bqseine 0.1.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of bqseine might be problematic. Click here for more details.
- bqseine-0.1.0/.gitignore +207 -0
- bqseine-0.1.0/LICENSE +21 -0
- bqseine-0.1.0/PKG-INFO +75 -0
- bqseine-0.1.0/README.md +61 -0
- bqseine-0.1.0/pyproject.toml +23 -0
- bqseine-0.1.0/src/bqseine/__init__.py +0 -0
- bqseine-0.1.0/src/bqseine/agent.py +281 -0
- bqseine-0.1.0/src/bqseine/polyp.py +381 -0
bqseine-0.1.0/.gitignore
ADDED
|
@@ -0,0 +1,207 @@
|
|
|
1
|
+
# Byte-compiled / optimized / DLL files
|
|
2
|
+
__pycache__/
|
|
3
|
+
*.py[codz]
|
|
4
|
+
*$py.class
|
|
5
|
+
|
|
6
|
+
# C extensions
|
|
7
|
+
*.so
|
|
8
|
+
|
|
9
|
+
# Distribution / packaging
|
|
10
|
+
.Python
|
|
11
|
+
build/
|
|
12
|
+
develop-eggs/
|
|
13
|
+
dist/
|
|
14
|
+
downloads/
|
|
15
|
+
eggs/
|
|
16
|
+
.eggs/
|
|
17
|
+
lib/
|
|
18
|
+
lib64/
|
|
19
|
+
parts/
|
|
20
|
+
sdist/
|
|
21
|
+
var/
|
|
22
|
+
wheels/
|
|
23
|
+
share/python-wheels/
|
|
24
|
+
*.egg-info/
|
|
25
|
+
.installed.cfg
|
|
26
|
+
*.egg
|
|
27
|
+
MANIFEST
|
|
28
|
+
|
|
29
|
+
# PyInstaller
|
|
30
|
+
# Usually these files are written by a python script from a template
|
|
31
|
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
|
32
|
+
*.manifest
|
|
33
|
+
*.spec
|
|
34
|
+
|
|
35
|
+
# Installer logs
|
|
36
|
+
pip-log.txt
|
|
37
|
+
pip-delete-this-directory.txt
|
|
38
|
+
|
|
39
|
+
# Unit test / coverage reports
|
|
40
|
+
htmlcov/
|
|
41
|
+
.tox/
|
|
42
|
+
.nox/
|
|
43
|
+
.coverage
|
|
44
|
+
.coverage.*
|
|
45
|
+
.cache
|
|
46
|
+
nosetests.xml
|
|
47
|
+
coverage.xml
|
|
48
|
+
*.cover
|
|
49
|
+
*.py.cover
|
|
50
|
+
.hypothesis/
|
|
51
|
+
.pytest_cache/
|
|
52
|
+
cover/
|
|
53
|
+
|
|
54
|
+
# Translations
|
|
55
|
+
*.mo
|
|
56
|
+
*.pot
|
|
57
|
+
|
|
58
|
+
# Django stuff:
|
|
59
|
+
*.log
|
|
60
|
+
local_settings.py
|
|
61
|
+
db.sqlite3
|
|
62
|
+
db.sqlite3-journal
|
|
63
|
+
|
|
64
|
+
# Flask stuff:
|
|
65
|
+
instance/
|
|
66
|
+
.webassets-cache
|
|
67
|
+
|
|
68
|
+
# Scrapy stuff:
|
|
69
|
+
.scrapy
|
|
70
|
+
|
|
71
|
+
# Sphinx documentation
|
|
72
|
+
docs/_build/
|
|
73
|
+
|
|
74
|
+
# PyBuilder
|
|
75
|
+
.pybuilder/
|
|
76
|
+
target/
|
|
77
|
+
|
|
78
|
+
# Jupyter Notebook
|
|
79
|
+
.ipynb_checkpoints
|
|
80
|
+
|
|
81
|
+
# IPython
|
|
82
|
+
profile_default/
|
|
83
|
+
ipython_config.py
|
|
84
|
+
|
|
85
|
+
# pyenv
|
|
86
|
+
# For a library or package, you might want to ignore these files since the code is
|
|
87
|
+
# intended to run in multiple environments; otherwise, check them in:
|
|
88
|
+
# .python-version
|
|
89
|
+
|
|
90
|
+
# pipenv
|
|
91
|
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
|
92
|
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
|
93
|
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
|
94
|
+
# install all needed dependencies.
|
|
95
|
+
#Pipfile.lock
|
|
96
|
+
|
|
97
|
+
# UV
|
|
98
|
+
# Similar to Pipfile.lock, it is generally recommended to include uv.lock in version control.
|
|
99
|
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
|
100
|
+
# commonly ignored for libraries.
|
|
101
|
+
#uv.lock
|
|
102
|
+
|
|
103
|
+
# poetry
|
|
104
|
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
|
105
|
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
|
106
|
+
# commonly ignored for libraries.
|
|
107
|
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
|
108
|
+
#poetry.lock
|
|
109
|
+
#poetry.toml
|
|
110
|
+
|
|
111
|
+
# pdm
|
|
112
|
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
|
113
|
+
# pdm recommends including project-wide configuration in pdm.toml, but excluding .pdm-python.
|
|
114
|
+
# https://pdm-project.org/en/latest/usage/project/#working-with-version-control
|
|
115
|
+
#pdm.lock
|
|
116
|
+
#pdm.toml
|
|
117
|
+
.pdm-python
|
|
118
|
+
.pdm-build/
|
|
119
|
+
|
|
120
|
+
# pixi
|
|
121
|
+
# Similar to Pipfile.lock, it is generally recommended to include pixi.lock in version control.
|
|
122
|
+
#pixi.lock
|
|
123
|
+
# Pixi creates a virtual environment in the .pixi directory, just like venv module creates one
|
|
124
|
+
# in the .venv directory. It is recommended not to include this directory in version control.
|
|
125
|
+
.pixi
|
|
126
|
+
|
|
127
|
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
|
128
|
+
__pypackages__/
|
|
129
|
+
|
|
130
|
+
# Celery stuff
|
|
131
|
+
celerybeat-schedule
|
|
132
|
+
celerybeat.pid
|
|
133
|
+
|
|
134
|
+
# SageMath parsed files
|
|
135
|
+
*.sage.py
|
|
136
|
+
|
|
137
|
+
# Environments
|
|
138
|
+
.env
|
|
139
|
+
.envrc
|
|
140
|
+
.venv
|
|
141
|
+
env/
|
|
142
|
+
venv/
|
|
143
|
+
ENV/
|
|
144
|
+
env.bak/
|
|
145
|
+
venv.bak/
|
|
146
|
+
|
|
147
|
+
# Spyder project settings
|
|
148
|
+
.spyderproject
|
|
149
|
+
.spyproject
|
|
150
|
+
|
|
151
|
+
# Rope project settings
|
|
152
|
+
.ropeproject
|
|
153
|
+
|
|
154
|
+
# mkdocs documentation
|
|
155
|
+
/site
|
|
156
|
+
|
|
157
|
+
# mypy
|
|
158
|
+
.mypy_cache/
|
|
159
|
+
.dmypy.json
|
|
160
|
+
dmypy.json
|
|
161
|
+
|
|
162
|
+
# Pyre type checker
|
|
163
|
+
.pyre/
|
|
164
|
+
|
|
165
|
+
# pytype static type analyzer
|
|
166
|
+
.pytype/
|
|
167
|
+
|
|
168
|
+
# Cython debug symbols
|
|
169
|
+
cython_debug/
|
|
170
|
+
|
|
171
|
+
# PyCharm
|
|
172
|
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
|
173
|
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
|
174
|
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
|
175
|
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
|
176
|
+
#.idea/
|
|
177
|
+
|
|
178
|
+
# Abstra
|
|
179
|
+
# Abstra is an AI-powered process automation framework.
|
|
180
|
+
# Ignore directories containing user credentials, local state, and settings.
|
|
181
|
+
# Learn more at https://abstra.io/docs
|
|
182
|
+
.abstra/
|
|
183
|
+
|
|
184
|
+
# Visual Studio Code
|
|
185
|
+
# Visual Studio Code specific template is maintained in a separate VisualStudioCode.gitignore
|
|
186
|
+
# that can be found at https://github.com/github/gitignore/blob/main/Global/VisualStudioCode.gitignore
|
|
187
|
+
# and can be added to the global gitignore or merged into this file. However, if you prefer,
|
|
188
|
+
# you could uncomment the following to ignore the entire vscode folder
|
|
189
|
+
# .vscode/
|
|
190
|
+
|
|
191
|
+
# Ruff stuff:
|
|
192
|
+
.ruff_cache/
|
|
193
|
+
|
|
194
|
+
# PyPI configuration file
|
|
195
|
+
.pypirc
|
|
196
|
+
|
|
197
|
+
# Cursor
|
|
198
|
+
# Cursor is an AI-powered code editor. `.cursorignore` specifies files/directories to
|
|
199
|
+
# exclude from AI features like autocomplete and code analysis. Recommended for sensitive data
|
|
200
|
+
# refer to https://docs.cursor.com/context/ignore-files
|
|
201
|
+
.cursorignore
|
|
202
|
+
.cursorindexingignore
|
|
203
|
+
|
|
204
|
+
# Marimo
|
|
205
|
+
marimo/_static/
|
|
206
|
+
marimo/_lsp/
|
|
207
|
+
__marimo__/
|
bqseine-0.1.0/LICENSE
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
MIT License
|
|
2
|
+
|
|
3
|
+
Copyright (c) [year] [fullname]
|
|
4
|
+
|
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
7
|
+
in the Software without restriction, including without limitation the rights
|
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
10
|
+
furnished to do so, subject to the following conditions:
|
|
11
|
+
|
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
|
13
|
+
copies or substantial portions of the Software.
|
|
14
|
+
|
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
21
|
+
SOFTWARE.
|
bqseine-0.1.0/PKG-INFO
ADDED
|
@@ -0,0 +1,75 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: bqseine
|
|
3
|
+
Version: 0.1.0
|
|
4
|
+
Summary: ETL for BigQuery
|
|
5
|
+
Project-URL: Homepage, https://github.com/shaafiee/seine
|
|
6
|
+
Project-URL: Issues, https://github.com/shaafiee/siene/issues
|
|
7
|
+
Author-email: Shaafiee <shaafiee@gmail.com>
|
|
8
|
+
License-Expression: MIT
|
|
9
|
+
License-File: LICENSE
|
|
10
|
+
Classifier: Operating System :: OS Independent
|
|
11
|
+
Classifier: Programming Language :: Python :: 3
|
|
12
|
+
Requires-Python: >=3.9
|
|
13
|
+
Description-Content-Type: text/markdown
|
|
14
|
+
|
|
15
|
+
# BQSeine
|
|
16
|
+
## Python dict to BigQuery data loader
|
|
17
|
+
Seine is a data loader that pushes data in a dictionary to BigQuery in relational normalized form. Seine also has functionality to use Gemini to get data insights from Bigquery.
|
|
18
|
+
|
|
19
|
+
## Usage
|
|
20
|
+
|
|
21
|
+
### AI insights
|
|
22
|
+
```
|
|
23
|
+
from bqseine.agent import chat
|
|
24
|
+
response = chat(question, context)
|
|
25
|
+
```
|
|
26
|
+
|
|
27
|
+
In making the call to chat(<question>, <context>), the <context> argument explains to the LLM how the tables in Bigquery and their fields refer to each other and what they mean.
|
|
28
|
+
|
|
29
|
+
### Data loading
|
|
30
|
+
```
|
|
31
|
+
from bqseine.polyp import sync
|
|
32
|
+
sourceData = [
|
|
33
|
+
{
|
|
34
|
+
'item': 'Juice',
|
|
35
|
+
'price': 20.0,
|
|
36
|
+
'stock': [
|
|
37
|
+
{
|
|
38
|
+
'batch': '2025-01-20',
|
|
39
|
+
'qty': 300
|
|
40
|
+
},
|
|
41
|
+
{
|
|
42
|
+
'batch': '2025-02-02',
|
|
43
|
+
'qty': 50
|
|
44
|
+
}
|
|
45
|
+
]
|
|
46
|
+
},
|
|
47
|
+
{
|
|
48
|
+
'item': 'Burger',
|
|
49
|
+
'price': 30.0,
|
|
50
|
+
'stock': [
|
|
51
|
+
{
|
|
52
|
+
'batch': '2025-02-10',
|
|
53
|
+
'qty': 200
|
|
54
|
+
}
|
|
55
|
+
]
|
|
56
|
+
}
|
|
57
|
+
]
|
|
58
|
+
sync('someGoogleProject', sourceData, 'catalog', 'US')
|
|
59
|
+
### The arguments above are:
|
|
60
|
+
### sync(<Google project name>, <dict>, <main table name>, <BigQuery region>)*
|
|
61
|
+
```
|
|
62
|
+
|
|
63
|
+
The above example will generate the following tables in BigQuery:
|
|
64
|
+
#### catalog
|
|
65
|
+
| seine_id | seine_parent_id | item | price | injected |
|
|
66
|
+
| --- | --- | --- | --- | --- |
|
|
67
|
+
| 1 | 0 | 'Juice' | 20.0 | now() |
|
|
68
|
+
| 2 | 0 | 'Burger' | 30.0 | now() |
|
|
69
|
+
|
|
70
|
+
#### catalog_stock
|
|
71
|
+
| seine_id | seine_parent_id | batch | qty | injected |
|
|
72
|
+
| --- | --- | --- | --- | --- |
|
|
73
|
+
| 1 | 1 | '2025-01-20' | 300 | now() |
|
|
74
|
+
| 2 | 1 | '2025-02-02' | 50 | now() |
|
|
75
|
+
| 3 | 2 | '2025-02-10' | 200 | now() |
|
bqseine-0.1.0/README.md
ADDED
|
@@ -0,0 +1,61 @@
|
|
|
1
|
+
# BQSeine
|
|
2
|
+
## Python dict to BigQuery data loader
|
|
3
|
+
Seine is a data loader that pushes data in a dictionary to BigQuery in relational normalized form. Seine also has functionality to use Gemini to get data insights from Bigquery.
|
|
4
|
+
|
|
5
|
+
## Usage
|
|
6
|
+
|
|
7
|
+
### AI insights
|
|
8
|
+
```
|
|
9
|
+
from bqseine.agent import chat
|
|
10
|
+
response = chat(question, context)
|
|
11
|
+
```
|
|
12
|
+
|
|
13
|
+
In making the call to chat(<question>, <context>), the <context> argument explains to the LLM how the tables in Bigquery and their fields refer to each other and what they mean.
|
|
14
|
+
|
|
15
|
+
### Data loading
|
|
16
|
+
```
|
|
17
|
+
from bqseine.polyp import sync
|
|
18
|
+
sourceData = [
|
|
19
|
+
{
|
|
20
|
+
'item': 'Juice',
|
|
21
|
+
'price': 20.0,
|
|
22
|
+
'stock': [
|
|
23
|
+
{
|
|
24
|
+
'batch': '2025-01-20',
|
|
25
|
+
'qty': 300
|
|
26
|
+
},
|
|
27
|
+
{
|
|
28
|
+
'batch': '2025-02-02',
|
|
29
|
+
'qty': 50
|
|
30
|
+
}
|
|
31
|
+
]
|
|
32
|
+
},
|
|
33
|
+
{
|
|
34
|
+
'item': 'Burger',
|
|
35
|
+
'price': 30.0,
|
|
36
|
+
'stock': [
|
|
37
|
+
{
|
|
38
|
+
'batch': '2025-02-10',
|
|
39
|
+
'qty': 200
|
|
40
|
+
}
|
|
41
|
+
]
|
|
42
|
+
}
|
|
43
|
+
]
|
|
44
|
+
sync('someGoogleProject', sourceData, 'catalog', 'US')
|
|
45
|
+
### The arguments above are:
|
|
46
|
+
### sync(<Google project name>, <dict>, <main table name>, <BigQuery region>)*
|
|
47
|
+
```
|
|
48
|
+
|
|
49
|
+
The above example will generate the following tables in BigQuery:
|
|
50
|
+
#### catalog
|
|
51
|
+
| seine_id | seine_parent_id | item | price | injected |
|
|
52
|
+
| --- | --- | --- | --- | --- |
|
|
53
|
+
| 1 | 0 | 'Juice' | 20.0 | now() |
|
|
54
|
+
| 2 | 0 | 'Burger' | 30.0 | now() |
|
|
55
|
+
|
|
56
|
+
#### catalog_stock
|
|
57
|
+
| seine_id | seine_parent_id | batch | qty | injected |
|
|
58
|
+
| --- | --- | --- | --- | --- |
|
|
59
|
+
| 1 | 1 | '2025-01-20' | 300 | now() |
|
|
60
|
+
| 2 | 1 | '2025-02-02' | 50 | now() |
|
|
61
|
+
| 3 | 2 | '2025-02-10' | 200 | now() |
|
|
@@ -0,0 +1,23 @@
|
|
|
1
|
+
[build-system]
|
|
2
|
+
requires = ["hatchling >= 1.26"]
|
|
3
|
+
build-backend = "hatchling.build"
|
|
4
|
+
|
|
5
|
+
[project]
|
|
6
|
+
name = "bqseine"
|
|
7
|
+
version = "0.1.0"
|
|
8
|
+
authors = [
|
|
9
|
+
{ name="Shaafiee", email="shaafiee@gmail.com" },
|
|
10
|
+
]
|
|
11
|
+
description = "ETL for BigQuery"
|
|
12
|
+
readme = "README.md"
|
|
13
|
+
requires-python = ">=3.9"
|
|
14
|
+
classifiers = [
|
|
15
|
+
"Programming Language :: Python :: 3",
|
|
16
|
+
"Operating System :: OS Independent",
|
|
17
|
+
]
|
|
18
|
+
license = "MIT"
|
|
19
|
+
license-files = ["LICEN[CS]E*"]
|
|
20
|
+
|
|
21
|
+
[project.urls]
|
|
22
|
+
Homepage = "https://github.com/shaafiee/seine"
|
|
23
|
+
Issues = "https://github.com/shaafiee/siene/issues"
|
|
File without changes
|
|
@@ -0,0 +1,281 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
import os
|
|
4
|
+
import json
|
|
5
|
+
from typing import Dict, Any, List, Optional
|
|
6
|
+
|
|
7
|
+
from google import genai
|
|
8
|
+
from google.genai import types as gtypes
|
|
9
|
+
from google.cloud import bigquery
|
|
10
|
+
|
|
11
|
+
from context import sales, stocr, traffic
|
|
12
|
+
|
|
13
|
+
from decimal import Decimal
|
|
14
|
+
from datetime import date, datetime
|
|
15
|
+
|
|
16
|
+
# --- BigQuery setup (ADC: env, WI, or SA on the host) ---
|
|
17
|
+
bq = bigquery.Client()
|
|
18
|
+
|
|
19
|
+
# --- Gemini (AI Studio) ---
|
|
20
|
+
# Uses GOOGLE_API_KEY if set, otherwise falls back to application-default creds when supported.
|
|
21
|
+
gclient = genai.Client()
|
|
22
|
+
|
|
23
|
+
# ---------- Tool implementations ----------
|
|
24
|
+
|
|
25
|
+
def json_safe(obj):
|
|
26
|
+
"""Recursively convert BigQuery / Python types to JSON-serializable types."""
|
|
27
|
+
if isinstance(obj, Decimal):
|
|
28
|
+
# choose float or str depending on how precise you need
|
|
29
|
+
return float(obj)
|
|
30
|
+
if isinstance(obj, (datetime, date)):
|
|
31
|
+
return obj.isoformat()
|
|
32
|
+
if isinstance(obj, dict):
|
|
33
|
+
return {k: json_safe(v) for k, v in obj.items()}
|
|
34
|
+
if isinstance(obj, (list, tuple)):
|
|
35
|
+
return [json_safe(v) for v in obj]
|
|
36
|
+
# BigQuery Row and similar should already be converted before calling this
|
|
37
|
+
return obj
|
|
38
|
+
|
|
39
|
+
def list_datasets(project_id: Optional[str] = None) -> List[str]:
|
|
40
|
+
"""List accessible BigQuery datasets in a project (defaults to client's project)."""
|
|
41
|
+
proj = project_id or bq.project
|
|
42
|
+
return [d.dataset_id for d in bq.list_datasets(project=proj)]
|
|
43
|
+
|
|
44
|
+
def list_tables(dataset: str, project_id: Optional[str] = None) -> List[str]:
|
|
45
|
+
"""List tables in a dataset."""
|
|
46
|
+
proj = project_id or bq.project
|
|
47
|
+
return [t.table_id for t in bq.list_tables(f"{proj}.{dataset}")]
|
|
48
|
+
|
|
49
|
+
def get_table_schema(table: str, dataset: str, project_id: Optional[str] = None) -> List[Dict[str, Any]]:
|
|
50
|
+
"""Return table schema (name, type, mode) as JSON."""
|
|
51
|
+
proj = project_id or bq.project
|
|
52
|
+
t = bq.get_table(f"{proj}.{dataset}.{table}")
|
|
53
|
+
return [{"name": f.name, "type": f.field_type, "mode": f.mode} for f in t.schema]
|
|
54
|
+
|
|
55
|
+
def run_query(sql: str, params: Optional[Dict[str, Any]] = None, dry_run: bool = False) -> Dict[str, Any]:
|
|
56
|
+
lowered = sql.strip().lower()
|
|
57
|
+
if lowered.startswith(("insert", "update", "delete", "merge", "create", "drop", "alter")):
|
|
58
|
+
return {
|
|
59
|
+
"error": "Refusing to run DDL/DML in this agent. SELECT-only allowed.",
|
|
60
|
+
"sql": sql,
|
|
61
|
+
}
|
|
62
|
+
|
|
63
|
+
qparams = []
|
|
64
|
+
if params:
|
|
65
|
+
for k, v in params.items():
|
|
66
|
+
if isinstance(v, bool):
|
|
67
|
+
typ = "BOOL"
|
|
68
|
+
elif isinstance(v, int):
|
|
69
|
+
typ = "INT64"
|
|
70
|
+
elif isinstance(v, float):
|
|
71
|
+
typ = "FLOAT64"
|
|
72
|
+
else:
|
|
73
|
+
typ = "STRING"
|
|
74
|
+
qparams.append(bigquery.ScalarQueryParameter(k, typ, v))
|
|
75
|
+
|
|
76
|
+
job_config = bigquery.QueryJobConfig(
|
|
77
|
+
dry_run=dry_run,
|
|
78
|
+
use_query_cache=True,
|
|
79
|
+
)
|
|
80
|
+
if qparams:
|
|
81
|
+
job_config.query_parameters = qparams
|
|
82
|
+
|
|
83
|
+
try:
|
|
84
|
+
job = bq.query(sql, job_config=job_config)
|
|
85
|
+
|
|
86
|
+
if dry_run:
|
|
87
|
+
return json_safe({
|
|
88
|
+
"rows": [],
|
|
89
|
+
"total_rows": 0,
|
|
90
|
+
"slot_ms": job.slot_millis,
|
|
91
|
+
"job_id": job.job_id,
|
|
92
|
+
"cache_hit": getattr(job, "cache_hit", None),
|
|
93
|
+
"sql": sql,
|
|
94
|
+
})
|
|
95
|
+
|
|
96
|
+
raw_rows = [dict(r) for r in job.result()]
|
|
97
|
+
return json_safe({
|
|
98
|
+
"rows": raw_rows,
|
|
99
|
+
"total_rows": len(raw_rows),
|
|
100
|
+
"slot_ms": job.slot_millis,
|
|
101
|
+
"job_id": job.job_id,
|
|
102
|
+
"cache_hit": getattr(job, "cache_hit", None),
|
|
103
|
+
"sql": sql,
|
|
104
|
+
})
|
|
105
|
+
|
|
106
|
+
except Exception as e:
|
|
107
|
+
return json_safe({
|
|
108
|
+
"error": str(e),
|
|
109
|
+
"sql": sql,
|
|
110
|
+
})
|
|
111
|
+
|
|
112
|
+
# ---------- Tool declarations for Gemini ----------
|
|
113
|
+
|
|
114
|
+
bq_tools = gtypes.Tool(function_declarations=[
|
|
115
|
+
{
|
|
116
|
+
"name": "list_datasets",
|
|
117
|
+
"description": "List accessible BigQuery datasets for a project.",
|
|
118
|
+
"parameters": {
|
|
119
|
+
"type": "object",
|
|
120
|
+
"properties": {
|
|
121
|
+
"project_id": {"type": "string", "description": "GCP project ID"},
|
|
122
|
+
}
|
|
123
|
+
},
|
|
124
|
+
},
|
|
125
|
+
{
|
|
126
|
+
"name": "list_tables",
|
|
127
|
+
"description": "List tables in a dataset.",
|
|
128
|
+
"parameters": {
|
|
129
|
+
"type": "object",
|
|
130
|
+
"properties": {
|
|
131
|
+
"dataset": {"type": "string"},
|
|
132
|
+
"project_id": {"type": "string"},
|
|
133
|
+
},
|
|
134
|
+
"required": ["dataset"]
|
|
135
|
+
},
|
|
136
|
+
},
|
|
137
|
+
{
|
|
138
|
+
"name": "get_table_schema",
|
|
139
|
+
"description": "Get schema for a table as JSON.",
|
|
140
|
+
"parameters": {
|
|
141
|
+
"type": "object",
|
|
142
|
+
"properties": {
|
|
143
|
+
"table": {"type": "string"},
|
|
144
|
+
"dataset": {"type": "string"},
|
|
145
|
+
"project_id": {"type": "string"},
|
|
146
|
+
},
|
|
147
|
+
"required": ["table", "dataset"]
|
|
148
|
+
},
|
|
149
|
+
},
|
|
150
|
+
{
|
|
151
|
+
"name": "run_query",
|
|
152
|
+
"description": "Run a SELECT-only BigQuery query with optional named parameters.",
|
|
153
|
+
"parameters": {
|
|
154
|
+
"type": "object",
|
|
155
|
+
"properties": {
|
|
156
|
+
"sql": {"type": "string"},
|
|
157
|
+
"params": {"type": "object"},
|
|
158
|
+
"dry_run": {"type": "boolean"}
|
|
159
|
+
},
|
|
160
|
+
"required": ["sql"]
|
|
161
|
+
},
|
|
162
|
+
},
|
|
163
|
+
])
|
|
164
|
+
|
|
165
|
+
# Optional: force the model to use tools when needed (or try AUTO first).
|
|
166
|
+
tool_config_any = gtypes.ToolConfig(
|
|
167
|
+
function_calling_config=gtypes.FunctionCallingConfig(mode="AUTO")
|
|
168
|
+
)
|
|
169
|
+
gen_config = gtypes.GenerateContentConfig(
|
|
170
|
+
tools=[bq_tools],
|
|
171
|
+
tool_config=tool_config_any,
|
|
172
|
+
temperature=0.1,
|
|
173
|
+
)
|
|
174
|
+
|
|
175
|
+
SYSTEM_PROMPT = """You are a data analyst assistant for BigQuery.
|
|
176
|
+
- Prefer SELECT-only SQL.
|
|
177
|
+
- When missing a column/table name, use list_datasets/list_tables/get_table_schema.
|
|
178
|
+
- For final answers, provide a brief natural-language summary, include the SQL you ran in a fenced code block, and include the output from the SQL, styled as an HTML <table>, in a fenced code block.
|
|
179
|
+
"""
|
|
180
|
+
def dispatch_tool(name: str, args: Dict[str, Any]) -> Dict[str, Any]:
|
|
181
|
+
try:
|
|
182
|
+
if name == "list_datasets":
|
|
183
|
+
return json_safe({"datasets": list_datasets(**args)})
|
|
184
|
+
if name == "list_tables":
|
|
185
|
+
return json_safe({"tables": list_tables(**args)})
|
|
186
|
+
if name == "get_table_schema":
|
|
187
|
+
return json_safe({"schema": get_table_schema(**args)})
|
|
188
|
+
if name == "run_query":
|
|
189
|
+
return json_safe(run_query(**args))
|
|
190
|
+
return {"error": f"Unknown tool: {name}"}
|
|
191
|
+
except Exception as e:
|
|
192
|
+
return {"error": str(e)}
|
|
193
|
+
|
|
194
|
+
def chat(user_data: list[str],
|
|
195
|
+
history: list[gtypes.Content] | None = None,
|
|
196
|
+
model: str = "gemini-2.5-pro") -> gtypes.GenerateContentResponse:
|
|
197
|
+
user_prompt = user_data[0]
|
|
198
|
+
additional_instructions = user_data[1]
|
|
199
|
+
if history is None:
|
|
200
|
+
history = []
|
|
201
|
+
|
|
202
|
+
if not history:
|
|
203
|
+
history.append(
|
|
204
|
+
gtypes.Content(
|
|
205
|
+
role="user",
|
|
206
|
+
parts=[gtypes.Part(text=f"{SYSTEM_PROMPT}\n{additional_instructions}")]
|
|
207
|
+
)
|
|
208
|
+
)
|
|
209
|
+
|
|
210
|
+
# Add the new user message
|
|
211
|
+
history.append(
|
|
212
|
+
gtypes.Content(
|
|
213
|
+
role="user",
|
|
214
|
+
parts=[gtypes.Part(text=user_prompt)]
|
|
215
|
+
)
|
|
216
|
+
)
|
|
217
|
+
|
|
218
|
+
# First call: model may respond with text + function_call parts
|
|
219
|
+
resp = gclient.models.generate_content(
|
|
220
|
+
model=model,
|
|
221
|
+
contents=history,
|
|
222
|
+
config=gen_config,
|
|
223
|
+
)
|
|
224
|
+
|
|
225
|
+
# Collect any tool calls from parts
|
|
226
|
+
tool_calls = []
|
|
227
|
+
for part in resp.candidates[0].content.parts:
|
|
228
|
+
if part.function_call:
|
|
229
|
+
tool_calls.append(part.function_call)
|
|
230
|
+
|
|
231
|
+
if not tool_calls:
|
|
232
|
+
# No tools requested → just return; caller can use resp.text safely
|
|
233
|
+
return resp
|
|
234
|
+
|
|
235
|
+
# Execute each requested tool
|
|
236
|
+
tool_response_contents: list[gtypes.Content] = []
|
|
237
|
+
for fc in tool_calls:
|
|
238
|
+
result = dispatch_tool(fc.name, dict(fc.args))
|
|
239
|
+
tool_response_contents.append(
|
|
240
|
+
gtypes.Content(
|
|
241
|
+
role="tool",
|
|
242
|
+
parts=[
|
|
243
|
+
gtypes.Part(
|
|
244
|
+
function_response=gtypes.FunctionResponse(
|
|
245
|
+
name=fc.name,
|
|
246
|
+
response=result,
|
|
247
|
+
)
|
|
248
|
+
)
|
|
249
|
+
],
|
|
250
|
+
)
|
|
251
|
+
)
|
|
252
|
+
|
|
253
|
+
# Extend history with the model's function_call turn + tool responses
|
|
254
|
+
history.append(resp.candidates[0].content)
|
|
255
|
+
history.extend(tool_response_contents)
|
|
256
|
+
|
|
257
|
+
# Second call: model now sees tool outputs and should produce final answer text
|
|
258
|
+
final_resp = gclient.models.generate_content(
|
|
259
|
+
model=model,
|
|
260
|
+
contents=history,
|
|
261
|
+
config=gen_config,
|
|
262
|
+
)
|
|
263
|
+
|
|
264
|
+
return final_resp
|
|
265
|
+
|
|
266
|
+
if __name__ == "__main__":
|
|
267
|
+
#"Generate a table of all the fabrics for which a slipcover was sold in October of 2025, with first column showing the fabric name, second the volume sold and third the total earnings in USD."
|
|
268
|
+
#"Generate weekly STOCR 28 the second quarter of 2025."
|
|
269
|
+
# Example usage
|
|
270
|
+
"""
|
|
271
|
+
question = (
|
|
272
|
+
"Find the top 5 product categories by revenue in 2025 Q3 from "
|
|
273
|
+
"`myproj.analytics.sales` and show revenue and order_count. "
|
|
274
|
+
"If you don't know columns, inspect the schema first."
|
|
275
|
+
)
|
|
276
|
+
"""
|
|
277
|
+
question = (
|
|
278
|
+
"Generate a table of all the fabrics for which a slipcover was sold in October of 2025, with first column showing the fabric name, second the volume sold and third the total earnings in USD."
|
|
279
|
+
)
|
|
280
|
+
answer = chat_once([question, f"{sales}\n{stocr}\n{traffic}"])
|
|
281
|
+
print(answer.text)
|
|
@@ -0,0 +1,381 @@
|
|
|
1
|
+
from gcp_secrets.secrets import *
|
|
2
|
+
from google.cloud import bigquery
|
|
3
|
+
from google.cloud.exceptions import NotFound
|
|
4
|
+
from datetime import date, datetime
|
|
5
|
+
from db_lib import *
|
|
6
|
+
import json
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
lastSeineId = {}
|
|
10
|
+
tableSchema = {}
|
|
11
|
+
tableCurrentSchema = {}
|
|
12
|
+
tableCurrentSchemaType = {}
|
|
13
|
+
tableReset = {}
|
|
14
|
+
#client = bigquery.Client()
|
|
15
|
+
|
|
16
|
+
# * EXCEPT(is_generated, generation_expression, is_stored, is_updatable)
|
|
17
|
+
tableColumnsQuery = """
|
|
18
|
+
SELECT
|
|
19
|
+
column_name
|
|
20
|
+
FROM
|
|
21
|
+
`__dataset__`.INFORMATION_SCHEMA.COLUMNS
|
|
22
|
+
WHERE
|
|
23
|
+
table_name = '__table__';
|
|
24
|
+
"""
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
def resolveType(value):
|
|
28
|
+
isDatetime = False
|
|
29
|
+
tempDatetime = None
|
|
30
|
+
try:
|
|
31
|
+
timeDatetime = datetime.strptime(value, "%Y-%m-%dT%H:%M:%SZ")
|
|
32
|
+
value = timeDatetime
|
|
33
|
+
isDatetime = True
|
|
34
|
+
except:
|
|
35
|
+
pass
|
|
36
|
+
|
|
37
|
+
if isinstance(value, bool):
|
|
38
|
+
return "BOOL"
|
|
39
|
+
elif isinstance(value, int):
|
|
40
|
+
return "INT64"
|
|
41
|
+
elif isinstance(value, float):
|
|
42
|
+
return "FLOAT64"
|
|
43
|
+
elif type(value) == datetime:
|
|
44
|
+
return "DATETIME"
|
|
45
|
+
else:
|
|
46
|
+
return "STRING"
|
|
47
|
+
|
|
48
|
+
|
|
49
|
+
def testValue(value, tableKey, fieldKey):
|
|
50
|
+
global tableCurrentSchemaType
|
|
51
|
+
try:
|
|
52
|
+
timeDatetime = datetime.strptime(value, "%Y-%m-%dT%H:%M:%SZ")
|
|
53
|
+
return timeDatetime.strftime('%Y-%m-%dT%H:%M:%S')
|
|
54
|
+
except:
|
|
55
|
+
pass
|
|
56
|
+
|
|
57
|
+
fieldType = None
|
|
58
|
+
if fieldKey in tableCurrentSchemaType[tableKey].keys():
|
|
59
|
+
fieldType = tableCurrentSchemaType[tableKey][fieldKey]
|
|
60
|
+
else:
|
|
61
|
+
fieldType = resolveType(value)
|
|
62
|
+
tableCurrentSchemaType[tableKey][fieldKey] = fieldType
|
|
63
|
+
|
|
64
|
+
if fieldType == "BOOL":
|
|
65
|
+
if isinstance(value, bool):
|
|
66
|
+
return value
|
|
67
|
+
else:
|
|
68
|
+
return False
|
|
69
|
+
elif fieldType == "INT64":
|
|
70
|
+
if isinstance(value, int):
|
|
71
|
+
return value
|
|
72
|
+
else:
|
|
73
|
+
return 0
|
|
74
|
+
elif fieldType == "FLOAT64":
|
|
75
|
+
if isinstance(value, float):
|
|
76
|
+
return value
|
|
77
|
+
else:
|
|
78
|
+
return 0
|
|
79
|
+
elif fieldType == "STRING":
|
|
80
|
+
if isinstance(value, str):
|
|
81
|
+
return value
|
|
82
|
+
else:
|
|
83
|
+
return ""
|
|
84
|
+
else:
|
|
85
|
+
if isinstance(value, str):
|
|
86
|
+
return value
|
|
87
|
+
else:
|
|
88
|
+
return json.dumps(value)
|
|
89
|
+
|
|
90
|
+
return ""
|
|
91
|
+
|
|
92
|
+
|
|
93
|
+
def incrementId(curKey):
|
|
94
|
+
global lastSeineId
|
|
95
|
+
if curKey in lastSeineId.keys():
|
|
96
|
+
lastSeineId[curKey] += 1
|
|
97
|
+
else:
|
|
98
|
+
lastSeineId[curKey] = 1
|
|
99
|
+
|
|
100
|
+
|
|
101
|
+
def sync(myGoogleProject, blob, curKey, bqRegion = 'US', firstReset = False, idField = None):
|
|
102
|
+
global lastSeineId
|
|
103
|
+
global tableSchema
|
|
104
|
+
global tableReset
|
|
105
|
+
global tableCurrentSchema
|
|
106
|
+
global tableCurrentSchemaType
|
|
107
|
+
|
|
108
|
+
if len(curKey) < 1:
|
|
109
|
+
raise ExceptionType("A default current key (second arg) should be provided")
|
|
110
|
+
|
|
111
|
+
stack = []
|
|
112
|
+
if isinstance(blob, list):
|
|
113
|
+
for part in blob:
|
|
114
|
+
stack.insert(0, (curKey, part, curKey, 0))
|
|
115
|
+
else:
|
|
116
|
+
stack = [(curKey, blob, curKey, 0)]
|
|
117
|
+
|
|
118
|
+
tableChecked = False
|
|
119
|
+
|
|
120
|
+
client = None
|
|
121
|
+
try:
|
|
122
|
+
client = bigquery.Client(project=myGoogleProject)
|
|
123
|
+
except:
|
|
124
|
+
raise ExceptionType(f"Could not connect to {myGoogleProject}")
|
|
125
|
+
|
|
126
|
+
if firstReset:
|
|
127
|
+
lastSeineId = {}
|
|
128
|
+
tableSchema = {}
|
|
129
|
+
tableReset = {}
|
|
130
|
+
tableCurrentSchema = {}
|
|
131
|
+
tableCurrentSchemaType = {}
|
|
132
|
+
|
|
133
|
+
keyNotInSchema = {}
|
|
134
|
+
dataToLoad = {}
|
|
135
|
+
seineDataset = False
|
|
136
|
+
dataset = ""
|
|
137
|
+
datasetName = "seine_" + curKey
|
|
138
|
+
try:
|
|
139
|
+
seineDataset = client.get_dataset(myGoogleProject + f".{datasetName}")
|
|
140
|
+
except NotFound:
|
|
141
|
+
seineDataset = bigquery.Dataset(myGoogleProject + f".{datasetName}")
|
|
142
|
+
seineDataset.location = bqRegion
|
|
143
|
+
seineDataset = client.create_dataset(seineDataset, timeout=30)
|
|
144
|
+
print("Created dataset {}".format(seineDataset.dataset_id))
|
|
145
|
+
|
|
146
|
+
valuesArray = []
|
|
147
|
+
currentDepth = 0
|
|
148
|
+
while stack:
|
|
149
|
+
curKey, curDict, lastKey, parentId = stack.pop()
|
|
150
|
+
currentDepth += 1
|
|
151
|
+
fieldTypes = {}
|
|
152
|
+
fields = []
|
|
153
|
+
fieldsJson = {}
|
|
154
|
+
values = []
|
|
155
|
+
fieldType = {}
|
|
156
|
+
valuePlaceholders = {}
|
|
157
|
+
counter = 0
|
|
158
|
+
|
|
159
|
+
#seineDataset = client.get_dataset(myGoogleProject + f".{datasetName}")
|
|
160
|
+
print("-------------------------")
|
|
161
|
+
print(curDict)
|
|
162
|
+
noUpdateNeeded = False
|
|
163
|
+
|
|
164
|
+
if curKey not in lastSeineId.keys():
|
|
165
|
+
lastSeineId[curKey] = 1
|
|
166
|
+
|
|
167
|
+
if parentId == 0 and curKey == idField and isinstance(curDict, int):
|
|
168
|
+
try:
|
|
169
|
+
curTableName = myGoogleProject + f".{datasetName}." + curKey
|
|
170
|
+
queryJob = client.query(f"select {idField} from {curTableName} where {idField} = {curDict}")
|
|
171
|
+
returned = queryJob.result()
|
|
172
|
+
foundId = False
|
|
173
|
+
for row in returned:
|
|
174
|
+
foundId = True
|
|
175
|
+
if foundId:
|
|
176
|
+
print(f"ID exists {idField} = {curDict}")
|
|
177
|
+
print(returned)
|
|
178
|
+
continue
|
|
179
|
+
except:
|
|
180
|
+
print("================== QUERY FAILED =======================")
|
|
181
|
+
pass
|
|
182
|
+
|
|
183
|
+
#if curKey not in keyNotInSchema.keys():
|
|
184
|
+
keyNotInSchema[curKey] = []
|
|
185
|
+
if curKey not in tableCurrentSchema.keys():
|
|
186
|
+
try:
|
|
187
|
+
curTableName = myGoogleProject + f".{datasetName}." + curKey
|
|
188
|
+
queryJob = client.query(f"select max(seine_id) as max_id from {curTableName}")
|
|
189
|
+
returned = queryJob.result()
|
|
190
|
+
print(returned)
|
|
191
|
+
for row in returned:
|
|
192
|
+
if row.max_id is not None and isinstance(row.max_id, int):
|
|
193
|
+
lastSeineId[curKey] = int(row.max_id) + 1
|
|
194
|
+
except:
|
|
195
|
+
pass
|
|
196
|
+
tableCurrentSchema[curKey] = []
|
|
197
|
+
tableCurrentSchemaType[curKey] = {}
|
|
198
|
+
|
|
199
|
+
if isinstance(curDict, list):
|
|
200
|
+
if not isinstance(curDict[0], dict):
|
|
201
|
+
fields.append(curKey)
|
|
202
|
+
fieldTypes[curKey] = resolveType(json.dumps(curDict))
|
|
203
|
+
valuePlaceholders[curKey] = testValue(json.dumps(curDict), curKey, curKey)
|
|
204
|
+
if curKey not in tableCurrentSchema[curKey]:
|
|
205
|
+
tableCurrentSchema[curKey].append(curKey)
|
|
206
|
+
keyNotInSchema[curKey].append(curKey)
|
|
207
|
+
#tableCurrentSchemaType[curKey][curKey] = resolveType(json.dumps(curDict))
|
|
208
|
+
else:
|
|
209
|
+
noUpdateNeeded = True
|
|
210
|
+
for tempDict in curDict:
|
|
211
|
+
stack.insert(0, (curKey, tempDict, lastKey, lastSeineId[lastKey]))
|
|
212
|
+
continue
|
|
213
|
+
|
|
214
|
+
elif isinstance(curDict, dict):
|
|
215
|
+
for key, value in curDict.items():
|
|
216
|
+
if isinstance(value, list):
|
|
217
|
+
if len(value) > 0:
|
|
218
|
+
if not isinstance(value[0], dict) and key not in ["edges"]:
|
|
219
|
+
fields.append(key)
|
|
220
|
+
fieldTypes[key] = resolveType(json.dumps(value))
|
|
221
|
+
valuePlaceholders[key] = testValue(json.dumps(value), curKey, key)
|
|
222
|
+
if key not in tableCurrentSchema[curKey]:
|
|
223
|
+
tableCurrentSchema[curKey].append(key)
|
|
224
|
+
keyNotInSchema[curKey].append(key)
|
|
225
|
+
#tableCurrentSchemaType[curKey][key] = resolveType(json.dumps(value))
|
|
226
|
+
elif key in ["edges"]:
|
|
227
|
+
noUpdateNeeded = True
|
|
228
|
+
for part in value:
|
|
229
|
+
stack.insert(0, (curKey, part, lastKey, lastSeineId[lastKey]))
|
|
230
|
+
else:
|
|
231
|
+
for part in value:
|
|
232
|
+
stack.insert(0, (curKey + "_" + key, part, curKey, lastSeineId[lastKey]))
|
|
233
|
+
#fields.append(key)
|
|
234
|
+
#fieldTypes[key] = resolveType(json.dumps(value))
|
|
235
|
+
#valuePlaceholders[key] = testValue(json.dumps(value), curKey, key)
|
|
236
|
+
#if key not in tableCurrentSchema[curKey]:
|
|
237
|
+
# tableCurrentSchema[curKey].append(key)
|
|
238
|
+
# keyNotInSchema[curKey].append(key)
|
|
239
|
+
else:
|
|
240
|
+
fields.append(key)
|
|
241
|
+
fieldTypes[key] = resolveType(json.dumps(value))
|
|
242
|
+
valuePlaceholders[key] = testValue(json.dumps(value), curKey, key)
|
|
243
|
+
if key not in tableCurrentSchema[curKey]:
|
|
244
|
+
tableCurrentSchema[curKey].append(key)
|
|
245
|
+
keyNotInSchema[curKey].append(key)
|
|
246
|
+
#tableCurrentSchemaType[curKey][key] = resolveType(json.dumps(value))
|
|
247
|
+
elif isinstance(value, dict):
|
|
248
|
+
if key in ["node"]:
|
|
249
|
+
noUpdateNeeded = True
|
|
250
|
+
stack.insert(0, (curKey, value, lastKey, lastSeineId[lastKey]))
|
|
251
|
+
else:
|
|
252
|
+
stack.insert(0, (curKey + "_" + key, value, curKey, lastSeineId[lastKey]))
|
|
253
|
+
fields.append(key)
|
|
254
|
+
fieldTypes[key] = resolveType(lastSeineId[curKey])
|
|
255
|
+
valuePlaceholders[key] = testValue(lastSeineId[curKey], curKey, key)
|
|
256
|
+
if key not in tableCurrentSchema[curKey]:
|
|
257
|
+
tableCurrentSchema[curKey].append(key)
|
|
258
|
+
keyNotInSchema[curKey].append(key)
|
|
259
|
+
#tableCurrentSchemaType[curKey][key] = resolveType(json.dumps(value))
|
|
260
|
+
else:
|
|
261
|
+
# Add schema
|
|
262
|
+
if key not in fields:
|
|
263
|
+
fields.append(key)
|
|
264
|
+
fieldTypes[key] = resolveType(value)
|
|
265
|
+
valuePlaceholders[key] = testValue(value, curKey, key)
|
|
266
|
+
if key not in tableCurrentSchema[curKey]:
|
|
267
|
+
tableCurrentSchema[curKey].append(key)
|
|
268
|
+
keyNotInSchema[curKey].append(key)
|
|
269
|
+
#tableCurrentSchemaType[curKey][key] = resolveType(value)
|
|
270
|
+
|
|
271
|
+
elif isinstance(curDict, str) or isinstance(curDict, int) or isinstance(curDict, float):
|
|
272
|
+
fields.append(curKey)
|
|
273
|
+
fieldTypes[curKey] = resolveType(curDict)
|
|
274
|
+
valuePlaceholders[curKey] = testValue(curDict, curKey, key)
|
|
275
|
+
if curKey not in tableCurrentSchema[curKey]:
|
|
276
|
+
tableCurrentSchema[curKey].append(curKey)
|
|
277
|
+
keyNotInSchema[curKey].append(curKey)
|
|
278
|
+
#tableCurrentSchemaType[curKey][curKey] = resolveType(curDict)
|
|
279
|
+
|
|
280
|
+
else:
|
|
281
|
+
fields.append(curKey)
|
|
282
|
+
fieldTypes[curKey] = resolveType(curDict)
|
|
283
|
+
valuePlaceholders[curKey] = testValue(curDict, curKey, key)
|
|
284
|
+
if curKey not in tableCurrentSchema[curKey]:
|
|
285
|
+
tableCurrentSchema[curKey].append(curKey)
|
|
286
|
+
keyNotInSchema[curKey].append(curKey)
|
|
287
|
+
#tableCurrentSchemaType[curKey][curKey] = resolveType(curDict)
|
|
288
|
+
|
|
289
|
+
#if len(fields) < 1 and parentId is None:
|
|
290
|
+
# continue
|
|
291
|
+
|
|
292
|
+
if noUpdateNeeded:
|
|
293
|
+
continue
|
|
294
|
+
|
|
295
|
+
if len(keyNotInSchema[curKey]) > 0 or curKey not in tableReset.keys():
|
|
296
|
+
tableReset[curKey] = True
|
|
297
|
+
curTableName = myGoogleProject + f".{datasetName}." + curKey
|
|
298
|
+
curTable = False
|
|
299
|
+
tableSchema[curKey] = []
|
|
300
|
+
tableSchema[curKey].append(bigquery.SchemaField("seine_id", "INT64"))
|
|
301
|
+
tableSchema[curKey].append(bigquery.SchemaField("seine_parent_id", "INT64"))
|
|
302
|
+
tableSchema[curKey].append(bigquery.SchemaField("injected", "DATETIME"))
|
|
303
|
+
tableCurrentSchema[curKey].append("seine_id");
|
|
304
|
+
tableCurrentSchema[curKey].append("seine_parent_id");
|
|
305
|
+
tableCurrentSchema[curKey].append("injected");
|
|
306
|
+
try:
|
|
307
|
+
curTable = client.get_table(curTableName)
|
|
308
|
+
#colQuery = tableColumnsQuery.replace("__dataset__", seineDataset).replace("__table__", key)
|
|
309
|
+
#queryJob = client.query(colQuery)
|
|
310
|
+
#returned = queryJob.result()
|
|
311
|
+
existingSchema = curTable.schema
|
|
312
|
+
tableSchema[curKey] = existingSchema
|
|
313
|
+
existingColumns = []
|
|
314
|
+
jobCconfig = bigquery.QueryJobConfig(
|
|
315
|
+
destination=curTableName,
|
|
316
|
+
schema_update_options=[bigquery.SchemaUpdateOption.ALLOW_FIELD_ADDITION],
|
|
317
|
+
write_disposition=bigquery.WriteDisposition.WRITE_APPEND,
|
|
318
|
+
)
|
|
319
|
+
for schemaElement in existingSchema:
|
|
320
|
+
existingColumns.append(schemaElement.name)
|
|
321
|
+
schemaAdjusted = False
|
|
322
|
+
for fidx, field in enumerate(fields):
|
|
323
|
+
if field not in existingColumns:
|
|
324
|
+
if field not in tableCurrentSchema[curKey]:
|
|
325
|
+
tableCurrentSchema[curKey].append(field);
|
|
326
|
+
tableSchema[curKey].append(bigquery.SchemaField(field, fieldTypes[field]))
|
|
327
|
+
existingSchema.append(bigquery.SchemaField(field, fieldTypes[field]))
|
|
328
|
+
if not schemaAdjusted:
|
|
329
|
+
schemaAdjusted = True
|
|
330
|
+
if schemaAdjusted:
|
|
331
|
+
curTable.schema = existingSchema
|
|
332
|
+
try:
|
|
333
|
+
curTable = client.update_table(curTable, ["schema"])
|
|
334
|
+
except:
|
|
335
|
+
pass
|
|
336
|
+
|
|
337
|
+
#if returned.total_rows > 0:
|
|
338
|
+
# counter = 0
|
|
339
|
+
# for row in returned:
|
|
340
|
+
# print(row)
|
|
341
|
+
# counter += 1
|
|
342
|
+
# if counter < 2:
|
|
343
|
+
# continue
|
|
344
|
+
# if row.max_id + 1 > lastSeineId[curKey]:
|
|
345
|
+
# lastSeineId[curKey] = int(row.max_id) + 1
|
|
346
|
+
# print(f"{curKey}" + str(lastSeineId[curKey]))
|
|
347
|
+
except NotFound:
|
|
348
|
+
for fidx, field in enumerate(fields):
|
|
349
|
+
tableSchema[curKey].append(bigquery.SchemaField(field, fieldTypes[field]))
|
|
350
|
+
if field not in tableCurrentSchema[curKey]:
|
|
351
|
+
tableCurrentSchema[curKey].append(field);
|
|
352
|
+
curTable = bigquery.Table(curTableName, schema=tableSchema[curKey])
|
|
353
|
+
curTable = client.create_table(curTable)
|
|
354
|
+
lastSeineId[curKey] = 1
|
|
355
|
+
keyNotInSchema[curKey] = []
|
|
356
|
+
|
|
357
|
+
if curKey not in dataToLoad.keys():
|
|
358
|
+
dataToLoad[curKey] = []
|
|
359
|
+
tempRow = {
|
|
360
|
+
"seine_id": lastSeineId[curKey],
|
|
361
|
+
"seine_parent_id": parentId,
|
|
362
|
+
"injected": datetime.utcnow().strftime('%Y-%m-%dT%H:%M:%S')
|
|
363
|
+
}
|
|
364
|
+
for idx, field in enumerate(fields):
|
|
365
|
+
tempRow[field] = valuePlaceholders[field]
|
|
366
|
+
print(tempRow)
|
|
367
|
+
dataToLoad[curKey].append(tempRow)
|
|
368
|
+
lastSeineId[curKey] += 1
|
|
369
|
+
|
|
370
|
+
conn, cur = dbConnect()
|
|
371
|
+
for tableName in dataToLoad.keys():
|
|
372
|
+
curTable = client.get_table(myGoogleProject + f".{datasetName}." + tableName)
|
|
373
|
+
errors = client.insert_rows_json(
|
|
374
|
+
curTable, dataToLoad[tableName], row_ids=[None] * len(dataToLoad[tableName])
|
|
375
|
+
)
|
|
376
|
+
if errors == []:
|
|
377
|
+
print("Loaded " + str(len(dataToLoad[tableName])) + " rows into " + tableName)
|
|
378
|
+
else:
|
|
379
|
+
print("FAILED: loading " + str(len(dataToLoad[tableName])) + " rows into " + tableName)
|
|
380
|
+
print(errors)
|
|
381
|
+
|