bmtool 0.5.9.6__tar.gz → 0.5.9.8__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {bmtool-0.5.9.6 → bmtool-0.5.9.8}/PKG-INFO +36 -371
- {bmtool-0.5.9.6 → bmtool-0.5.9.8}/README.md +35 -370
- {bmtool-0.5.9.6 → bmtool-0.5.9.8}/bmtool/bmplot.py +117 -101
- {bmtool-0.5.9.6 → bmtool-0.5.9.8}/bmtool/connectors.py +2 -2
- {bmtool-0.5.9.6 → bmtool-0.5.9.8}/bmtool/synapses.py +1 -1
- {bmtool-0.5.9.6 → bmtool-0.5.9.8}/bmtool/util/util.py +6 -12
- {bmtool-0.5.9.6 → bmtool-0.5.9.8}/bmtool.egg-info/PKG-INFO +36 -371
- {bmtool-0.5.9.6 → bmtool-0.5.9.8}/setup.py +1 -1
- {bmtool-0.5.9.6 → bmtool-0.5.9.8}/LICENSE +0 -0
- {bmtool-0.5.9.6 → bmtool-0.5.9.8}/bmtool/SLURM.py +0 -0
- {bmtool-0.5.9.6 → bmtool-0.5.9.8}/bmtool/__init__.py +0 -0
- {bmtool-0.5.9.6 → bmtool-0.5.9.8}/bmtool/__main__.py +0 -0
- {bmtool-0.5.9.6 → bmtool-0.5.9.8}/bmtool/debug/__init__.py +0 -0
- {bmtool-0.5.9.6 → bmtool-0.5.9.8}/bmtool/debug/commands.py +0 -0
- {bmtool-0.5.9.6 → bmtool-0.5.9.8}/bmtool/debug/debug.py +0 -0
- {bmtool-0.5.9.6 → bmtool-0.5.9.8}/bmtool/graphs.py +0 -0
- {bmtool-0.5.9.6 → bmtool-0.5.9.8}/bmtool/manage.py +0 -0
- {bmtool-0.5.9.6 → bmtool-0.5.9.8}/bmtool/plot_commands.py +0 -0
- {bmtool-0.5.9.6 → bmtool-0.5.9.8}/bmtool/singlecell.py +0 -0
- {bmtool-0.5.9.6 → bmtool-0.5.9.8}/bmtool/util/__init__.py +0 -0
- {bmtool-0.5.9.6 → bmtool-0.5.9.8}/bmtool/util/commands.py +0 -0
- {bmtool-0.5.9.6 → bmtool-0.5.9.8}/bmtool/util/neuron/__init__.py +0 -0
- {bmtool-0.5.9.6 → bmtool-0.5.9.8}/bmtool/util/neuron/celltuner.py +0 -0
- {bmtool-0.5.9.6 → bmtool-0.5.9.8}/bmtool.egg-info/SOURCES.txt +0 -0
- {bmtool-0.5.9.6 → bmtool-0.5.9.8}/bmtool.egg-info/dependency_links.txt +0 -0
- {bmtool-0.5.9.6 → bmtool-0.5.9.8}/bmtool.egg-info/entry_points.txt +0 -0
- {bmtool-0.5.9.6 → bmtool-0.5.9.8}/bmtool.egg-info/requires.txt +0 -0
- {bmtool-0.5.9.6 → bmtool-0.5.9.8}/bmtool.egg-info/top_level.txt +0 -0
- {bmtool-0.5.9.6 → bmtool-0.5.9.8}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: bmtool
|
3
|
-
Version: 0.5.9.
|
3
|
+
Version: 0.5.9.8
|
4
4
|
Summary: BMTool
|
5
5
|
Home-page: https://github.com/cyneuro/bmtool
|
6
6
|
Download-URL:
|
@@ -38,11 +38,12 @@ A collection of modules to make developing [Neuron](https://www.neuron.yale.edu/
|
|
38
38
|
[](https://github.com/cyneuro/bmtool/blob/master/LICENSE)
|
39
39
|
|
40
40
|
## Table of Contents
|
41
|
-
- [Getting Started](#
|
42
|
-
- [CLI](#
|
43
|
-
- [Single Cell](#
|
44
|
-
- [
|
45
|
-
- [
|
41
|
+
- [Getting Started](#getting-started)
|
42
|
+
- [CLI](#cli)
|
43
|
+
- [Single Cell](#single-cell-module)
|
44
|
+
- [Synapses](#synapses-module)
|
45
|
+
- [Connectors](#connectors-module)
|
46
|
+
- [Bmplot](#bmplot-module)
|
46
47
|
- [Graphs](#graphs-module)
|
47
48
|
|
48
49
|
## Getting Started
|
@@ -335,6 +336,12 @@ bmtool util cell --hoc segmented_template.hoc vhsegbuild
|
|
335
336
|
```
|
336
337
|
ex: [https://github.com/tjbanks/two-cell-hco](https://github.com/tjbanks/two-cell-hco)
|
337
338
|
|
339
|
+
### Synapses Module
|
340
|
+
-[SynapticTuner](#synaptictuner)
|
341
|
+
|
342
|
+
#### SynapticTuner - Aids in the tuning of synapses by printing out synaptic properties and giving the user sliders in a Jupyter notebook to tune the synapse. For more info view the example [here](examples/synapses/synaptic_tuner.ipynb)
|
343
|
+
|
344
|
+
|
338
345
|
### Connectors Module
|
339
346
|
- [UnidirectionConnector](#unidirectional-connector---unidirectional-connections-in-bmtk-network-model-with-given-probability-within-a-single-population-or-between-two-populations)
|
340
347
|
- [ReciprocalConnector](#recipical-connector---buiilding-connections-in-bmtk-network-model-with-reciprocal-probability-within-a-single-population-or-between-two-populations)
|
@@ -390,148 +397,53 @@ connector.setup_nodes(target=net.nodes(pop_name = 'PopB'))
|
|
390
397
|
net.add_edges(**connector.edge_params())
|
391
398
|
```
|
392
399
|
|
393
|
-
## Bmplot Module
|
394
|
-
|
395
|
-
- [
|
396
|
-
- [
|
397
|
-
- [
|
398
|
-
- [
|
399
|
-
- [
|
400
|
-
- [
|
401
|
-
- [
|
402
|
-
- [
|
403
|
-
- [
|
404
|
-
|
405
|
-
### Total connection plot
|
406
|
-
#### Generates a table of total number of connections each neuron population recieves
|
407
|
-
|
408
|
-
|
409
|
-
```python
|
410
|
-
from bmtool import bmplot
|
411
|
-
bmplot.total_connection_matrix(config='config.json',sources='LA',targets='LA',tids='pop_name',sids='pop_name',no_prepend_pop=True,include_gap=False)
|
412
|
-
```
|
400
|
+
## Bmplot Module
|
401
|
+
### for a demo please see the notebook [here](examples/bmplot/bmplot.ipynb)
|
402
|
+
- [total_connection_matrix](#total_connection_matrix)
|
403
|
+
- [percent_connection_matrix](#percent_connection_matrix)
|
404
|
+
- [convergence_connection_matrix](#convergence_connection_matrix)
|
405
|
+
- [divergence_connection_matrix](#divergence_connection_matrix)
|
406
|
+
- [gap_junction_matrix](#gap_junction_matrix)
|
407
|
+
- [connection_distance](#connection_distance)
|
408
|
+
- [connection_histogram](#connection_histogram)
|
409
|
+
- [plot_3d_positions](#plot_3d_positions)
|
410
|
+
- [plot_3d_cell_rotation](#plot_3d_cell_rotation)
|
413
411
|
|
412
|
+
### total_connection_matrix
|
413
|
+
#### Generates a table of total number of connections each neuron population recieves
|
414
414
|
|
415
415
|
|
416
|
-
|
417
|
-
|
418
|
-
|
419
|
-
|
420
|
-
### Percent connection plot
|
416
|
+
### percent_connection_matrix
|
421
417
|
#### Generates a table of the percent connectivity of neuron populations.Method can change if you want the table to be total percent connectivity, only unidirectional connectivity or only bi directional connectvity
|
422
418
|
|
423
419
|
|
424
|
-
|
425
|
-
bmplot.percent_connection_matrix(config='config.json',sources='LA',targets='LA',tids='pop_name',sids='pop_name',no_prepend_pop=True,method='total',include_gap=False)
|
426
|
-
```
|
427
|
-
|
428
|
-
|
429
|
-
|
430
|
-

|
431
|
-
|
432
|
-
|
433
|
-
|
434
|
-
### Convergence plot
|
420
|
+
### convergence_connection_matrix
|
435
421
|
#### Generates a table of the mean convergence of neuron populations. Method can be changed to show max, min, mean, or std for convergence a cell recieves
|
436
422
|
|
437
|
-
|
438
|
-
```python
|
439
|
-
bmplot.convergence_connection_matrix(config='config.json',sources='LA',targets='LA',tids='pop_name',sids='pop_name',no_prepend_pop=True,include_gap=False,method='mean+std')
|
440
|
-
```
|
441
|
-
|
442
|
-
|
443
|
-
|
444
|
-

|
445
423
|
|
446
|
-
|
447
|
-
|
448
|
-
### Divergence plot
|
424
|
+
### divergence_connection_matrix
|
449
425
|
#### Generates a table of the mean divergence of neuron populations. Method can be changed to show max, min, mean or std divergence a cell recieves.
|
450
426
|
|
451
|
-
|
452
|
-
```python
|
453
|
-
bmplot.divergence_connection_matrix(config='config.json',sources='LA',targets='LA',tids='pop_name',sids='pop_name',no_prepend_pop=True,include_gap=False,method='mean+std')
|
454
|
-
```
|
455
|
-
|
456
|
-
|
457
427
|
|
458
|
-
|
459
|
-
|
460
|
-
### Gap Junction plot
|
461
|
-
#### While gap junctions can be include in the above plots, you can use this function to only view gap junctions.Type can be either 'convergence' or 'percent' connections to generate different plots
|
462
|
-
|
463
|
-
|
464
|
-
```python
|
465
|
-
bmplot.gap_junction_matrix(config='config.json',sources='LA',targets='LA',sids='pop_name',tids='pop_name',no_prepend_pop=True,type='percent')
|
466
|
-
```
|
428
|
+
### gap_junction_matrix
|
429
|
+
#### While gap junctions can be include in the above plots, you can use this function to only view gap junctions. Method can be either 'convergence' or 'percent' connections to generate different plots
|
467
430
|
|
468
431
|
|
469
|
-
|
470
|
-
|
471
|
-
|
432
|
+
### connection_distance
|
433
|
+
#### Generates a 3d plot with the source and target cells location along with a histogram showing connection distance
|
472
434
|
|
473
|
-
###
|
435
|
+
### connection_histogram
|
474
436
|
#### Generates a histogram of the distribution of connections a population of cells give to individual cells of another population
|
475
437
|
|
476
438
|
|
477
|
-
|
478
|
-
bmplot.connection_histogram(config='config.json',sources='LA',targets='LA',tids='pop_name',sids='pop_name',source_cell='PV',target_cell='PV',include_gap=False)
|
479
|
-
```
|
480
|
-
|
481
|
-
|
482
|
-
|
483
|
-

|
484
|
-
|
485
|
-
|
486
|
-
|
487
|
-
### probability of connection plot
|
488
|
-
#### this function needs some work
|
489
|
-
|
490
|
-
|
491
|
-
```python
|
492
|
-
bmplot.probability_connection_matrix(config='config.json',sources='LA',targets='LA',tids='pop_name',sids='pop_name',no_prepend_pop=True,line_plot=True)
|
493
|
-
```
|
494
|
-
|
495
|
-
|
496
|
-
|
497
|
-

|
498
|
-
|
499
|
-
|
500
|
-
|
501
|
-
|
502
|
-
|
503
|
-

|
504
|
-
|
505
|
-
|
506
|
-
|
507
|
-
### 3D position plot
|
439
|
+
### plot_3d_positions
|
508
440
|
#### Generates a plot of cells positions in 3D space
|
509
441
|
|
510
442
|
|
511
|
-
|
512
|
-
bmplot.plot_3d_positions(config='config.json',populations_list='LA',group_by='pop_name',save_file=False)
|
513
|
-
```
|
514
|
-
|
515
|
-
|
516
|
-
|
517
|
-

|
518
|
-
|
519
|
-
|
520
|
-
|
521
|
-
### cell rotations
|
443
|
+
### plot_3d_cell_rotation
|
522
444
|
#### Generates a plot of cells location in 3D plot and also the cells rotation
|
523
445
|
|
524
446
|
|
525
|
-
```python
|
526
|
-
bmplot.cell_rotation_3d(config='config2.json',populations_list='all',group_by='pop_name',save_file=False,quiver_length=20,arrow_length_ratio=0.25,max_cells=100)
|
527
|
-
```
|
528
|
-
|
529
|
-
|
530
|
-
|
531
|
-

|
532
|
-
|
533
|
-
|
534
|
-
|
535
447
|
### Plot Connection Diagram
|
536
448
|
|
537
449
|
|
@@ -546,252 +458,6 @@ bmplot.plot_network_graph(config='config.json',sources='LA',targets='LA',tids='p
|
|
546
458
|
|
547
459
|
|
548
460
|
|
549
|
-
|
550
|
-
|
551
|
-
```python
|
552
|
-
from bmtool import bmplot
|
553
|
-
bmplot.plot_basic_cell_info(config_file='config.json')
|
554
|
-
```
|
555
|
-
|
556
|
-
Network and node info:
|
557
|
-
LA:
|
558
|
-
|
559
|
-
|
560
|
-
|
561
|
-
<table border="1" class="dataframe">
|
562
|
-
<thead>
|
563
|
-
<tr style="text-align: right;">
|
564
|
-
<th></th>
|
565
|
-
<th>node_type</th>
|
566
|
-
<th>pop_name</th>
|
567
|
-
<th>model_type</th>
|
568
|
-
<th>model_template</th>
|
569
|
-
<th>morphology</th>
|
570
|
-
<th>count</th>
|
571
|
-
</tr>
|
572
|
-
</thead>
|
573
|
-
<tbody>
|
574
|
-
<tr>
|
575
|
-
<th>0</th>
|
576
|
-
<td>100</td>
|
577
|
-
<td>PNa</td>
|
578
|
-
<td>biophysical</td>
|
579
|
-
<td>hoc:Cell_Af</td>
|
580
|
-
<td>blank.swc</td>
|
581
|
-
<td>800</td>
|
582
|
-
</tr>
|
583
|
-
<tr>
|
584
|
-
<th>1</th>
|
585
|
-
<td>101</td>
|
586
|
-
<td>PNc</td>
|
587
|
-
<td>biophysical</td>
|
588
|
-
<td>hoc:Cell_Cf</td>
|
589
|
-
<td>blank.swc</td>
|
590
|
-
<td>800</td>
|
591
|
-
</tr>
|
592
|
-
<tr>
|
593
|
-
<th>2</th>
|
594
|
-
<td>102</td>
|
595
|
-
<td>PV</td>
|
596
|
-
<td>biophysical</td>
|
597
|
-
<td>hoc:InterneuronCellf</td>
|
598
|
-
<td>blank.swc</td>
|
599
|
-
<td>240</td>
|
600
|
-
</tr>
|
601
|
-
<tr>
|
602
|
-
<th>3</th>
|
603
|
-
<td>103</td>
|
604
|
-
<td>SOM</td>
|
605
|
-
<td>biophysical</td>
|
606
|
-
<td>hoc:LTS_Cell</td>
|
607
|
-
<td>blank.swc</td>
|
608
|
-
<td>160</td>
|
609
|
-
</tr>
|
610
|
-
</tbody>
|
611
|
-
</table>
|
612
|
-
|
613
|
-
|
614
|
-
thalamus_pyr:
|
615
|
-
|
616
|
-
|
617
|
-
|
618
|
-
<table border="1" class="dataframe">
|
619
|
-
<thead>
|
620
|
-
<tr style="text-align: right;">
|
621
|
-
<th></th>
|
622
|
-
<th>node_type</th>
|
623
|
-
<th>pop_name</th>
|
624
|
-
<th>model_type</th>
|
625
|
-
<th>count</th>
|
626
|
-
</tr>
|
627
|
-
</thead>
|
628
|
-
<tbody>
|
629
|
-
<tr>
|
630
|
-
<th>0</th>
|
631
|
-
<td>100</td>
|
632
|
-
<td>pyr_inp</td>
|
633
|
-
<td>virtual</td>
|
634
|
-
<td>1600</td>
|
635
|
-
</tr>
|
636
|
-
</tbody>
|
637
|
-
</table>
|
638
|
-
|
639
|
-
|
640
|
-
thalamus_pv:
|
641
|
-
|
642
|
-
|
643
|
-
|
644
|
-
<table border="1" class="dataframe">
|
645
|
-
<thead>
|
646
|
-
<tr style="text-align: right;">
|
647
|
-
<th></th>
|
648
|
-
<th>node_type</th>
|
649
|
-
<th>pop_name</th>
|
650
|
-
<th>model_type</th>
|
651
|
-
<th>count</th>
|
652
|
-
</tr>
|
653
|
-
</thead>
|
654
|
-
<tbody>
|
655
|
-
<tr>
|
656
|
-
<th>0</th>
|
657
|
-
<td>100</td>
|
658
|
-
<td>pv_inp</td>
|
659
|
-
<td>virtual</td>
|
660
|
-
<td>240</td>
|
661
|
-
</tr>
|
662
|
-
</tbody>
|
663
|
-
</table>
|
664
|
-
|
665
|
-
|
666
|
-
thalamus_som:
|
667
|
-
|
668
|
-
|
669
|
-
|
670
|
-
<table border="1" class="dataframe">
|
671
|
-
<thead>
|
672
|
-
<tr style="text-align: right;">
|
673
|
-
<th></th>
|
674
|
-
<th>node_type</th>
|
675
|
-
<th>pop_name</th>
|
676
|
-
<th>model_type</th>
|
677
|
-
<th>count</th>
|
678
|
-
</tr>
|
679
|
-
</thead>
|
680
|
-
<tbody>
|
681
|
-
<tr>
|
682
|
-
<th>0</th>
|
683
|
-
<td>100</td>
|
684
|
-
<td>som_inp</td>
|
685
|
-
<td>virtual</td>
|
686
|
-
<td>160</td>
|
687
|
-
</tr>
|
688
|
-
</tbody>
|
689
|
-
</table>
|
690
|
-
|
691
|
-
|
692
|
-
tone:
|
693
|
-
|
694
|
-
|
695
|
-
|
696
|
-
<table border="1" class="dataframe">
|
697
|
-
<thead>
|
698
|
-
<tr style="text-align: right;">
|
699
|
-
<th></th>
|
700
|
-
<th>node_type</th>
|
701
|
-
<th>pop_name</th>
|
702
|
-
<th>model_type</th>
|
703
|
-
<th>count</th>
|
704
|
-
</tr>
|
705
|
-
</thead>
|
706
|
-
<tbody>
|
707
|
-
<tr>
|
708
|
-
<th>0</th>
|
709
|
-
<td>100</td>
|
710
|
-
<td>tone</td>
|
711
|
-
<td>virtual</td>
|
712
|
-
<td>1840</td>
|
713
|
-
</tr>
|
714
|
-
</tbody>
|
715
|
-
</table>
|
716
|
-
|
717
|
-
|
718
|
-
shock:
|
719
|
-
|
720
|
-
|
721
|
-
|
722
|
-
<table border="1" class="dataframe">
|
723
|
-
<thead>
|
724
|
-
<tr style="text-align: right;">
|
725
|
-
<th></th>
|
726
|
-
<th>node_type</th>
|
727
|
-
<th>pop_name</th>
|
728
|
-
<th>model_type</th>
|
729
|
-
<th>count</th>
|
730
|
-
</tr>
|
731
|
-
</thead>
|
732
|
-
<tbody>
|
733
|
-
<tr>
|
734
|
-
<th>0</th>
|
735
|
-
<td>100</td>
|
736
|
-
<td>shock</td>
|
737
|
-
<td>virtual</td>
|
738
|
-
<td>400</td>
|
739
|
-
</tr>
|
740
|
-
</tbody>
|
741
|
-
</table>
|
742
|
-
|
743
|
-
|
744
|
-
shell:
|
745
|
-
|
746
|
-
|
747
|
-
|
748
|
-
<table border="1" class="dataframe">
|
749
|
-
<thead>
|
750
|
-
<tr style="text-align: right;">
|
751
|
-
<th></th>
|
752
|
-
<th>node_type</th>
|
753
|
-
<th>pop_name</th>
|
754
|
-
<th>model_type</th>
|
755
|
-
<th>count</th>
|
756
|
-
</tr>
|
757
|
-
</thead>
|
758
|
-
<tbody>
|
759
|
-
<tr>
|
760
|
-
<th>0</th>
|
761
|
-
<td>100</td>
|
762
|
-
<td>PNa</td>
|
763
|
-
<td>virtual</td>
|
764
|
-
<td>3975</td>
|
765
|
-
</tr>
|
766
|
-
<tr>
|
767
|
-
<th>1</th>
|
768
|
-
<td>101</td>
|
769
|
-
<td>PNc</td>
|
770
|
-
<td>virtual</td>
|
771
|
-
<td>3975</td>
|
772
|
-
</tr>
|
773
|
-
<tr>
|
774
|
-
<th>2</th>
|
775
|
-
<td>102</td>
|
776
|
-
<td>PV</td>
|
777
|
-
<td>virtual</td>
|
778
|
-
<td>1680</td>
|
779
|
-
</tr>
|
780
|
-
<tr>
|
781
|
-
<th>3</th>
|
782
|
-
<td>103</td>
|
783
|
-
<td>SOM</td>
|
784
|
-
<td>virtual</td>
|
785
|
-
<td>1120</td>
|
786
|
-
</tr>
|
787
|
-
</tbody>
|
788
|
-
</table>
|
789
|
-
|
790
|
-
|
791
|
-
|
792
|
-
|
793
|
-
|
794
|
-
'LA'
|
795
461
|
## Graphs Module
|
796
462
|
- [Generate graph](#generate-graph)
|
797
463
|
- [Plot Graph](#plot-graph)
|
@@ -799,7 +465,6 @@ bmplot.plot_basic_cell_info(config_file='config.json')
|
|
799
465
|
|
800
466
|
### Generate Graph
|
801
467
|
|
802
|
-
|
803
468
|
```python
|
804
469
|
from bmtool import graphs
|
805
470
|
import networkx as nx
|