bot-knows 0.1.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- bot_knows-0.1.0/.gitignore +6 -0
- bot_knows-0.1.0/LICENSE +21 -0
- bot_knows-0.1.0/PKG-INFO +294 -0
- bot_knows-0.1.0/README.md +250 -0
- bot_knows-0.1.0/pyproject.toml +174 -0
- bot_knows-0.1.0/src/bot_knows/__init__.py +70 -0
- bot_knows-0.1.0/src/bot_knows/config.py +115 -0
- bot_knows-0.1.0/src/bot_knows/domain/__init__.py +5 -0
- bot_knows-0.1.0/src/bot_knows/domain/chat.py +62 -0
- bot_knows-0.1.0/src/bot_knows/domain/message.py +64 -0
- bot_knows-0.1.0/src/bot_knows/domain/relation.py +56 -0
- bot_knows-0.1.0/src/bot_knows/domain/topic.py +132 -0
- bot_knows-0.1.0/src/bot_knows/domain/topic_evidence.py +55 -0
- bot_knows-0.1.0/src/bot_knows/importers/__init__.py +12 -0
- bot_knows-0.1.0/src/bot_knows/importers/base.py +116 -0
- bot_knows-0.1.0/src/bot_knows/importers/chatgpt.py +154 -0
- bot_knows-0.1.0/src/bot_knows/importers/claude.py +172 -0
- bot_knows-0.1.0/src/bot_knows/importers/generic_json.py +272 -0
- bot_knows-0.1.0/src/bot_knows/importers/registry.py +125 -0
- bot_knows-0.1.0/src/bot_knows/infra/__init__.py +5 -0
- bot_knows-0.1.0/src/bot_knows/infra/llm/__init__.py +6 -0
- bot_knows-0.1.0/src/bot_knows/infra/llm/anthropic_provider.py +172 -0
- bot_knows-0.1.0/src/bot_knows/infra/llm/openai_provider.py +195 -0
- bot_knows-0.1.0/src/bot_knows/infra/mongo/__init__.py +5 -0
- bot_knows-0.1.0/src/bot_knows/infra/mongo/client.py +145 -0
- bot_knows-0.1.0/src/bot_knows/infra/mongo/repositories.py +348 -0
- bot_knows-0.1.0/src/bot_knows/infra/neo4j/__init__.py +5 -0
- bot_knows-0.1.0/src/bot_knows/infra/neo4j/client.py +152 -0
- bot_knows-0.1.0/src/bot_knows/infra/neo4j/graph_repository.py +329 -0
- bot_knows-0.1.0/src/bot_knows/infra/redis/__init__.py +6 -0
- bot_knows-0.1.0/src/bot_knows/infra/redis/cache.py +198 -0
- bot_knows-0.1.0/src/bot_knows/infra/redis/client.py +193 -0
- bot_knows-0.1.0/src/bot_knows/interfaces/__init__.py +18 -0
- bot_knows-0.1.0/src/bot_knows/interfaces/embedding.py +55 -0
- bot_knows-0.1.0/src/bot_knows/interfaces/graph.py +194 -0
- bot_knows-0.1.0/src/bot_knows/interfaces/llm.py +70 -0
- bot_knows-0.1.0/src/bot_knows/interfaces/recall.py +92 -0
- bot_knows-0.1.0/src/bot_knows/interfaces/storage.py +225 -0
- bot_knows-0.1.0/src/bot_knows/logging.py +101 -0
- bot_knows-0.1.0/src/bot_knows/models/__init__.py +22 -0
- bot_knows-0.1.0/src/bot_knows/models/chat.py +55 -0
- bot_knows-0.1.0/src/bot_knows/models/ingest.py +70 -0
- bot_knows-0.1.0/src/bot_knows/models/message.py +49 -0
- bot_knows-0.1.0/src/bot_knows/models/recall.py +58 -0
- bot_knows-0.1.0/src/bot_knows/models/topic.py +100 -0
- bot_knows-0.1.0/src/bot_knows/orchestrator.py +398 -0
- bot_knows-0.1.0/src/bot_knows/py.typed +0 -0
- bot_knows-0.1.0/src/bot_knows/services/__init__.py +24 -0
- bot_knows-0.1.0/src/bot_knows/services/chat_processing.py +182 -0
- bot_knows-0.1.0/src/bot_knows/services/dedup_service.py +161 -0
- bot_knows-0.1.0/src/bot_knows/services/graph_service.py +217 -0
- bot_knows-0.1.0/src/bot_knows/services/message_builder.py +135 -0
- bot_knows-0.1.0/src/bot_knows/services/recall_service.py +296 -0
- bot_knows-0.1.0/src/bot_knows/services/tasks.py +128 -0
- bot_knows-0.1.0/src/bot_knows/services/topic_extraction.py +199 -0
- bot_knows-0.1.0/src/bot_knows/utils/__init__.py +22 -0
- bot_knows-0.1.0/src/bot_knows/utils/hashing.py +126 -0
- bot_knows-0.1.0/tests/__init__.py +1 -0
- bot_knows-0.1.0/tests/conftest.py +181 -0
- bot_knows-0.1.0/tests/fixtures/chatgpt_export.json +102 -0
- bot_knows-0.1.0/tests/fixtures/claude_export.json +36 -0
- bot_knows-0.1.0/tests/integration/__init__.py +1 -0
- bot_knows-0.1.0/tests/integration/test_pipeline.py +109 -0
- bot_knows-0.1.0/tests/mocks/__init__.py +1 -0
- bot_knows-0.1.0/tests/mocks/mock_embedding.py +52 -0
- bot_knows-0.1.0/tests/mocks/mock_mongo.py +120 -0
- bot_knows-0.1.0/tests/mocks/mock_neo4j.py +87 -0
- bot_knows-0.1.0/tests/unit/__init__.py +1 -0
- bot_knows-0.1.0/tests/unit/test_importers.py +215 -0
- bot_knows-0.1.0/tests/unit/test_models.py +257 -0
- bot_knows-0.1.0/tests/unit/test_orchestrator.py +632 -0
- bot_knows-0.1.0/tests/unit/test_services.py +207 -0
bot_knows-0.1.0/LICENSE
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
MIT License
|
|
2
|
+
|
|
3
|
+
Copyright (c) 2026 Snezhana Stojanova
|
|
4
|
+
|
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
7
|
+
in the Software without restriction, including without limitation the rights
|
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
10
|
+
furnished to do so, subject to the following conditions:
|
|
11
|
+
|
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
|
13
|
+
copies or substantial portions of the Software.
|
|
14
|
+
|
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
21
|
+
SOFTWARE.
|
bot_knows-0.1.0/PKG-INFO
ADDED
|
@@ -0,0 +1,294 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: bot-knows
|
|
3
|
+
Version: 0.1.0
|
|
4
|
+
Summary: Framework-agnostic Python library for graph-backed personal knowledge bases from chat data
|
|
5
|
+
Project-URL: Homepage, https://github.com/Snezhana/bot-knows
|
|
6
|
+
Project-URL: Documentation, https://github.com/Snezhana/bot-knows#readme
|
|
7
|
+
Project-URL: Repository, https://github.com/Snezhana/bot-knows
|
|
8
|
+
Project-URL: Issues, https://github.com/Snezhana/bot-knows/issues
|
|
9
|
+
Author-email: Your Name <your@email.com>
|
|
10
|
+
License-Expression: MIT
|
|
11
|
+
License-File: LICENSE
|
|
12
|
+
Keywords: chat,embedding,graph,knowledge-base,memory,nlp,recall
|
|
13
|
+
Classifier: Development Status :: 3 - Alpha
|
|
14
|
+
Classifier: Framework :: AsyncIO
|
|
15
|
+
Classifier: Intended Audience :: Developers
|
|
16
|
+
Classifier: License :: OSI Approved :: MIT License
|
|
17
|
+
Classifier: Programming Language :: Python :: 3.13
|
|
18
|
+
Classifier: Programming Language :: Python :: 3.14
|
|
19
|
+
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
|
|
20
|
+
Classifier: Typing :: Typed
|
|
21
|
+
Requires-Python: >=3.13
|
|
22
|
+
Requires-Dist: anthropic<1.0,>=0.42
|
|
23
|
+
Requires-Dist: anyio<5.0,>=4.7
|
|
24
|
+
Requires-Dist: motor<4.0,>=3.6
|
|
25
|
+
Requires-Dist: neo4j<6.0,>=5.27
|
|
26
|
+
Requires-Dist: numpy<3.0,>=2.2
|
|
27
|
+
Requires-Dist: openai<2.0,>=1.59
|
|
28
|
+
Requires-Dist: pydantic-settings<3.0,>=2.6
|
|
29
|
+
Requires-Dist: pydantic<3.0,>=2.10
|
|
30
|
+
Requires-Dist: redis<6.0,>=5.2
|
|
31
|
+
Requires-Dist: structlog<26.0,>=25.1
|
|
32
|
+
Requires-Dist: taskiq-redis<2.0,>=1.0
|
|
33
|
+
Requires-Dist: taskiq<1.0,>=0.11
|
|
34
|
+
Provides-Extra: dev
|
|
35
|
+
Requires-Dist: hypothesis<7.0,>=6.100; extra == 'dev'
|
|
36
|
+
Requires-Dist: mongomock-motor>=0.0.32; extra == 'dev'
|
|
37
|
+
Requires-Dist: mypy<2.0,>=1.14; extra == 'dev'
|
|
38
|
+
Requires-Dist: pre-commit<5.0,>=4.0; extra == 'dev'
|
|
39
|
+
Requires-Dist: pytest-asyncio<1.0,>=0.25; extra == 'dev'
|
|
40
|
+
Requires-Dist: pytest-cov<7.0,>=6.0; extra == 'dev'
|
|
41
|
+
Requires-Dist: pytest<9.0,>=8.3; extra == 'dev'
|
|
42
|
+
Requires-Dist: ruff<1.0,>=0.9; extra == 'dev'
|
|
43
|
+
Description-Content-Type: text/markdown
|
|
44
|
+
|
|
45
|
+
# bot-knows
|
|
46
|
+
|
|
47
|
+
A framework-agnostic Python library for building graph-backed personal knowledge bases from chat data.
|
|
48
|
+
|
|
49
|
+
## Features
|
|
50
|
+
|
|
51
|
+
- **Multi-source Chat Ingestion**: Import chats from ChatGPT, Claude, and custom JSON formats
|
|
52
|
+
- **Semantic Topic Extraction**: LLM-powered topic extraction with confidence scores
|
|
53
|
+
- **Intelligent Deduplication**: Embedding-based semantic deduplication with configurable thresholds
|
|
54
|
+
- **Graph-backed Knowledge Base**: Neo4j-powered relationship graph for topics and messages
|
|
55
|
+
- **Evidence-weighted Recall**: Spaced repetition-inspired recall system with decay and reinforcement
|
|
56
|
+
- **Pluggable Infrastructure**: Bring your own storage, graph database, or LLM provider
|
|
57
|
+
|
|
58
|
+
## Requirements
|
|
59
|
+
|
|
60
|
+
- Python >= 3.13
|
|
61
|
+
- MongoDB (storage) - or custom storage implementation
|
|
62
|
+
- Neo4j (graph database) - or custom graph implementation
|
|
63
|
+
- Redis (optional, for caching)
|
|
64
|
+
- OpenAI or Anthropic API key (for LLM features) - or custom LLM implementation
|
|
65
|
+
|
|
66
|
+
## Installation
|
|
67
|
+
|
|
68
|
+
```bash
|
|
69
|
+
pip install bot-knows
|
|
70
|
+
```
|
|
71
|
+
|
|
72
|
+
Or with uv:
|
|
73
|
+
|
|
74
|
+
```bash
|
|
75
|
+
uv add bot-knows
|
|
76
|
+
```
|
|
77
|
+
|
|
78
|
+
## Quick Start
|
|
79
|
+
|
|
80
|
+
The `BotKnows` class is the main orchestrator that accepts implementation classes for storage, graph database, and LLM providers. Configuration is automatically loaded from environment variables.
|
|
81
|
+
|
|
82
|
+
### Using Built-in Infrastructure
|
|
83
|
+
|
|
84
|
+
```python
|
|
85
|
+
from bot_knows import (
|
|
86
|
+
BotKnows,
|
|
87
|
+
MongoStorageRepository,
|
|
88
|
+
Neo4jGraphRepository,
|
|
89
|
+
OpenAIProvider,
|
|
90
|
+
ChatGPTAdapter,
|
|
91
|
+
)
|
|
92
|
+
|
|
93
|
+
async def main():
|
|
94
|
+
# Config is loaded from .env automatically
|
|
95
|
+
async with BotKnows(
|
|
96
|
+
storage_class=MongoStorageRepository,
|
|
97
|
+
graphdb_class=Neo4jGraphRepository,
|
|
98
|
+
llm_class=OpenAIProvider,
|
|
99
|
+
) as bk:
|
|
100
|
+
# Import ChatGPT conversations
|
|
101
|
+
result = await bk.insert_chats("conversations.json", ChatGPTAdapter)
|
|
102
|
+
print(f"Imported {result.chats_new} chats, {result.topics_created} topics")
|
|
103
|
+
|
|
104
|
+
# Query the knowledge base
|
|
105
|
+
topics = await bk.get_chat_topics(chat_id)
|
|
106
|
+
due_topics = await bk.get_due_topics(threshold=0.3)
|
|
107
|
+
```
|
|
108
|
+
|
|
109
|
+
### Available Implementations
|
|
110
|
+
|
|
111
|
+
**Storage:**
|
|
112
|
+
- `MongoStorageRepository` - MongoDB-based storage
|
|
113
|
+
|
|
114
|
+
**Graph Database:**
|
|
115
|
+
- `Neo4jGraphRepository` - Neo4j graph database
|
|
116
|
+
|
|
117
|
+
**LLM Providers:**
|
|
118
|
+
- `OpenAIProvider` - OpenAI API (GPT models + embeddings)
|
|
119
|
+
- `AnthropicProvider` - Anthropic API (Claude models)
|
|
120
|
+
|
|
121
|
+
**Import Adapters:**
|
|
122
|
+
- `ChatGPTAdapter` - ChatGPT export format
|
|
123
|
+
- `ClaudeAdapter` - Claude export format
|
|
124
|
+
- `GenericJSONAdapter` - Custom JSON format
|
|
125
|
+
|
|
126
|
+
|
|
127
|
+
## Custom Implementations
|
|
128
|
+
|
|
129
|
+
You can provide your own implementations by implementing the required interfaces. Set `config_class = None` on your class and pass configuration via the `*_custom_config` parameters.
|
|
130
|
+
|
|
131
|
+
### Interfaces
|
|
132
|
+
|
|
133
|
+
- `StorageInterface` - Persistent storage for chats, messages, topics, evidence, and recall state
|
|
134
|
+
- `GraphServiceInterface` - Graph database operations for the knowledge graph
|
|
135
|
+
- `LLMInterface` - LLM interactions for classification and topic extraction
|
|
136
|
+
- `EmbeddingServiceInterface` - Text embedding generation
|
|
137
|
+
|
|
138
|
+
### Example: Custom Storage Implementation
|
|
139
|
+
|
|
140
|
+
```python
|
|
141
|
+
from bot_knows import BotKnows, StorageInterface, Neo4jGraphRepository, OpenAIProvider
|
|
142
|
+
|
|
143
|
+
class MyCustomStorage:
|
|
144
|
+
"""Custom storage implementation."""
|
|
145
|
+
|
|
146
|
+
config_class = None # Signals custom config
|
|
147
|
+
|
|
148
|
+
@classmethod
|
|
149
|
+
async def from_dict(cls, config: dict) -> "MyCustomStorage":
|
|
150
|
+
"""Factory method for custom config."""
|
|
151
|
+
return cls(connection_string=config["connection_string"])
|
|
152
|
+
|
|
153
|
+
def __init__(self, connection_string: str):
|
|
154
|
+
self.conn = connection_string
|
|
155
|
+
|
|
156
|
+
# Implement all StorageInterface methods...
|
|
157
|
+
async def save_chat(self, chat): ...
|
|
158
|
+
async def get_chat(self, chat_id): ...
|
|
159
|
+
# ... etc
|
|
160
|
+
|
|
161
|
+
async with BotKnows(
|
|
162
|
+
storage_class=MyCustomStorage,
|
|
163
|
+
graphdb_class=Neo4jGraphRepository,
|
|
164
|
+
llm_class=OpenAIProvider,
|
|
165
|
+
storage_custom_config={"connection_string": "postgresql://..."},
|
|
166
|
+
) as bk:
|
|
167
|
+
result = await bk.insert_chats("data.json", ChatGPTAdapter)
|
|
168
|
+
```
|
|
169
|
+
|
|
170
|
+
### Example: Custom LLM Provider
|
|
171
|
+
|
|
172
|
+
```python
|
|
173
|
+
from bot_knows import BotKnows, LLMInterface, MongoStorageRepository, Neo4jGraphRepository
|
|
174
|
+
|
|
175
|
+
class MyLLMProvider:
|
|
176
|
+
"""Custom LLM provider (e.g., local model, different API)."""
|
|
177
|
+
|
|
178
|
+
config_class = None
|
|
179
|
+
|
|
180
|
+
@classmethod
|
|
181
|
+
async def from_dict(cls, config: dict) -> "MyLLMProvider":
|
|
182
|
+
return cls(api_url=config["api_url"], model=config["model"])
|
|
183
|
+
|
|
184
|
+
def __init__(self, api_url: str, model: str):
|
|
185
|
+
self.api_url = api_url
|
|
186
|
+
self.model = model
|
|
187
|
+
|
|
188
|
+
# Implement LLMInterface methods
|
|
189
|
+
async def classify_chat(self, first_pair, last_pair): ...
|
|
190
|
+
async def extract_topics(self, user_content, assistant_content): ...
|
|
191
|
+
async def normalize_topic_name(self, name): ...
|
|
192
|
+
|
|
193
|
+
# Implement EmbeddingServiceInterface if used as embedding provider
|
|
194
|
+
async def embed(self, texts): ...
|
|
195
|
+
|
|
196
|
+
async with BotKnows(
|
|
197
|
+
storage_class=MongoStorageRepository,
|
|
198
|
+
graphdb_class=Neo4jGraphRepository,
|
|
199
|
+
llm_class=MyLLMProvider,
|
|
200
|
+
llm_custom_config={"api_url": "http://localhost:8000", "model": "llama3"},
|
|
201
|
+
) as bk:
|
|
202
|
+
result = await bk.insert_chats("data.json", ChatGPTAdapter)
|
|
203
|
+
```
|
|
204
|
+
|
|
205
|
+
## Configuration
|
|
206
|
+
|
|
207
|
+
Configuration is loaded from environment variables. See `.env.example` for all available options.
|
|
208
|
+
|
|
209
|
+
Key environment variables:
|
|
210
|
+
- `MONGODB_URI` - MongoDB connection string
|
|
211
|
+
- `NEO4J_URI`, `NEO4J_USER`, `NEO4J_PASSWORD` - Neo4j connection
|
|
212
|
+
- `OPENAI_API_KEY` - OpenAI API key
|
|
213
|
+
- `ANTHROPIC_API_KEY` - Anthropic API key
|
|
214
|
+
- `DEDUP_HIGH_THRESHOLD`, `DEDUP_LOW_THRESHOLD` - Deduplication thresholds
|
|
215
|
+
|
|
216
|
+
## Architecture
|
|
217
|
+
|
|
218
|
+
```
|
|
219
|
+
Input Sources (ChatGPT, Claude, Custom JSON)
|
|
220
|
+
↓
|
|
221
|
+
Import Adapters (normalize to ChatIngest)
|
|
222
|
+
↓
|
|
223
|
+
Domain Processing
|
|
224
|
+
├── Chat identity resolution
|
|
225
|
+
├── One-time Chat classification
|
|
226
|
+
├── Message creation & ordering
|
|
227
|
+
↓
|
|
228
|
+
Topic Extraction
|
|
229
|
+
├── LLM-based extraction
|
|
230
|
+
├── Semantic deduplication
|
|
231
|
+
├── Evidence append
|
|
232
|
+
↓
|
|
233
|
+
Graph Updates (Neo4j)
|
|
234
|
+
```
|
|
235
|
+
|
|
236
|
+
## Retrieval API
|
|
237
|
+
|
|
238
|
+
```python
|
|
239
|
+
async with BotKnows(...) as bk:
|
|
240
|
+
# Get messages for a chat
|
|
241
|
+
messages = await bk.get_messages_for_chat(chat_id)
|
|
242
|
+
|
|
243
|
+
# Get topics for a chat
|
|
244
|
+
topic_ids = await bk.get_chat_topics(chat_id)
|
|
245
|
+
|
|
246
|
+
# Get related topics
|
|
247
|
+
related = await bk.get_related_topics(topic_id, limit=10)
|
|
248
|
+
|
|
249
|
+
# Get topic evidence
|
|
250
|
+
evidence = await bk.get_topic_evidence(topic_id)
|
|
251
|
+
|
|
252
|
+
# Spaced repetition recall
|
|
253
|
+
recall_state = await bk.get_recall_state(topic_id)
|
|
254
|
+
due_topics = await bk.get_due_topics(threshold=0.3)
|
|
255
|
+
all_states = await bk.get_all_recall_states()
|
|
256
|
+
```
|
|
257
|
+
|
|
258
|
+
## Development
|
|
259
|
+
|
|
260
|
+
```bash
|
|
261
|
+
# Install with dev dependencies
|
|
262
|
+
uv sync --dev
|
|
263
|
+
|
|
264
|
+
# Run tests
|
|
265
|
+
uv run pytest
|
|
266
|
+
|
|
267
|
+
# Type checking
|
|
268
|
+
uv run mypy src/
|
|
269
|
+
|
|
270
|
+
# Linting
|
|
271
|
+
uv run ruff check src/
|
|
272
|
+
```
|
|
273
|
+
|
|
274
|
+
## Future Plans
|
|
275
|
+
|
|
276
|
+
The built-in infrastructure will be extended with additional providers:
|
|
277
|
+
|
|
278
|
+
- **Storage**: PostgreSQL, SQLite
|
|
279
|
+
- **Graph**: Amazon Neptune, TigerGraph, MemGraph
|
|
280
|
+
- **LLM**: Google Gemini, Ollama, HuggingFace
|
|
281
|
+
|
|
282
|
+
## Contributing
|
|
283
|
+
|
|
284
|
+
Contributions are welcome! If you'd like to add a new infrastructure implementation:
|
|
285
|
+
|
|
286
|
+
1. Implement the appropriate interface (`StorageInterface`, `GraphServiceInterface`, `LLMInterface`, or `EmbeddingServiceInterface`)
|
|
287
|
+
2. Add a `config_class` for environment-based configuration (or set to `None` for custom config)
|
|
288
|
+
3. Implement the `from_config` class method (or `from_dict` if `config_class` is `None`)
|
|
289
|
+
4. Add tests for your implementation
|
|
290
|
+
5. Submit a pull request
|
|
291
|
+
|
|
292
|
+
## License
|
|
293
|
+
|
|
294
|
+
MIT
|
|
@@ -0,0 +1,250 @@
|
|
|
1
|
+
# bot-knows
|
|
2
|
+
|
|
3
|
+
A framework-agnostic Python library for building graph-backed personal knowledge bases from chat data.
|
|
4
|
+
|
|
5
|
+
## Features
|
|
6
|
+
|
|
7
|
+
- **Multi-source Chat Ingestion**: Import chats from ChatGPT, Claude, and custom JSON formats
|
|
8
|
+
- **Semantic Topic Extraction**: LLM-powered topic extraction with confidence scores
|
|
9
|
+
- **Intelligent Deduplication**: Embedding-based semantic deduplication with configurable thresholds
|
|
10
|
+
- **Graph-backed Knowledge Base**: Neo4j-powered relationship graph for topics and messages
|
|
11
|
+
- **Evidence-weighted Recall**: Spaced repetition-inspired recall system with decay and reinforcement
|
|
12
|
+
- **Pluggable Infrastructure**: Bring your own storage, graph database, or LLM provider
|
|
13
|
+
|
|
14
|
+
## Requirements
|
|
15
|
+
|
|
16
|
+
- Python >= 3.13
|
|
17
|
+
- MongoDB (storage) - or custom storage implementation
|
|
18
|
+
- Neo4j (graph database) - or custom graph implementation
|
|
19
|
+
- Redis (optional, for caching)
|
|
20
|
+
- OpenAI or Anthropic API key (for LLM features) - or custom LLM implementation
|
|
21
|
+
|
|
22
|
+
## Installation
|
|
23
|
+
|
|
24
|
+
```bash
|
|
25
|
+
pip install bot-knows
|
|
26
|
+
```
|
|
27
|
+
|
|
28
|
+
Or with uv:
|
|
29
|
+
|
|
30
|
+
```bash
|
|
31
|
+
uv add bot-knows
|
|
32
|
+
```
|
|
33
|
+
|
|
34
|
+
## Quick Start
|
|
35
|
+
|
|
36
|
+
The `BotKnows` class is the main orchestrator that accepts implementation classes for storage, graph database, and LLM providers. Configuration is automatically loaded from environment variables.
|
|
37
|
+
|
|
38
|
+
### Using Built-in Infrastructure
|
|
39
|
+
|
|
40
|
+
```python
|
|
41
|
+
from bot_knows import (
|
|
42
|
+
BotKnows,
|
|
43
|
+
MongoStorageRepository,
|
|
44
|
+
Neo4jGraphRepository,
|
|
45
|
+
OpenAIProvider,
|
|
46
|
+
ChatGPTAdapter,
|
|
47
|
+
)
|
|
48
|
+
|
|
49
|
+
async def main():
|
|
50
|
+
# Config is loaded from .env automatically
|
|
51
|
+
async with BotKnows(
|
|
52
|
+
storage_class=MongoStorageRepository,
|
|
53
|
+
graphdb_class=Neo4jGraphRepository,
|
|
54
|
+
llm_class=OpenAIProvider,
|
|
55
|
+
) as bk:
|
|
56
|
+
# Import ChatGPT conversations
|
|
57
|
+
result = await bk.insert_chats("conversations.json", ChatGPTAdapter)
|
|
58
|
+
print(f"Imported {result.chats_new} chats, {result.topics_created} topics")
|
|
59
|
+
|
|
60
|
+
# Query the knowledge base
|
|
61
|
+
topics = await bk.get_chat_topics(chat_id)
|
|
62
|
+
due_topics = await bk.get_due_topics(threshold=0.3)
|
|
63
|
+
```
|
|
64
|
+
|
|
65
|
+
### Available Implementations
|
|
66
|
+
|
|
67
|
+
**Storage:**
|
|
68
|
+
- `MongoStorageRepository` - MongoDB-based storage
|
|
69
|
+
|
|
70
|
+
**Graph Database:**
|
|
71
|
+
- `Neo4jGraphRepository` - Neo4j graph database
|
|
72
|
+
|
|
73
|
+
**LLM Providers:**
|
|
74
|
+
- `OpenAIProvider` - OpenAI API (GPT models + embeddings)
|
|
75
|
+
- `AnthropicProvider` - Anthropic API (Claude models)
|
|
76
|
+
|
|
77
|
+
**Import Adapters:**
|
|
78
|
+
- `ChatGPTAdapter` - ChatGPT export format
|
|
79
|
+
- `ClaudeAdapter` - Claude export format
|
|
80
|
+
- `GenericJSONAdapter` - Custom JSON format
|
|
81
|
+
|
|
82
|
+
|
|
83
|
+
## Custom Implementations
|
|
84
|
+
|
|
85
|
+
You can provide your own implementations by implementing the required interfaces. Set `config_class = None` on your class and pass configuration via the `*_custom_config` parameters.
|
|
86
|
+
|
|
87
|
+
### Interfaces
|
|
88
|
+
|
|
89
|
+
- `StorageInterface` - Persistent storage for chats, messages, topics, evidence, and recall state
|
|
90
|
+
- `GraphServiceInterface` - Graph database operations for the knowledge graph
|
|
91
|
+
- `LLMInterface` - LLM interactions for classification and topic extraction
|
|
92
|
+
- `EmbeddingServiceInterface` - Text embedding generation
|
|
93
|
+
|
|
94
|
+
### Example: Custom Storage Implementation
|
|
95
|
+
|
|
96
|
+
```python
|
|
97
|
+
from bot_knows import BotKnows, StorageInterface, Neo4jGraphRepository, OpenAIProvider
|
|
98
|
+
|
|
99
|
+
class MyCustomStorage:
|
|
100
|
+
"""Custom storage implementation."""
|
|
101
|
+
|
|
102
|
+
config_class = None # Signals custom config
|
|
103
|
+
|
|
104
|
+
@classmethod
|
|
105
|
+
async def from_dict(cls, config: dict) -> "MyCustomStorage":
|
|
106
|
+
"""Factory method for custom config."""
|
|
107
|
+
return cls(connection_string=config["connection_string"])
|
|
108
|
+
|
|
109
|
+
def __init__(self, connection_string: str):
|
|
110
|
+
self.conn = connection_string
|
|
111
|
+
|
|
112
|
+
# Implement all StorageInterface methods...
|
|
113
|
+
async def save_chat(self, chat): ...
|
|
114
|
+
async def get_chat(self, chat_id): ...
|
|
115
|
+
# ... etc
|
|
116
|
+
|
|
117
|
+
async with BotKnows(
|
|
118
|
+
storage_class=MyCustomStorage,
|
|
119
|
+
graphdb_class=Neo4jGraphRepository,
|
|
120
|
+
llm_class=OpenAIProvider,
|
|
121
|
+
storage_custom_config={"connection_string": "postgresql://..."},
|
|
122
|
+
) as bk:
|
|
123
|
+
result = await bk.insert_chats("data.json", ChatGPTAdapter)
|
|
124
|
+
```
|
|
125
|
+
|
|
126
|
+
### Example: Custom LLM Provider
|
|
127
|
+
|
|
128
|
+
```python
|
|
129
|
+
from bot_knows import BotKnows, LLMInterface, MongoStorageRepository, Neo4jGraphRepository
|
|
130
|
+
|
|
131
|
+
class MyLLMProvider:
|
|
132
|
+
"""Custom LLM provider (e.g., local model, different API)."""
|
|
133
|
+
|
|
134
|
+
config_class = None
|
|
135
|
+
|
|
136
|
+
@classmethod
|
|
137
|
+
async def from_dict(cls, config: dict) -> "MyLLMProvider":
|
|
138
|
+
return cls(api_url=config["api_url"], model=config["model"])
|
|
139
|
+
|
|
140
|
+
def __init__(self, api_url: str, model: str):
|
|
141
|
+
self.api_url = api_url
|
|
142
|
+
self.model = model
|
|
143
|
+
|
|
144
|
+
# Implement LLMInterface methods
|
|
145
|
+
async def classify_chat(self, first_pair, last_pair): ...
|
|
146
|
+
async def extract_topics(self, user_content, assistant_content): ...
|
|
147
|
+
async def normalize_topic_name(self, name): ...
|
|
148
|
+
|
|
149
|
+
# Implement EmbeddingServiceInterface if used as embedding provider
|
|
150
|
+
async def embed(self, texts): ...
|
|
151
|
+
|
|
152
|
+
async with BotKnows(
|
|
153
|
+
storage_class=MongoStorageRepository,
|
|
154
|
+
graphdb_class=Neo4jGraphRepository,
|
|
155
|
+
llm_class=MyLLMProvider,
|
|
156
|
+
llm_custom_config={"api_url": "http://localhost:8000", "model": "llama3"},
|
|
157
|
+
) as bk:
|
|
158
|
+
result = await bk.insert_chats("data.json", ChatGPTAdapter)
|
|
159
|
+
```
|
|
160
|
+
|
|
161
|
+
## Configuration
|
|
162
|
+
|
|
163
|
+
Configuration is loaded from environment variables. See `.env.example` for all available options.
|
|
164
|
+
|
|
165
|
+
Key environment variables:
|
|
166
|
+
- `MONGODB_URI` - MongoDB connection string
|
|
167
|
+
- `NEO4J_URI`, `NEO4J_USER`, `NEO4J_PASSWORD` - Neo4j connection
|
|
168
|
+
- `OPENAI_API_KEY` - OpenAI API key
|
|
169
|
+
- `ANTHROPIC_API_KEY` - Anthropic API key
|
|
170
|
+
- `DEDUP_HIGH_THRESHOLD`, `DEDUP_LOW_THRESHOLD` - Deduplication thresholds
|
|
171
|
+
|
|
172
|
+
## Architecture
|
|
173
|
+
|
|
174
|
+
```
|
|
175
|
+
Input Sources (ChatGPT, Claude, Custom JSON)
|
|
176
|
+
↓
|
|
177
|
+
Import Adapters (normalize to ChatIngest)
|
|
178
|
+
↓
|
|
179
|
+
Domain Processing
|
|
180
|
+
├── Chat identity resolution
|
|
181
|
+
├── One-time Chat classification
|
|
182
|
+
├── Message creation & ordering
|
|
183
|
+
↓
|
|
184
|
+
Topic Extraction
|
|
185
|
+
├── LLM-based extraction
|
|
186
|
+
├── Semantic deduplication
|
|
187
|
+
├── Evidence append
|
|
188
|
+
↓
|
|
189
|
+
Graph Updates (Neo4j)
|
|
190
|
+
```
|
|
191
|
+
|
|
192
|
+
## Retrieval API
|
|
193
|
+
|
|
194
|
+
```python
|
|
195
|
+
async with BotKnows(...) as bk:
|
|
196
|
+
# Get messages for a chat
|
|
197
|
+
messages = await bk.get_messages_for_chat(chat_id)
|
|
198
|
+
|
|
199
|
+
# Get topics for a chat
|
|
200
|
+
topic_ids = await bk.get_chat_topics(chat_id)
|
|
201
|
+
|
|
202
|
+
# Get related topics
|
|
203
|
+
related = await bk.get_related_topics(topic_id, limit=10)
|
|
204
|
+
|
|
205
|
+
# Get topic evidence
|
|
206
|
+
evidence = await bk.get_topic_evidence(topic_id)
|
|
207
|
+
|
|
208
|
+
# Spaced repetition recall
|
|
209
|
+
recall_state = await bk.get_recall_state(topic_id)
|
|
210
|
+
due_topics = await bk.get_due_topics(threshold=0.3)
|
|
211
|
+
all_states = await bk.get_all_recall_states()
|
|
212
|
+
```
|
|
213
|
+
|
|
214
|
+
## Development
|
|
215
|
+
|
|
216
|
+
```bash
|
|
217
|
+
# Install with dev dependencies
|
|
218
|
+
uv sync --dev
|
|
219
|
+
|
|
220
|
+
# Run tests
|
|
221
|
+
uv run pytest
|
|
222
|
+
|
|
223
|
+
# Type checking
|
|
224
|
+
uv run mypy src/
|
|
225
|
+
|
|
226
|
+
# Linting
|
|
227
|
+
uv run ruff check src/
|
|
228
|
+
```
|
|
229
|
+
|
|
230
|
+
## Future Plans
|
|
231
|
+
|
|
232
|
+
The built-in infrastructure will be extended with additional providers:
|
|
233
|
+
|
|
234
|
+
- **Storage**: PostgreSQL, SQLite
|
|
235
|
+
- **Graph**: Amazon Neptune, TigerGraph, MemGraph
|
|
236
|
+
- **LLM**: Google Gemini, Ollama, HuggingFace
|
|
237
|
+
|
|
238
|
+
## Contributing
|
|
239
|
+
|
|
240
|
+
Contributions are welcome! If you'd like to add a new infrastructure implementation:
|
|
241
|
+
|
|
242
|
+
1. Implement the appropriate interface (`StorageInterface`, `GraphServiceInterface`, `LLMInterface`, or `EmbeddingServiceInterface`)
|
|
243
|
+
2. Add a `config_class` for environment-based configuration (or set to `None` for custom config)
|
|
244
|
+
3. Implement the `from_config` class method (or `from_dict` if `config_class` is `None`)
|
|
245
|
+
4. Add tests for your implementation
|
|
246
|
+
5. Submit a pull request
|
|
247
|
+
|
|
248
|
+
## License
|
|
249
|
+
|
|
250
|
+
MIT
|