braindecode 1.2.0.dev182094932__tar.gz → 1.3.0.dev176728557__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of braindecode might be problematic. Click here for more details.

Files changed (136) hide show
  1. {braindecode-1.2.0.dev182094932/braindecode.egg-info → braindecode-1.3.0.dev176728557}/PKG-INFO +7 -2
  2. braindecode-1.3.0.dev176728557/braindecode/datasets/experimental.py +218 -0
  3. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/models/__init__.py +6 -8
  4. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/models/atcnet.py +152 -12
  5. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/models/attentionbasenet.py +151 -26
  6. braindecode-1.2.0.dev182094932/braindecode/models/sleep_stager_eldele_2021.py → braindecode-1.3.0.dev176728557/braindecode/models/attn_sleep.py +12 -2
  7. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/models/ctnet.py +1 -1
  8. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/models/deep4.py +6 -2
  9. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/models/deepsleepnet.py +118 -5
  10. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/models/eegconformer.py +114 -15
  11. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/models/eeginception_erp.py +76 -7
  12. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/models/eeginception_mi.py +2 -0
  13. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/models/eegnet.py +25 -189
  14. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/models/eegnex.py +113 -6
  15. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/models/eegsimpleconv.py +2 -0
  16. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/models/eegtcnet.py +1 -1
  17. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/models/sccnet.py +81 -8
  18. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/models/shallow_fbcsp.py +2 -0
  19. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/models/sleep_stager_blanco_2020.py +2 -0
  20. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/models/sleep_stager_chambon_2018.py +2 -0
  21. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/models/sparcnet.py +2 -0
  22. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/models/summary.csv +39 -41
  23. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/models/tidnet.py +2 -0
  24. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/models/tsinception.py +15 -3
  25. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/models/usleep.py +103 -9
  26. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/models/util.py +5 -5
  27. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/preprocessing/preprocess.py +20 -26
  28. braindecode-1.3.0.dev176728557/braindecode/version.py +1 -0
  29. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557/braindecode.egg-info}/PKG-INFO +7 -2
  30. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode.egg-info/SOURCES.txt +16 -4
  31. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode.egg-info/requires.txt +5 -0
  32. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/docs/api.rst +16 -11
  33. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/docs/conf.py +39 -17
  34. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/docs/index.rst +3 -3
  35. braindecode-1.3.0.dev176728557/docs/models/categorization/attention.rst +31 -0
  36. braindecode-1.3.0.dev176728557/docs/models/categorization/channel.rst +31 -0
  37. braindecode-1.3.0.dev176728557/docs/models/categorization/convolution.rst +33 -0
  38. braindecode-1.3.0.dev176728557/docs/models/categorization/filterbank.rst +31 -0
  39. braindecode-1.3.0.dev176728557/docs/models/categorization/gnn.rst +30 -0
  40. braindecode-1.3.0.dev176728557/docs/models/categorization/interpretable.rst +31 -0
  41. braindecode-1.3.0.dev176728557/docs/models/categorization/llm.rst +31 -0
  42. braindecode-1.3.0.dev176728557/docs/models/categorization/recurrent.rst +31 -0
  43. braindecode-1.3.0.dev176728557/docs/models/categorization/spd.rst +31 -0
  44. braindecode-1.3.0.dev176728557/docs/models/models.rst +78 -0
  45. braindecode-1.3.0.dev176728557/docs/models/models_categorization.rst +201 -0
  46. braindecode-1.3.0.dev176728557/docs/models/models_table.rst +191 -0
  47. braindecode-1.3.0.dev176728557/docs/models/models_visualization.rst +31 -0
  48. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/docs/sg_execution_times.rst +65 -62
  49. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/docs/whats_new.rst +27 -2
  50. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/pyproject.toml +11 -5
  51. braindecode-1.2.0.dev182094932/braindecode/models/eegresnet.py +0 -362
  52. braindecode-1.2.0.dev182094932/braindecode/version.py +0 -1
  53. braindecode-1.2.0.dev182094932/docs/models_summary.rst +0 -134
  54. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/LICENSE.txt +0 -0
  55. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/MANIFEST.in +0 -0
  56. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/NOTICE.txt +0 -0
  57. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/README.rst +0 -0
  58. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/__init__.py +0 -0
  59. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/augmentation/__init__.py +0 -0
  60. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/augmentation/base.py +0 -0
  61. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/augmentation/functional.py +0 -0
  62. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/augmentation/transforms.py +0 -0
  63. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/classifier.py +0 -0
  64. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/datasets/__init__.py +0 -0
  65. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/datasets/base.py +0 -0
  66. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/datasets/bbci.py +0 -0
  67. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/datasets/bcicomp.py +0 -0
  68. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/datasets/bids.py +0 -0
  69. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/datasets/mne.py +0 -0
  70. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/datasets/moabb.py +0 -0
  71. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/datasets/nmt.py +0 -0
  72. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/datasets/sleep_physio_challe_18.py +0 -0
  73. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/datasets/sleep_physionet.py +0 -0
  74. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/datasets/tuh.py +0 -0
  75. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/datasets/xy.py +0 -0
  76. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/datautil/__init__.py +0 -0
  77. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/datautil/serialization.py +0 -0
  78. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/datautil/util.py +0 -0
  79. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/eegneuralnet.py +0 -0
  80. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/functional/__init__.py +0 -0
  81. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/functional/functions.py +0 -0
  82. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/functional/initialization.py +0 -0
  83. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/models/base.py +0 -0
  84. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/models/biot.py +0 -0
  85. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/models/contrawr.py +0 -0
  86. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/models/eegitnet.py +0 -0
  87. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/models/eegminer.py +0 -0
  88. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/models/fbcnet.py +0 -0
  89. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/models/fblightconvnet.py +0 -0
  90. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/models/fbmsnet.py +0 -0
  91. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/models/hybrid.py +0 -0
  92. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/models/ifnet.py +0 -0
  93. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/models/labram.py +0 -0
  94. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/models/msvtnet.py +0 -0
  95. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/models/signal_jepa.py +0 -0
  96. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/models/sinc_shallow.py +0 -0
  97. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/models/syncnet.py +0 -0
  98. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/models/tcn.py +0 -0
  99. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/modules/__init__.py +0 -0
  100. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/modules/activation.py +0 -0
  101. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/modules/attention.py +0 -0
  102. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/modules/blocks.py +0 -0
  103. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/modules/convolution.py +0 -0
  104. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/modules/filter.py +0 -0
  105. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/modules/layers.py +0 -0
  106. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/modules/linear.py +0 -0
  107. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/modules/parametrization.py +0 -0
  108. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/modules/stats.py +0 -0
  109. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/modules/util.py +0 -0
  110. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/modules/wrapper.py +0 -0
  111. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/preprocessing/__init__.py +0 -0
  112. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/preprocessing/mne_preprocess.py +0 -0
  113. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/preprocessing/windowers.py +0 -0
  114. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/regressor.py +0 -0
  115. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/samplers/__init__.py +0 -0
  116. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/samplers/base.py +0 -0
  117. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/samplers/ssl.py +0 -0
  118. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/training/__init__.py +0 -0
  119. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/training/callbacks.py +0 -0
  120. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/training/losses.py +0 -0
  121. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/training/scoring.py +0 -0
  122. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/util.py +0 -0
  123. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/visualization/__init__.py +0 -0
  124. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/visualization/confusion_matrices.py +0 -0
  125. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode/visualization/gradients.py +0 -0
  126. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode.egg-info/dependency_links.txt +0 -0
  127. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/braindecode.egg-info/top_level.txt +0 -0
  128. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/docs/Makefile +0 -0
  129. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/docs/_templates/autosummary/class.rst +0 -0
  130. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/docs/_templates/autosummary/function.rst +0 -0
  131. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/docs/cite.rst +0 -0
  132. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/docs/help.rst +0 -0
  133. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/docs/install/install.rst +0 -0
  134. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/docs/install/install_pip.rst +0 -0
  135. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/docs/install/install_source.rst +0 -0
  136. {braindecode-1.2.0.dev182094932 → braindecode-1.3.0.dev176728557}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: braindecode
3
- Version: 1.2.0.dev182094932
3
+ Version: 1.3.0.dev176728557
4
4
  Summary: Deep learning software to decode EEG, ECG or MEG signals
5
5
  Author-email: Robin Tibor Schirrmeister <robintibor@gmail.com>
6
6
  Maintainer-email: Alexandre Gramfort <agramfort@meta.com>, Bruno Aristimunha Pinto <b.aristimunha@gmail.com>, Robin Tibor Schirrmeister <robintibor@gmail.com>
@@ -17,7 +17,7 @@ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
17
17
  Classifier: Programming Language :: Python :: 3.10
18
18
  Classifier: Programming Language :: Python :: 3.11
19
19
  Classifier: Programming Language :: Python :: 3.12
20
- Requires-Python: >3.10
20
+ Requires-Python: >=3.10
21
21
  Description-Content-Type: text/x-rst
22
22
  License-File: LICENSE.txt
23
23
  License-File: NOTICE.txt
@@ -49,6 +49,10 @@ Requires-Dist: mypy; extra == "tests"
49
49
  Provides-Extra: docs
50
50
  Requires-Dist: sphinx_gallery; extra == "docs"
51
51
  Requires-Dist: sphinx_rtd_theme; extra == "docs"
52
+ Requires-Dist: sphinx-autodoc-typehints; extra == "docs"
53
+ Requires-Dist: sphinx-autobuild; extra == "docs"
54
+ Requires-Dist: sphinxcontrib-bibtex; extra == "docs"
55
+ Requires-Dist: sphinx_sitemap; extra == "docs"
52
56
  Requires-Dist: pydata_sphinx_theme; extra == "docs"
53
57
  Requires-Dist: numpydoc; extra == "docs"
54
58
  Requires-Dist: memory_profiler; extra == "docs"
@@ -59,6 +63,7 @@ Requires-Dist: lightning; extra == "docs"
59
63
  Requires-Dist: seaborn; extra == "docs"
60
64
  Requires-Dist: pre-commit; extra == "docs"
61
65
  Requires-Dist: openneuro-py; extra == "docs"
66
+ Requires-Dist: plotly; extra == "docs"
62
67
  Provides-Extra: all
63
68
  Requires-Dist: braindecode[docs,moabb,tests]; extra == "all"
64
69
  Dynamic: license-file
@@ -0,0 +1,218 @@
1
+ from __future__ import annotations
2
+
3
+ import random
4
+ from pathlib import Path
5
+ from typing import Callable, Sequence
6
+
7
+ import mne_bids
8
+ from torch.utils.data import IterableDataset, get_worker_info
9
+
10
+
11
+ class BIDSIterableDataset(IterableDataset):
12
+ """Dataset for loading BIDS.
13
+
14
+ .. warning::
15
+ This class is experimental and may change in the future.
16
+
17
+ .. warning::
18
+ This dataset is not consistent with the Braindecode API.
19
+
20
+ This class has the same parameters as the :func:`mne_bids.find_matching_paths` function
21
+ as it will be used to find the files to load. The default ``extensions`` parameter was changed.
22
+
23
+ More information on BIDS (Brain Imaging Data Structure)
24
+ can be found at https://bids.neuroimaging.io
25
+
26
+ Examples
27
+ --------
28
+ >>> from braindecode.datasets import BaseDataset, BaseConcatDataset
29
+ >>> from braindecode.datasets.bids import BIDSIterableDataset, _description_from_bids_path
30
+ >>> from braindecode.preprocessing import create_fixed_length_windows
31
+ >>>
32
+ >>> def my_reader_fn(path):
33
+ ... raw = mne_bids.read_raw_bids(path)
34
+ ... desc = _description_from_bids_path(path)
35
+ ... ds = BaseDataset(raw, description=desc)
36
+ ... windows_ds = create_fixed_length_windows(
37
+ ... BaseConcatDataset([ds]),
38
+ ... window_size_samples=400,
39
+ ... window_stride_samples=200,
40
+ ... )
41
+ ... return windows_ds
42
+ >>>
43
+ >>> dataset = BIDSIterableDataset(
44
+ ... reader_fn=my_reader_fn,
45
+ ... root="root/of/my/bids/dataset/",
46
+ ... )
47
+
48
+ Parameters
49
+ ----------
50
+ reader_fn : Callable[[mne_bids.BIDSPath], Sequence]
51
+ A function that takes a BIDSPath and returns a dataset.
52
+ pool_size : int
53
+ The number of recordings to read and sample from.
54
+ bids_paths : list[mne_bids.BIDSPath] | None
55
+ A list of BIDSPaths to load. If None, will use the paths found by
56
+ :func:`mne_bids.find_matching_paths` and the arguments below.
57
+ root : pathlib.Path | str
58
+ The root of the BIDS path.
59
+ subjects : str | array-like of str | None
60
+ The subject ID. Corresponds to "sub".
61
+ sessions : str | array-like of str | None
62
+ The acquisition session. Corresponds to "ses".
63
+ tasks : str | array-like of str | None
64
+ The experimental task. Corresponds to "task".
65
+ acquisitions: str | array-like of str | None
66
+ The acquisition parameters. Corresponds to "acq".
67
+ runs : str | array-like of str | None
68
+ The run number. Corresponds to "run".
69
+ processings : str | array-like of str | None
70
+ The processing label. Corresponds to "proc".
71
+ recordings : str | array-like of str | None
72
+ The recording name. Corresponds to "rec".
73
+ spaces : str | array-like of str | None
74
+ The coordinate space for anatomical and sensor location
75
+ files (e.g., ``*_electrodes.tsv``, ``*_markers.mrk``).
76
+ Corresponds to "space".
77
+ Note that valid values for ``space`` must come from a list
78
+ of BIDS keywords as described in the BIDS specification.
79
+ splits : str | array-like of str | None
80
+ The split of the continuous recording file for ``.fif`` data.
81
+ Corresponds to "split".
82
+ descriptions : str | array-like of str | None
83
+ This corresponds to the BIDS entity ``desc``. It is used to provide
84
+ additional information for derivative data, e.g., preprocessed data
85
+ may be assigned ``description='cleaned'``.
86
+ suffixes : str | array-like of str | None
87
+ The filename suffix. This is the entity after the
88
+ last ``_`` before the extension. E.g., ``'channels'``.
89
+ The following filename suffix's are accepted:
90
+ 'meg', 'markers', 'eeg', 'ieeg', 'T1w',
91
+ 'participants', 'scans', 'electrodes', 'coordsystem',
92
+ 'channels', 'events', 'headshape', 'digitizer',
93
+ 'beh', 'physio', 'stim'
94
+ extensions : str | array-like of str | None
95
+ The extension of the filename. E.g., ``'.json'``.
96
+ By default, uses the ones accepted by :func:`mne_bids.read_raw_bids`.
97
+ datatypes : str | array-like of str | None
98
+ The BIDS data type, e.g., ``'anat'``, ``'func'``, ``'eeg'``, ``'meg'``,
99
+ ``'ieeg'``.
100
+ check : bool
101
+ If ``True``, only returns paths that conform to BIDS. If ``False``
102
+ (default), the ``.check`` attribute of the returned
103
+ :class:`mne_bids.BIDSPath` object will be set to ``True`` for paths that
104
+ do conform to BIDS, and to ``False`` for those that don't.
105
+ preload : bool
106
+ If True, preload the data. Defaults to False.
107
+ n_jobs : int
108
+ Number of jobs to run in parallel. Defaults to 1.
109
+ """
110
+
111
+ def __init__(
112
+ self,
113
+ reader_fn: Callable[[mne_bids.BIDSPath], Sequence],
114
+ pool_size: int = 4,
115
+ bids_paths: list[mne_bids.BIDSPath] | None = None,
116
+ root: Path | str | None = None,
117
+ subjects: str | list[str] | None = None,
118
+ sessions: str | list[str] | None = None,
119
+ tasks: str | list[str] | None = None,
120
+ acquisitions: str | list[str] | None = None,
121
+ runs: str | list[str] | None = None,
122
+ processings: str | list[str] | None = None,
123
+ recordings: str | list[str] | None = None,
124
+ spaces: str | list[str] | None = None,
125
+ splits: str | list[str] | None = None,
126
+ descriptions: str | list[str] | None = None,
127
+ suffixes: str | list[str] | None = None,
128
+ extensions: str | list[str] | None = [
129
+ ".con",
130
+ ".sqd",
131
+ ".pdf",
132
+ ".fif",
133
+ ".ds",
134
+ ".vhdr",
135
+ ".set",
136
+ ".edf",
137
+ ".bdf",
138
+ ".EDF",
139
+ ".snirf",
140
+ ".cdt",
141
+ ".mef",
142
+ ".nwb",
143
+ ],
144
+ datatypes: str | list[str] | None = None,
145
+ check: bool = False,
146
+ ):
147
+ if bids_paths is None:
148
+ bids_paths = mne_bids.find_matching_paths(
149
+ root=root,
150
+ subjects=subjects,
151
+ sessions=sessions,
152
+ tasks=tasks,
153
+ acquisitions=acquisitions,
154
+ runs=runs,
155
+ processings=processings,
156
+ recordings=recordings,
157
+ spaces=spaces,
158
+ splits=splits,
159
+ descriptions=descriptions,
160
+ suffixes=suffixes,
161
+ extensions=extensions,
162
+ datatypes=datatypes,
163
+ check=check,
164
+ ignore_json=True,
165
+ )
166
+ # Filter out _epo.fif files:
167
+ bids_paths = [
168
+ bids_path
169
+ for bids_path in bids_paths
170
+ if not (bids_path.suffix == "epo" and bids_path.extension == ".fif")
171
+ ]
172
+ self.bids_paths = bids_paths
173
+ self.reader_fn = reader_fn
174
+ self.pool_size = pool_size
175
+
176
+ def __add__(self, other):
177
+ assert isinstance(other, BIDSIterableDataset)
178
+ return BIDSIterableDataset(
179
+ reader_fn=self.reader_fn,
180
+ bids_paths=self.bids_paths + other.bids_paths,
181
+ pool_size=self.pool_size,
182
+ )
183
+
184
+ def __iadd__(self, other):
185
+ assert isinstance(other, BIDSIterableDataset)
186
+ self.bids_paths += other.bids_paths
187
+ return self
188
+
189
+ def __iter__(self):
190
+ worker_info = get_worker_info()
191
+ if worker_info is None: # single-process data loading, return the full iterator
192
+ bids_paths = self.bids_paths
193
+ else: # in a worker process
194
+ # split workload
195
+ bids_paths = self.bids_paths[worker_info.id :: worker_info.num_workers]
196
+
197
+ pool = []
198
+ end = False
199
+ paths_it = iter(random.sample(bids_paths, k=len(bids_paths)))
200
+ while not (end and len(pool) == 0):
201
+ while not end and len(pool) < self.pool_size:
202
+ try:
203
+ bids_path = next(paths_it)
204
+ ds = self.reader_fn(bids_path)
205
+ if ds is None:
206
+ print(f"Skipping {bids_path} as it is too short.")
207
+ continue
208
+ idx = iter(random.sample(range(len(ds)), k=len(ds)))
209
+ pool.append((ds, idx))
210
+ except StopIteration:
211
+ end = True
212
+ i_pool = random.randint(0, len(pool) - 1)
213
+ ds, idx = pool[i_pool]
214
+ try:
215
+ i_ds = next(idx)
216
+ yield ds[i_ds]
217
+ except StopIteration:
218
+ pool.pop(i_pool)
@@ -4,6 +4,7 @@ Some predefined network architectures for EEG decoding.
4
4
 
5
5
  from .atcnet import ATCNet
6
6
  from .attentionbasenet import AttentionBaseNet
7
+ from .attn_sleep import AttnSleep
7
8
  from .base import EEGModuleMixin
8
9
  from .biot import BIOT
9
10
  from .contrawr import ContraWR
@@ -15,9 +16,8 @@ from .eeginception_erp import EEGInceptionERP
15
16
  from .eeginception_mi import EEGInceptionMI
16
17
  from .eegitnet import EEGITNet
17
18
  from .eegminer import EEGMiner
18
- from .eegnet import EEGNetv1, EEGNetv4
19
+ from .eegnet import EEGNet, EEGNetv4
19
20
  from .eegnex import EEGNeX
20
- from .eegresnet import EEGResNet
21
21
  from .eegsimpleconv import EEGSimpleConv
22
22
  from .eegtcnet import EEGTCNet
23
23
  from .fbcnet import FBCNet
@@ -38,12 +38,11 @@ from .signal_jepa import (
38
38
  from .sinc_shallow import SincShallowNet
39
39
  from .sleep_stager_blanco_2020 import SleepStagerBlanco2020
40
40
  from .sleep_stager_chambon_2018 import SleepStagerChambon2018
41
- from .sleep_stager_eldele_2021 import SleepStagerEldele2021
42
41
  from .sparcnet import SPARCNet
43
42
  from .syncnet import SyncNet
44
43
  from .tcn import BDTCN, TCN
45
44
  from .tidnet import TIDNet
46
- from .tsinception import TSceptionV1
45
+ from .tsinception import TSception
47
46
  from .usleep import USleep
48
47
  from .util import _init_models_dict, models_mandatory_parameters
49
48
 
@@ -53,6 +52,7 @@ _init_models_dict()
53
52
 
54
53
  __all__ = [
55
54
  "ATCNet",
55
+ "AttnSleep",
56
56
  "AttentionBaseNet",
57
57
  "EEGModuleMixin",
58
58
  "BIOT",
@@ -65,10 +65,9 @@ __all__ = [
65
65
  "EEGInceptionMI",
66
66
  "EEGITNet",
67
67
  "EEGMiner",
68
- "EEGNetv1",
68
+ "EEGNet",
69
69
  "EEGNetv4",
70
70
  "EEGNeX",
71
- "EEGResNet",
72
71
  "EEGSimpleConv",
73
72
  "EEGTCNet",
74
73
  "FBCNet",
@@ -87,13 +86,12 @@ __all__ = [
87
86
  "SincShallowNet",
88
87
  "SleepStagerBlanco2020",
89
88
  "SleepStagerChambon2018",
90
- "SleepStagerEldele2021",
91
89
  "SPARCNet",
92
90
  "SyncNet",
93
91
  "BDTCN",
94
92
  "TCN",
95
93
  "TIDNet",
96
- "TSceptionV1",
94
+ "TSception",
97
95
  "USleep",
98
96
  "_init_models_dict",
99
97
  "models_mandatory_parameters",
@@ -13,13 +13,154 @@ from braindecode.modules import CausalConv1d, Ensure4d, MaxNormLinear
13
13
 
14
14
 
15
15
  class ATCNet(EEGModuleMixin, nn.Module):
16
- """ATCNet model from Altaheri et al. (2022) [1]_
16
+ """ATCNet from Altaheri et al. (2022) [1]_.
17
17
 
18
- Pytorch implementation based on official tensorflow code [2]_.
18
+ :bdg-success:`Convolution` :bdg-info:`Small Attention`
19
19
 
20
20
  .. figure:: https://user-images.githubusercontent.com/25565236/185449791-e8539453-d4fa-41e1-865a-2cf7e91f60ef.png
21
- :align: center
22
- :alt: ATCNet Architecture
21
+ :align: center
22
+ :alt: ATCNet Architecture
23
+ :width: 650px
24
+
25
+ .. rubric:: Architectural Overview
26
+
27
+ ATCNet is a *convolution-first* architecture augmented with a *lightweight attention–TCN*
28
+ sequence module. The end-to-end flow is:
29
+
30
+ - (i) :class:`_ConvBlock` learns temporal filter-banks and spatial projections (EEGNet-style),
31
+ downsampling time to a compact feature map;
32
+
33
+ - (ii) Sliding Windows carve overlapping temporal windows from this map;
34
+
35
+ - (iii) for each window, :class:`_AttentionBlock` applies small multi-head self-attention
36
+ over time, followed by a :class:`_TCNResidualBlock` stack (causal, dilated);
37
+
38
+ - (iv) window-level features are aggregated (mean of window logits or concatenation)
39
+ and mapped via a max-norm–constrained linear layer.
40
+
41
+ Relative to ViT, ATCNet replaces linear patch projection with learned *temporal–spatial*
42
+ convolutions; it processes *parallel* window encoders (attention→TCN) instead of a deep
43
+ stack; and swaps the MLP head for a TCN suited to 1-D EEG sequences.
44
+
45
+ .. rubric:: Macro Components
46
+
47
+ - :class:`_ConvBlock` **(Shallow conv stem → feature map)**
48
+
49
+ - *Operations.*
50
+ - **Temporal conv** (:class:`torch.nn.Conv2d`) with kernel ``(L_t, 1)`` builds a
51
+ FIR-like filter bank (``F1`` maps).
52
+ - **Depthwise spatial conv** (:class:`torch.nn.Conv2d`, ``groups=F1``) with kernel
53
+ ``(1, n_chans)`` learns per-filter spatial projections (akin to EEGNet’s CSP-like step).
54
+ - **BN → ELU → AvgPool → Dropout** to stabilize and condense activations.
55
+ - **Refining temporal conv** (:class:`torch.nn.Conv2d`) with kernel ``(L_r, 1)`` +
56
+ **BN → ELU → AvgPool → Dropout**.
57
+
58
+ The output shape is ``(B, F2, T_c, 1)`` with ``F2 = F1·D`` and ``T_c = T/(P1·P2)``.
59
+ Temporal kernels behave as FIR filters; the depthwise-spatial conv yields frequency-specific
60
+ topographies. Pooling acts as a local integrator, reducing variance and imposing a
61
+ useful inductive bias on short EEG windows.
62
+
63
+ - **Sliding-Window Sequencer**
64
+
65
+ From the condensed time axis (length ``T_c``), ATCNet forms ``n`` overlapping windows
66
+ of width ``T_w = T_c - n + 1`` (one start per index). Each window produces a sequence
67
+ ``(B, F2, T_w)`` forwarded to its own attention–TCN branch. This creates *parallel*
68
+ encoders over shifted contexts and is key to robustness on nonstationary EEG.
69
+
70
+ - :class:`_AttentionBlock` **(small MHA on temporal positions)**
71
+
72
+ - *Operations.*
73
+ - Rearrange to ``(B, T_w, F2)``,
74
+ - Normalization :class:`torch.nn.LayerNorm`
75
+ - Custom MultiHeadAttention :class:`_MHA` (``num_heads=H``, per-head dim ``d_h``) + residual add,
76
+ - Dropout :class:`torch.nn.Dropout`
77
+ - Rearrange back to ``(B, F2, T_w)``.
78
+
79
+
80
+ **Note**: Attention is *local to a window* and purely temporal.
81
+
82
+ *Role.* Re-weights evidence across the window, letting the model emphasize informative
83
+ segments (onsets, bursts) before causal convolutions aggregate history.
84
+
85
+ - :class:`_TCNResidualBlock` **(causal dilated temporal CNN)**
86
+
87
+ - *Operations.*
88
+ - Two :class:`braindecode.modules.CausalConv1d` layers per block with dilation ``1, 2, 4, …``
89
+ - Across blocks of `torch.nn.ELU` + `torch.nn.BatchNorm1d` + `torch.nn.Dropout`) +
90
+ a residual (identity or 1x1 mapping).
91
+ - The final feature used per window is the *last* causal step ``[..., -1]`` (forecast-style).
92
+
93
+ *Role.* Efficient long-range temporal integration with stable gradients; the dilated
94
+ receptive field complements attention’s soft selection.
95
+
96
+ - **Aggregation & Classifier**
97
+
98
+ - *Operations.*
99
+ - Either (a) map each window feature ``(B, F2)`` to logits via :class:`braindecode.modules.MaxNormLinear`
100
+ and **average** across windows (default, matching official code), or
101
+ - (b) **concatenate** all window features ``(B, n·F2)`` and apply a single :class:`MaxNormLinear`.
102
+ The max-norm constraint regularizes the readout.
103
+
104
+ .. rubric:: Convolutional Details
105
+
106
+ - **Temporal.** Temporal structure is learned in three places:
107
+ - (1) the stem’s wide ``(L_t, 1)`` conv (learned filter bank),
108
+ - (2) the refining ``(L_r, 1)`` conv after pooling (short-term dynamics), and
109
+ - (3) the TCN’s causal 1-D convolutions with exponentially increasing dilation
110
+ (long-range dependencies). The minimum sequence length required by the TCN stack is
111
+ ``(K_t - 1)·2^{L-1} + 1``; the implementation *auto-scales* kernels/pools/windows
112
+ when inputs are shorter to preserve feasibility.
113
+
114
+ - **Spatial.** A depthwise spatial conv spans the **full montage** (kernel ``(1, n_chans)``),
115
+ producing *per-temporal-filter* spatial projections (no cross-filter mixing at this step).
116
+ This mirrors EEGNet’s interpretability: each temporal filter has its own spatial pattern.
117
+
118
+
119
+ .. rubric:: Attention / Sequential Modules
120
+
121
+ - **Type.** Multi-head self-attention with ``H`` heads and per-head dim ``d_h`` implemented
122
+ in :class:`_MHA`, allowing ``embed_dim = H·d_h`` independent of input and output dims.
123
+ - **Shapes.** ``(B, F2, T_w) → (B, T_w, F2) → (B, F2, T_w)``. Attention operates along
124
+ the **temporal** axis within a window; channels/features stay in the embedding dim ``F2``.
125
+ - **Role.** Highlights salient temporal positions prior to causal convolution; small attention
126
+ keeps compute modest while improving context modeling over pooled features.
127
+
128
+ .. rubric:: Additional Mechanisms
129
+
130
+ - **Parallel encoders over shifted windows.** Improves montage/phase robustness by
131
+ ensembling nearby contexts rather than committing to a single segmentation.
132
+ - **Max-norm classifier.** Enforces weight norm constraints at the readout, a common
133
+ stabilization trick in EEG decoding.
134
+ - **ViT vs. ATCNet (design choices).** Convolutional *nonlinear* projection rather than
135
+ linear patchification; attention followed by **TCN** (not MLP); *parallel* window
136
+ encoders rather than stacked encoders.
137
+
138
+ .. rubric:: Usage and Configuration
139
+
140
+ - ``conv_block_n_filters (F1)``, ``conv_block_depth_mult (D)`` → capacity of the stem
141
+ (with ``F2 = F1·D`` feeding attention/TCN), dimensions aligned to ``F2``, like :class:`EEGNet`.
142
+ - Pool sizes ``P1,P2`` trade temporal resolution for stability/compute; they set
143
+ ``T_c = T/(P1·P2)`` and thus window width ``T_w``.
144
+ - ``n_windows`` controls the ensemble over shifts (compute ∝ windows).
145
+ - ``att_num_heads``, ``att_head_dim`` set attention capacity; keep ``H·d_h ≈ F2``.
146
+ - ``tcn_depth``, ``tcn_kernel_size`` govern receptive field; larger values demand
147
+ longer inputs (see minimum length above). The implementation warns and *rescales*
148
+ kernels/pools/windows if inputs are too short.
149
+ - **Aggregation choice.** ``concat=False`` (default, average of per-window logits) matches
150
+ the official code; ``concat=True`` mirrors the paper’s concatenation variant.
151
+
152
+
153
+ Notes
154
+ -----
155
+ - Inputs substantially shorter than the implied minimum length trigger **automatic
156
+ downscaling** of kernels, pools, windows, and TCN kernel size to maintain validity.
157
+ - The attention–TCN sequence operates **per window**; the last causal step is used as the
158
+ window feature, aligning the temporal semantics across windows.
159
+
160
+ .. versionadded:: 1.1
161
+
162
+ - More detailed documentation of the model.
163
+
23
164
 
24
165
  Parameters
25
166
  ----------
@@ -85,15 +226,13 @@ class ATCNet(EEGModuleMixin, nn.Module):
85
226
  Maximum L2-norm constraint imposed on weights of the last
86
227
  fully-connected layer. Defaults to 0.25.
87
228
 
88
-
89
229
  References
90
230
  ----------
91
- .. [1] H. Altaheri, G. Muhammad and M. Alsulaiman,
92
- Physics-informed attention temporal convolutional network for EEG-based
93
- motor imagery classification in IEEE Transactions on Industrial Informatics,
94
- 2022, doi: 10.1109/TII.2022.3197419.
95
- .. [2] EEE-ATCNet implementation.
96
- https://github.com/Altaheri/EEG-ATCNet/blob/main/models.py
231
+ .. [1] H. Altaheri, G. Muhammad, M. Alsulaiman (2022).
232
+ *Physics-informed attention temporal convolutional network for EEG-based motor imagery classification.*
233
+ IEEE Transactions on Industrial Informatics. doi:10.1109/TII.2022.3197419.
234
+ .. [2] Official EEG-ATCNet implementation (TensorFlow):
235
+ https://github.com/Altaheri/EEG-ATCNet/blob/main/models.py
97
236
  """
98
237
 
99
238
  def __init__(
@@ -556,7 +695,8 @@ class _TCNResidualBlock(nn.Module):
556
695
  # Reshape the input for the residual connection when necessary
557
696
  if in_channels != n_filters:
558
697
  self.reshaping_conv = nn.Conv1d(
559
- n_filters,
698
+ in_channels=in_channels,
699
+ out_channels=n_filters,
560
700
  kernel_size=1,
561
701
  padding="same",
562
702
  )