bmtool 0.5.9.6__tar.gz → 0.5.9.8__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (29) hide show
  1. {bmtool-0.5.9.6 → bmtool-0.5.9.8}/PKG-INFO +36 -371
  2. {bmtool-0.5.9.6 → bmtool-0.5.9.8}/README.md +35 -370
  3. {bmtool-0.5.9.6 → bmtool-0.5.9.8}/bmtool/bmplot.py +117 -101
  4. {bmtool-0.5.9.6 → bmtool-0.5.9.8}/bmtool/connectors.py +2 -2
  5. {bmtool-0.5.9.6 → bmtool-0.5.9.8}/bmtool/synapses.py +1 -1
  6. {bmtool-0.5.9.6 → bmtool-0.5.9.8}/bmtool/util/util.py +6 -12
  7. {bmtool-0.5.9.6 → bmtool-0.5.9.8}/bmtool.egg-info/PKG-INFO +36 -371
  8. {bmtool-0.5.9.6 → bmtool-0.5.9.8}/setup.py +1 -1
  9. {bmtool-0.5.9.6 → bmtool-0.5.9.8}/LICENSE +0 -0
  10. {bmtool-0.5.9.6 → bmtool-0.5.9.8}/bmtool/SLURM.py +0 -0
  11. {bmtool-0.5.9.6 → bmtool-0.5.9.8}/bmtool/__init__.py +0 -0
  12. {bmtool-0.5.9.6 → bmtool-0.5.9.8}/bmtool/__main__.py +0 -0
  13. {bmtool-0.5.9.6 → bmtool-0.5.9.8}/bmtool/debug/__init__.py +0 -0
  14. {bmtool-0.5.9.6 → bmtool-0.5.9.8}/bmtool/debug/commands.py +0 -0
  15. {bmtool-0.5.9.6 → bmtool-0.5.9.8}/bmtool/debug/debug.py +0 -0
  16. {bmtool-0.5.9.6 → bmtool-0.5.9.8}/bmtool/graphs.py +0 -0
  17. {bmtool-0.5.9.6 → bmtool-0.5.9.8}/bmtool/manage.py +0 -0
  18. {bmtool-0.5.9.6 → bmtool-0.5.9.8}/bmtool/plot_commands.py +0 -0
  19. {bmtool-0.5.9.6 → bmtool-0.5.9.8}/bmtool/singlecell.py +0 -0
  20. {bmtool-0.5.9.6 → bmtool-0.5.9.8}/bmtool/util/__init__.py +0 -0
  21. {bmtool-0.5.9.6 → bmtool-0.5.9.8}/bmtool/util/commands.py +0 -0
  22. {bmtool-0.5.9.6 → bmtool-0.5.9.8}/bmtool/util/neuron/__init__.py +0 -0
  23. {bmtool-0.5.9.6 → bmtool-0.5.9.8}/bmtool/util/neuron/celltuner.py +0 -0
  24. {bmtool-0.5.9.6 → bmtool-0.5.9.8}/bmtool.egg-info/SOURCES.txt +0 -0
  25. {bmtool-0.5.9.6 → bmtool-0.5.9.8}/bmtool.egg-info/dependency_links.txt +0 -0
  26. {bmtool-0.5.9.6 → bmtool-0.5.9.8}/bmtool.egg-info/entry_points.txt +0 -0
  27. {bmtool-0.5.9.6 → bmtool-0.5.9.8}/bmtool.egg-info/requires.txt +0 -0
  28. {bmtool-0.5.9.6 → bmtool-0.5.9.8}/bmtool.egg-info/top_level.txt +0 -0
  29. {bmtool-0.5.9.6 → bmtool-0.5.9.8}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: bmtool
3
- Version: 0.5.9.6
3
+ Version: 0.5.9.8
4
4
  Summary: BMTool
5
5
  Home-page: https://github.com/cyneuro/bmtool
6
6
  Download-URL:
@@ -38,11 +38,12 @@ A collection of modules to make developing [Neuron](https://www.neuron.yale.edu/
38
38
  [![license](https://img.shields.io/github/license/mashape/apistatus.svg?maxAge=2592000)](https://github.com/cyneuro/bmtool/blob/master/LICENSE)
39
39
 
40
40
  ## Table of Contents
41
- - [Getting Started](#Getting-Started)
42
- - [CLI](#CLI)
43
- - [Single Cell](#Single-Cell-Module)
44
- - [Connectors](#Connectors-Module)
45
- - [Bmplot](#bmplot-Module)
41
+ - [Getting Started](#getting-started)
42
+ - [CLI](#cli)
43
+ - [Single Cell](#single-cell-module)
44
+ - [Synapses](#synapses-module)
45
+ - [Connectors](#connectors-module)
46
+ - [Bmplot](#bmplot-module)
46
47
  - [Graphs](#graphs-module)
47
48
 
48
49
  ## Getting Started
@@ -335,6 +336,12 @@ bmtool util cell --hoc segmented_template.hoc vhsegbuild
335
336
  ```
336
337
  ex: [https://github.com/tjbanks/two-cell-hco](https://github.com/tjbanks/two-cell-hco)
337
338
 
339
+ ### Synapses Module
340
+ -[SynapticTuner](#synaptictuner)
341
+
342
+ #### SynapticTuner - Aids in the tuning of synapses by printing out synaptic properties and giving the user sliders in a Jupyter notebook to tune the synapse. For more info view the example [here](examples/synapses/synaptic_tuner.ipynb)
343
+
344
+
338
345
  ### Connectors Module
339
346
  - [UnidirectionConnector](#unidirectional-connector---unidirectional-connections-in-bmtk-network-model-with-given-probability-within-a-single-population-or-between-two-populations)
340
347
  - [ReciprocalConnector](#recipical-connector---buiilding-connections-in-bmtk-network-model-with-reciprocal-probability-within-a-single-population-or-between-two-populations)
@@ -390,148 +397,53 @@ connector.setup_nodes(target=net.nodes(pop_name = 'PopB'))
390
397
  net.add_edges(**connector.edge_params())
391
398
  ```
392
399
 
393
- ## Bmplot Module
394
- - [Total connections](#Total-connection-plot)
395
- - [Percent connections](#Percent-connection-plot)
396
- - [Convergence connnections](#convergence-plot)
397
- - [Divergence connections](#divergence-plot)
398
- - [Gap Junction connections](#gap-junction-plot)
399
- - [connection histogram](#connection-histogram)
400
- - [probability connection](#probability-of-connection-plot)
401
- - [3D location](#3d-position-plot)
402
- - [3D rotation](#cell-rotations)
403
- - [Plot Connection Diagram](#plot-connection-diagram)
404
-
405
- ### Total connection plot
406
- #### Generates a table of total number of connections each neuron population recieves
407
-
408
-
409
- ```python
410
- from bmtool import bmplot
411
- bmplot.total_connection_matrix(config='config.json',sources='LA',targets='LA',tids='pop_name',sids='pop_name',no_prepend_pop=True,include_gap=False)
412
- ```
400
+ ## Bmplot Module
401
+ ### for a demo please see the notebook [here](examples/bmplot/bmplot.ipynb)
402
+ - [total_connection_matrix](#total_connection_matrix)
403
+ - [percent_connection_matrix](#percent_connection_matrix)
404
+ - [convergence_connection_matrix](#convergence_connection_matrix)
405
+ - [divergence_connection_matrix](#divergence_connection_matrix)
406
+ - [gap_junction_matrix](#gap_junction_matrix)
407
+ - [connection_distance](#connection_distance)
408
+ - [connection_histogram](#connection_histogram)
409
+ - [plot_3d_positions](#plot_3d_positions)
410
+ - [plot_3d_cell_rotation](#plot_3d_cell_rotation)
413
411
 
412
+ ### total_connection_matrix
413
+ #### Generates a table of total number of connections each neuron population recieves
414
414
 
415
415
 
416
- ![png](readme_figures/output_19_0.png)
417
-
418
-
419
-
420
- ### Percent connection plot
416
+ ### percent_connection_matrix
421
417
  #### Generates a table of the percent connectivity of neuron populations.Method can change if you want the table to be total percent connectivity, only unidirectional connectivity or only bi directional connectvity
422
418
 
423
419
 
424
- ```python
425
- bmplot.percent_connection_matrix(config='config.json',sources='LA',targets='LA',tids='pop_name',sids='pop_name',no_prepend_pop=True,method='total',include_gap=False)
426
- ```
427
-
428
-
429
-
430
- ![png](readme_figures/output_21_0.png)
431
-
432
-
433
-
434
- ### Convergence plot
420
+ ### convergence_connection_matrix
435
421
  #### Generates a table of the mean convergence of neuron populations. Method can be changed to show max, min, mean, or std for convergence a cell recieves
436
422
 
437
-
438
- ```python
439
- bmplot.convergence_connection_matrix(config='config.json',sources='LA',targets='LA',tids='pop_name',sids='pop_name',no_prepend_pop=True,include_gap=False,method='mean+std')
440
- ```
441
-
442
-
443
-
444
- ![png](readme_figures/output_23_0.png)
445
423
 
446
-
447
-
448
- ### Divergence plot
424
+ ### divergence_connection_matrix
449
425
  #### Generates a table of the mean divergence of neuron populations. Method can be changed to show max, min, mean or std divergence a cell recieves.
450
426
 
451
-
452
- ```python
453
- bmplot.divergence_connection_matrix(config='config.json',sources='LA',targets='LA',tids='pop_name',sids='pop_name',no_prepend_pop=True,include_gap=False,method='mean+std')
454
- ```
455
-
456
-
457
427
 
458
- ![png](readme_figures/output_25_0.png)
459
-
460
- ### Gap Junction plot
461
- #### While gap junctions can be include in the above plots, you can use this function to only view gap junctions.Type can be either 'convergence' or 'percent' connections to generate different plots
462
-
463
-
464
- ```python
465
- bmplot.gap_junction_matrix(config='config.json',sources='LA',targets='LA',sids='pop_name',tids='pop_name',no_prepend_pop=True,type='percent')
466
- ```
428
+ ### gap_junction_matrix
429
+ #### While gap junctions can be include in the above plots, you can use this function to only view gap junctions. Method can be either 'convergence' or 'percent' connections to generate different plots
467
430
 
468
431
 
469
-
470
- ![png](output_gap.png)
471
-
432
+ ### connection_distance
433
+ #### Generates a 3d plot with the source and target cells location along with a histogram showing connection distance
472
434
 
473
- ### Connection histogram
435
+ ### connection_histogram
474
436
  #### Generates a histogram of the distribution of connections a population of cells give to individual cells of another population
475
437
 
476
438
 
477
- ```python
478
- bmplot.connection_histogram(config='config.json',sources='LA',targets='LA',tids='pop_name',sids='pop_name',source_cell='PV',target_cell='PV',include_gap=False)
479
- ```
480
-
481
-
482
-
483
- ![png](readme_figures/output_27_0.png)
484
-
485
-
486
-
487
- ### probability of connection plot
488
- #### this function needs some work
489
-
490
-
491
- ```python
492
- bmplot.probability_connection_matrix(config='config.json',sources='LA',targets='LA',tids='pop_name',sids='pop_name',no_prepend_pop=True,line_plot=True)
493
- ```
494
-
495
-
496
-
497
- ![png](readme_figures/output_29_0.png)
498
-
499
-
500
-
501
-
502
-
503
- ![png](readme_figures/output_29_1.png)
504
-
505
-
506
-
507
- ### 3D position plot
439
+ ### plot_3d_positions
508
440
  #### Generates a plot of cells positions in 3D space
509
441
 
510
442
 
511
- ```python
512
- bmplot.plot_3d_positions(config='config.json',populations_list='LA',group_by='pop_name',save_file=False)
513
- ```
514
-
515
-
516
-
517
- ![png](readme_figures/output_31_0.png)
518
-
519
-
520
-
521
- ### cell rotations
443
+ ### plot_3d_cell_rotation
522
444
  #### Generates a plot of cells location in 3D plot and also the cells rotation
523
445
 
524
446
 
525
- ```python
526
- bmplot.cell_rotation_3d(config='config2.json',populations_list='all',group_by='pop_name',save_file=False,quiver_length=20,arrow_length_ratio=0.25,max_cells=100)
527
- ```
528
-
529
-
530
-
531
- ![png](readme_figures/output_33_0.png)
532
-
533
-
534
-
535
447
  ### Plot Connection Diagram
536
448
 
537
449
 
@@ -546,252 +458,6 @@ bmplot.plot_network_graph(config='config.json',sources='LA',targets='LA',tids='p
546
458
 
547
459
 
548
460
 
549
-
550
-
551
- ```python
552
- from bmtool import bmplot
553
- bmplot.plot_basic_cell_info(config_file='config.json')
554
- ```
555
-
556
- Network and node info:
557
- LA:
558
-
559
-
560
-
561
- <table border="1" class="dataframe">
562
- <thead>
563
- <tr style="text-align: right;">
564
- <th></th>
565
- <th>node_type</th>
566
- <th>pop_name</th>
567
- <th>model_type</th>
568
- <th>model_template</th>
569
- <th>morphology</th>
570
- <th>count</th>
571
- </tr>
572
- </thead>
573
- <tbody>
574
- <tr>
575
- <th>0</th>
576
- <td>100</td>
577
- <td>PNa</td>
578
- <td>biophysical</td>
579
- <td>hoc:Cell_Af</td>
580
- <td>blank.swc</td>
581
- <td>800</td>
582
- </tr>
583
- <tr>
584
- <th>1</th>
585
- <td>101</td>
586
- <td>PNc</td>
587
- <td>biophysical</td>
588
- <td>hoc:Cell_Cf</td>
589
- <td>blank.swc</td>
590
- <td>800</td>
591
- </tr>
592
- <tr>
593
- <th>2</th>
594
- <td>102</td>
595
- <td>PV</td>
596
- <td>biophysical</td>
597
- <td>hoc:InterneuronCellf</td>
598
- <td>blank.swc</td>
599
- <td>240</td>
600
- </tr>
601
- <tr>
602
- <th>3</th>
603
- <td>103</td>
604
- <td>SOM</td>
605
- <td>biophysical</td>
606
- <td>hoc:LTS_Cell</td>
607
- <td>blank.swc</td>
608
- <td>160</td>
609
- </tr>
610
- </tbody>
611
- </table>
612
-
613
-
614
- thalamus_pyr:
615
-
616
-
617
-
618
- <table border="1" class="dataframe">
619
- <thead>
620
- <tr style="text-align: right;">
621
- <th></th>
622
- <th>node_type</th>
623
- <th>pop_name</th>
624
- <th>model_type</th>
625
- <th>count</th>
626
- </tr>
627
- </thead>
628
- <tbody>
629
- <tr>
630
- <th>0</th>
631
- <td>100</td>
632
- <td>pyr_inp</td>
633
- <td>virtual</td>
634
- <td>1600</td>
635
- </tr>
636
- </tbody>
637
- </table>
638
-
639
-
640
- thalamus_pv:
641
-
642
-
643
-
644
- <table border="1" class="dataframe">
645
- <thead>
646
- <tr style="text-align: right;">
647
- <th></th>
648
- <th>node_type</th>
649
- <th>pop_name</th>
650
- <th>model_type</th>
651
- <th>count</th>
652
- </tr>
653
- </thead>
654
- <tbody>
655
- <tr>
656
- <th>0</th>
657
- <td>100</td>
658
- <td>pv_inp</td>
659
- <td>virtual</td>
660
- <td>240</td>
661
- </tr>
662
- </tbody>
663
- </table>
664
-
665
-
666
- thalamus_som:
667
-
668
-
669
-
670
- <table border="1" class="dataframe">
671
- <thead>
672
- <tr style="text-align: right;">
673
- <th></th>
674
- <th>node_type</th>
675
- <th>pop_name</th>
676
- <th>model_type</th>
677
- <th>count</th>
678
- </tr>
679
- </thead>
680
- <tbody>
681
- <tr>
682
- <th>0</th>
683
- <td>100</td>
684
- <td>som_inp</td>
685
- <td>virtual</td>
686
- <td>160</td>
687
- </tr>
688
- </tbody>
689
- </table>
690
-
691
-
692
- tone:
693
-
694
-
695
-
696
- <table border="1" class="dataframe">
697
- <thead>
698
- <tr style="text-align: right;">
699
- <th></th>
700
- <th>node_type</th>
701
- <th>pop_name</th>
702
- <th>model_type</th>
703
- <th>count</th>
704
- </tr>
705
- </thead>
706
- <tbody>
707
- <tr>
708
- <th>0</th>
709
- <td>100</td>
710
- <td>tone</td>
711
- <td>virtual</td>
712
- <td>1840</td>
713
- </tr>
714
- </tbody>
715
- </table>
716
-
717
-
718
- shock:
719
-
720
-
721
-
722
- <table border="1" class="dataframe">
723
- <thead>
724
- <tr style="text-align: right;">
725
- <th></th>
726
- <th>node_type</th>
727
- <th>pop_name</th>
728
- <th>model_type</th>
729
- <th>count</th>
730
- </tr>
731
- </thead>
732
- <tbody>
733
- <tr>
734
- <th>0</th>
735
- <td>100</td>
736
- <td>shock</td>
737
- <td>virtual</td>
738
- <td>400</td>
739
- </tr>
740
- </tbody>
741
- </table>
742
-
743
-
744
- shell:
745
-
746
-
747
-
748
- <table border="1" class="dataframe">
749
- <thead>
750
- <tr style="text-align: right;">
751
- <th></th>
752
- <th>node_type</th>
753
- <th>pop_name</th>
754
- <th>model_type</th>
755
- <th>count</th>
756
- </tr>
757
- </thead>
758
- <tbody>
759
- <tr>
760
- <th>0</th>
761
- <td>100</td>
762
- <td>PNa</td>
763
- <td>virtual</td>
764
- <td>3975</td>
765
- </tr>
766
- <tr>
767
- <th>1</th>
768
- <td>101</td>
769
- <td>PNc</td>
770
- <td>virtual</td>
771
- <td>3975</td>
772
- </tr>
773
- <tr>
774
- <th>2</th>
775
- <td>102</td>
776
- <td>PV</td>
777
- <td>virtual</td>
778
- <td>1680</td>
779
- </tr>
780
- <tr>
781
- <th>3</th>
782
- <td>103</td>
783
- <td>SOM</td>
784
- <td>virtual</td>
785
- <td>1120</td>
786
- </tr>
787
- </tbody>
788
- </table>
789
-
790
-
791
-
792
-
793
-
794
- 'LA'
795
461
  ## Graphs Module
796
462
  - [Generate graph](#generate-graph)
797
463
  - [Plot Graph](#plot-graph)
@@ -799,7 +465,6 @@ bmplot.plot_basic_cell_info(config_file='config.json')
799
465
 
800
466
  ### Generate Graph
801
467
 
802
-
803
468
  ```python
804
469
  from bmtool import graphs
805
470
  import networkx as nx