization/spd
197
- categorization/llm
197
+ categorization/lbm
198
198
  categorization/gnn
199
199
  categorization/channel
200
200
 
@@ -19,7 +19,7 @@
19
19
  .tag.tag-filterbank{ background:#06b6d4!important; color:#073042!important; border-color:#0891b2!important; }
20
20
  .tag.tag-interp { background:#f59e0b!important; color:#1f2937!important; border-color:#d97706!important; }
21
21
  .tag.tag-spd { background:#111827!important; color:#fff!important; border-color:#0b1220!important; }
22
- .tag.tag-llm { background:#e11d48!important; color:#fff!important; border-color:#be123c!important; }
22
+ .tag.tag-lbm { background:#e11d48!important; color:#fff!important; border-color:#be123c!important; }
23
23
  .tag.tag-gnn { background:#475569!important; color:#fff!important; border-color:#334155!important; }
24
24
  .tag.tag-channel { background:#64748b!important; color:#fff!important; border-color:#475569!important; }
25
25
 
@@ -83,7 +83,7 @@ We are continually expanding this collection and welcome contributions! If you h
83
83
  .tag.tag-filterbank{ background:#06b6d4!important; color:#073042!important; border-color:#0891b2!important; }
84
84
  .tag.tag-interp { background:#f59e0b!important; color:#1f2937!important; border-color:#d97706!important; }
85
85
  .tag.tag-spd { background:#111827!important; color:#fff!important; border-color:#0b1220!important; }
86
- .tag.tag-llm { background:#e11d48!important; color:#fff!important; border-color:#be123c!important; }
86
+ .tag.tag-lbm { background:#e11d48!important; color:#fff!important; border-color:#be123c!important; }
87
87
  .tag.tag-gnn { background:#475569!important; color:#fff!important; border-color:#334155!important; }
88
88
  .tag.tag-channel { background:#64748b!important; color:#fff!important; border-color:#475569!important; }
89
89
  .tag { box-shadow:0 0 0 0 rgba(0,0,0,0); transition:box-shadow .15s, transform .15s; }
@@ -111,11 +111,11 @@ We are continually expanding this collection and welcome contributions! If you h
111
111
  "Convolution":"tag-conv","Recurrent":"tag-recurrent","Small Attention":"tag-smallattn",
112
112
  "Filterbank":"tag-filterbank","Interpretability":"tag-interp",
113
113
  "SPD":"tag-spd","Riemannian":"tag-spd",
114
- "Large Language Model":"tag-llm","Graph Neural Network":"tag-gnn","Channel":"tag-channel"
114
+ "Large Brain Model":"tag-lbm","Graph Neural Network":"tag-gnn","Channel":"tag-channel"
115
115
  };
116
116
  $(ctx).find('.tag').each(function () {
117
117
  var t = $(this).text().trim();
118
- $(this).removeClass('tag-conv tag-recurrent tag-smallattn tag-filterbank tag-interp tag-spd tag-llm tag-gnn tag-channel');
118
+ $(this).removeClass('tag-conv tag-recurrent tag-smallattn tag-filterbank tag-interp tag-spd tag-lbm tag-gnn tag-channel');
119
119
  if (map[t]) $(this).addClass(map[t]);
120
120
  else if (t.includes('SPD') || t.includes('Riemannian')) $(this).addClass('tag-spd');
121
121
  });
@@ -28,6 +28,7 @@ API changes
28
28
 
29
29
  Bugs
30
30
  ~~~~
31
+ - Fixing the issues with :class:`braindecode.models.ATCNet` (:gh:`782` by `Hamdi Altaheri`_)
31
32
 
32
33
 
33
34
  Current 1.2 (stable)
@@ -396,3 +397,4 @@ Authors
396
397
  .. _Young Truong: https://github.com/dungscout96
397
398
  .. _Lucas Heck: https://github.com/lucas-heck
398
399
  .. _Ganasekhar Kalla: https://github.com/Ganasekhar-gif
400
+ .. _Hamdi Altaheri: https://github.com/Altaheri
@@ -1 +0,0 @@
1
- __version__ = "1.3.0.dev176728557"