blksprs 1.0__tar.gz → 1.1__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {blksprs-1.0 → blksprs-1.1}/PKG-INFO +32 -13
- {blksprs-1.0 → blksprs-1.1}/README.md +31 -12
- blksprs-1.1/blksprs/layouting/distribution_layout.py +114 -0
- {blksprs-1.0 → blksprs-1.1}/blksprs/layouting/sparsity_layout.py +17 -7
- blksprs-1.1/blksprs/misc/broadcast_addition.py +132 -0
- {blksprs-1.0 → blksprs-1.1}/blksprs/ops/conversion.py +40 -15
- blksprs-1.1/blksprs/ops/distribution.py +362 -0
- {blksprs-1.0 → blksprs-1.1}/blksprs/ops/exp.py +18 -8
- blksprs-1.0/blksprs/ops/matmul_sss.py → blksprs-1.1/blksprs/ops/matmul.py +28 -26
- {blksprs-1.0 → blksprs-1.1}/blksprs/ops/row_wise_sum.py +21 -5
- {blksprs-1.0 → blksprs-1.1}/blksprs/ops/softmax.py +23 -12
- {blksprs-1.0 → blksprs-1.1}/blksprs/ops/transpose.py +19 -7
- blksprs-1.1/blksprs/utils/tools.py +20 -0
- {blksprs-1.0 → blksprs-1.1}/blksprs/utils/validation.py +53 -1
- {blksprs-1.0 → blksprs-1.1}/blksprs.egg-info/PKG-INFO +32 -13
- {blksprs-1.0 → blksprs-1.1}/blksprs.egg-info/SOURCES.txt +4 -1
- {blksprs-1.0 → blksprs-1.1}/pyproject.toml +1 -1
- blksprs-1.0/blksprs/utils/tools.py +0 -47
- {blksprs-1.0 → blksprs-1.1}/blksprs/utils/benchmarking.py +0 -0
- {blksprs-1.0 → blksprs-1.1}/blksprs.egg-info/dependency_links.txt +0 -0
- {blksprs-1.0 → blksprs-1.1}/blksprs.egg-info/requires.txt +0 -0
- {blksprs-1.0 → blksprs-1.1}/blksprs.egg-info/top_level.txt +0 -0
- {blksprs-1.0 → blksprs-1.1}/setup.cfg +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: blksprs
|
|
3
|
-
Version: 1.
|
|
3
|
+
Version: 1.1
|
|
4
4
|
Summary: A lightweight library for operations on blocksparse matrices in PyTorch.
|
|
5
5
|
Author-email: Felix Schön <schoen@kr.tuwien.ac.at>
|
|
6
6
|
Project-URL: Homepage, https://github.com/FelixSchoen/blksprs
|
|
@@ -23,16 +23,20 @@ Requires-Dist: pdoc3; extra == "deploy"
|
|
|
23
23
|
|
|
24
24
|
## Overview
|
|
25
25
|
|
|
26
|
-
A lightweight library for operations on
|
|
26
|
+
A lightweight and efficient library for operations on block-sparse matrices in PyTorch using Triton.
|
|
27
27
|
|
|
28
28
|
Currently supported operations (includes gradient calculation):
|
|
29
29
|
|
|
30
|
-
- Sparse matrix multiplication (_supports any combination of sparse and dense matrices due to support
|
|
30
|
+
- Sparse matrix multiplication (_supports any combination of sparse and dense matrices due to support
|
|
31
|
+
for `sparse = sparse @ sparse` matmul_)
|
|
31
32
|
- Softmax
|
|
32
33
|
- Transposition
|
|
34
|
+
- Gather
|
|
35
|
+
- Scatter (_supports either no reduction or summation, gradients are only available for summation_)
|
|
33
36
|
- Conversion from and to sparse form
|
|
34
37
|
|
|
35
|
-
As with this library sparse matrices are represented using a tuple of `(matrix, sparsity_layout, sparsity_block_size)`,
|
|
38
|
+
As with this library sparse matrices are represented using a tuple of `(matrix, sparsity_layout, sparsity_block_size)`,
|
|
39
|
+
any element-wise operations can be applied in regular torch-like fashion.
|
|
36
40
|
These include, e.g.,
|
|
37
41
|
|
|
38
42
|
- Element-wise addition and subtraction
|
|
@@ -40,8 +44,17 @@ These include, e.g.,
|
|
|
40
44
|
- Element-wise exponentiation
|
|
41
45
|
- ...
|
|
42
46
|
|
|
47
|
+
Note that in order to correctly apply element-wise operations between two sparse tensors their sparsity layouts have to
|
|
48
|
+
match.
|
|
49
|
+
|
|
50
|
+
Furthermore, the library provides a set of utility functions for the creation of sparsity layouts based on existing
|
|
51
|
+
dense tensors.
|
|
52
|
+
|
|
43
53
|
## Installation
|
|
44
54
|
|
|
55
|
+
Note that due to the dependency on [Triton](https://github.com/triton-lang/triton) this library is only compatible with
|
|
56
|
+
the Linux platform.
|
|
57
|
+
|
|
45
58
|
We recommend installing blksprs from [PyPI](https://pypi.org/project/blksprs/) using pip:
|
|
46
59
|
|
|
47
60
|
```pip install blksprs```
|
|
@@ -52,12 +65,19 @@ See [`CHANGELOG.md`](https://github.com/FelixSchoen/blksprs/blob/main/CHANGELOG.
|
|
|
52
65
|
|
|
53
66
|
## Usage
|
|
54
67
|
|
|
68
|
+
We provide an example below to demonstrate the usage of the library.
|
|
69
|
+
For more detailed examples, please refer to
|
|
70
|
+
the [test cases](https://github.com/FelixSchoen/blksprs/blob/main/test/cases/test_blocksparse.py) which cover all
|
|
71
|
+
implemented operations and functions.
|
|
72
|
+
The example below can also be found in
|
|
73
|
+
the [test cases](https://github.com/FelixSchoen/blksprs/blob/main/test/cases/test_readme.py).
|
|
74
|
+
|
|
55
75
|
```python
|
|
56
76
|
import torch
|
|
57
77
|
|
|
58
|
-
from blksprs.layouting.sparsity_layout import
|
|
78
|
+
from blksprs.layouting.sparsity_layout import build_sparsity_layout
|
|
59
79
|
from blksprs.ops.conversion import to_sparse, to_dense
|
|
60
|
-
from blksprs.ops.
|
|
80
|
+
from blksprs.ops.matmul import matmul
|
|
61
81
|
from blksprs.ops.row_wise_sum import row_wise_sum
|
|
62
82
|
from blksprs.ops.softmax import softmax
|
|
63
83
|
from blksprs.ops.transpose import transpose
|
|
@@ -65,7 +85,7 @@ from blksprs.utils.tools import do_shape_blocksparse, undo_shape_blocksparse
|
|
|
65
85
|
|
|
66
86
|
|
|
67
87
|
def test_readme():
|
|
68
|
-
# Set up parameters
|
|
88
|
+
# Set up parameters (batch size, number of heads, dimensions for matrices (m, k) and (n, k))
|
|
69
89
|
b, h, m, n, k = 2, 4, 64, 64, 16
|
|
70
90
|
|
|
71
91
|
# Percentage of blocks that will be sparse in the output for demonstration purposes
|
|
@@ -78,7 +98,6 @@ def test_readme():
|
|
|
78
98
|
# If it is set to ``none`` a value will be chosen automatically
|
|
79
99
|
triton_block_size = None
|
|
80
100
|
|
|
81
|
-
|
|
82
101
|
# Initialise random (dense) tensors
|
|
83
102
|
x = torch.randn(size=(b, h, m, k), device="cuda")
|
|
84
103
|
y = torch.randn(size=(b, h, n, k), device="cuda").transpose(-1, -2).contiguous()
|
|
@@ -88,8 +107,8 @@ def test_readme():
|
|
|
88
107
|
y_dense, y_shape_original = do_shape_blocksparse(y)
|
|
89
108
|
|
|
90
109
|
# Create sparsity layouts from existing tensors
|
|
91
|
-
sparsity_layout_x =
|
|
92
|
-
sparsity_layout_y =
|
|
110
|
+
sparsity_layout_x = build_sparsity_layout(x_dense, sparsity_block_size, triton_block_size=triton_block_size)
|
|
111
|
+
sparsity_layout_y = build_sparsity_layout(y_dense, sparsity_block_size, triton_block_size=triton_block_size)
|
|
93
112
|
|
|
94
113
|
# Create random sparsity layout for output tensor
|
|
95
114
|
sparsity_layout_o = _get_random_sparsity_layout(b * h, m, n, sparsity_block_size, sparsity_percentage)
|
|
@@ -99,8 +118,8 @@ def test_readme():
|
|
|
99
118
|
y_sparse = to_sparse(y_dense, sparsity_layout_y, sparsity_block_size, triton_block_size=triton_block_size)
|
|
100
119
|
|
|
101
120
|
# Perform matrix multiplication
|
|
102
|
-
o_sparse =
|
|
103
|
-
|
|
121
|
+
o_sparse = matmul(x_sparse, sparsity_layout_x, y_sparse, sparsity_layout_y, sparsity_layout_o, sparsity_block_size,
|
|
122
|
+
triton_block_size=triton_block_size)
|
|
104
123
|
o_dense = to_dense(o_sparse, sparsity_layout_o, sparsity_block_size, triton_block_size=triton_block_size)
|
|
105
124
|
|
|
106
125
|
# Sanity check
|
|
@@ -115,7 +134,7 @@ def test_readme():
|
|
|
115
134
|
assert torch.allclose(o_dense, o_torch_round_trip, atol=2e-2) # Note that small numerical differences are expected
|
|
116
135
|
|
|
117
136
|
# Assert that the output has the correct sparsity layout
|
|
118
|
-
actual_sparsity_layout_o =
|
|
137
|
+
actual_sparsity_layout_o = build_sparsity_layout(o_dense, sparsity_block_size, triton_block_size=triton_block_size)
|
|
119
138
|
assert torch.allclose(actual_sparsity_layout_o, sparsity_layout_o)
|
|
120
139
|
|
|
121
140
|
# Convert output tensor back to original shape
|
|
@@ -2,16 +2,20 @@
|
|
|
2
2
|
|
|
3
3
|
## Overview
|
|
4
4
|
|
|
5
|
-
A lightweight library for operations on
|
|
5
|
+
A lightweight and efficient library for operations on block-sparse matrices in PyTorch using Triton.
|
|
6
6
|
|
|
7
7
|
Currently supported operations (includes gradient calculation):
|
|
8
8
|
|
|
9
|
-
- Sparse matrix multiplication (_supports any combination of sparse and dense matrices due to support
|
|
9
|
+
- Sparse matrix multiplication (_supports any combination of sparse and dense matrices due to support
|
|
10
|
+
for `sparse = sparse @ sparse` matmul_)
|
|
10
11
|
- Softmax
|
|
11
12
|
- Transposition
|
|
13
|
+
- Gather
|
|
14
|
+
- Scatter (_supports either no reduction or summation, gradients are only available for summation_)
|
|
12
15
|
- Conversion from and to sparse form
|
|
13
16
|
|
|
14
|
-
As with this library sparse matrices are represented using a tuple of `(matrix, sparsity_layout, sparsity_block_size)`,
|
|
17
|
+
As with this library sparse matrices are represented using a tuple of `(matrix, sparsity_layout, sparsity_block_size)`,
|
|
18
|
+
any element-wise operations can be applied in regular torch-like fashion.
|
|
15
19
|
These include, e.g.,
|
|
16
20
|
|
|
17
21
|
- Element-wise addition and subtraction
|
|
@@ -19,8 +23,17 @@ These include, e.g.,
|
|
|
19
23
|
- Element-wise exponentiation
|
|
20
24
|
- ...
|
|
21
25
|
|
|
26
|
+
Note that in order to correctly apply element-wise operations between two sparse tensors their sparsity layouts have to
|
|
27
|
+
match.
|
|
28
|
+
|
|
29
|
+
Furthermore, the library provides a set of utility functions for the creation of sparsity layouts based on existing
|
|
30
|
+
dense tensors.
|
|
31
|
+
|
|
22
32
|
## Installation
|
|
23
33
|
|
|
34
|
+
Note that due to the dependency on [Triton](https://github.com/triton-lang/triton) this library is only compatible with
|
|
35
|
+
the Linux platform.
|
|
36
|
+
|
|
24
37
|
We recommend installing blksprs from [PyPI](https://pypi.org/project/blksprs/) using pip:
|
|
25
38
|
|
|
26
39
|
```pip install blksprs```
|
|
@@ -31,12 +44,19 @@ See [`CHANGELOG.md`](https://github.com/FelixSchoen/blksprs/blob/main/CHANGELOG.
|
|
|
31
44
|
|
|
32
45
|
## Usage
|
|
33
46
|
|
|
47
|
+
We provide an example below to demonstrate the usage of the library.
|
|
48
|
+
For more detailed examples, please refer to
|
|
49
|
+
the [test cases](https://github.com/FelixSchoen/blksprs/blob/main/test/cases/test_blocksparse.py) which cover all
|
|
50
|
+
implemented operations and functions.
|
|
51
|
+
The example below can also be found in
|
|
52
|
+
the [test cases](https://github.com/FelixSchoen/blksprs/blob/main/test/cases/test_readme.py).
|
|
53
|
+
|
|
34
54
|
```python
|
|
35
55
|
import torch
|
|
36
56
|
|
|
37
|
-
from blksprs.layouting.sparsity_layout import
|
|
57
|
+
from blksprs.layouting.sparsity_layout import build_sparsity_layout
|
|
38
58
|
from blksprs.ops.conversion import to_sparse, to_dense
|
|
39
|
-
from blksprs.ops.
|
|
59
|
+
from blksprs.ops.matmul import matmul
|
|
40
60
|
from blksprs.ops.row_wise_sum import row_wise_sum
|
|
41
61
|
from blksprs.ops.softmax import softmax
|
|
42
62
|
from blksprs.ops.transpose import transpose
|
|
@@ -44,7 +64,7 @@ from blksprs.utils.tools import do_shape_blocksparse, undo_shape_blocksparse
|
|
|
44
64
|
|
|
45
65
|
|
|
46
66
|
def test_readme():
|
|
47
|
-
# Set up parameters
|
|
67
|
+
# Set up parameters (batch size, number of heads, dimensions for matrices (m, k) and (n, k))
|
|
48
68
|
b, h, m, n, k = 2, 4, 64, 64, 16
|
|
49
69
|
|
|
50
70
|
# Percentage of blocks that will be sparse in the output for demonstration purposes
|
|
@@ -57,7 +77,6 @@ def test_readme():
|
|
|
57
77
|
# If it is set to ``none`` a value will be chosen automatically
|
|
58
78
|
triton_block_size = None
|
|
59
79
|
|
|
60
|
-
|
|
61
80
|
# Initialise random (dense) tensors
|
|
62
81
|
x = torch.randn(size=(b, h, m, k), device="cuda")
|
|
63
82
|
y = torch.randn(size=(b, h, n, k), device="cuda").transpose(-1, -2).contiguous()
|
|
@@ -67,8 +86,8 @@ def test_readme():
|
|
|
67
86
|
y_dense, y_shape_original = do_shape_blocksparse(y)
|
|
68
87
|
|
|
69
88
|
# Create sparsity layouts from existing tensors
|
|
70
|
-
sparsity_layout_x =
|
|
71
|
-
sparsity_layout_y =
|
|
89
|
+
sparsity_layout_x = build_sparsity_layout(x_dense, sparsity_block_size, triton_block_size=triton_block_size)
|
|
90
|
+
sparsity_layout_y = build_sparsity_layout(y_dense, sparsity_block_size, triton_block_size=triton_block_size)
|
|
72
91
|
|
|
73
92
|
# Create random sparsity layout for output tensor
|
|
74
93
|
sparsity_layout_o = _get_random_sparsity_layout(b * h, m, n, sparsity_block_size, sparsity_percentage)
|
|
@@ -78,8 +97,8 @@ def test_readme():
|
|
|
78
97
|
y_sparse = to_sparse(y_dense, sparsity_layout_y, sparsity_block_size, triton_block_size=triton_block_size)
|
|
79
98
|
|
|
80
99
|
# Perform matrix multiplication
|
|
81
|
-
o_sparse =
|
|
82
|
-
|
|
100
|
+
o_sparse = matmul(x_sparse, sparsity_layout_x, y_sparse, sparsity_layout_y, sparsity_layout_o, sparsity_block_size,
|
|
101
|
+
triton_block_size=triton_block_size)
|
|
83
102
|
o_dense = to_dense(o_sparse, sparsity_layout_o, sparsity_block_size, triton_block_size=triton_block_size)
|
|
84
103
|
|
|
85
104
|
# Sanity check
|
|
@@ -94,7 +113,7 @@ def test_readme():
|
|
|
94
113
|
assert torch.allclose(o_dense, o_torch_round_trip, atol=2e-2) # Note that small numerical differences are expected
|
|
95
114
|
|
|
96
115
|
# Assert that the output has the correct sparsity layout
|
|
97
|
-
actual_sparsity_layout_o =
|
|
116
|
+
actual_sparsity_layout_o = build_sparsity_layout(o_dense, sparsity_block_size, triton_block_size=triton_block_size)
|
|
98
117
|
assert torch.allclose(actual_sparsity_layout_o, sparsity_layout_o)
|
|
99
118
|
|
|
100
119
|
# Convert output tensor back to original shape
|
|
@@ -0,0 +1,114 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
import triton
|
|
3
|
+
from torch import Tensor
|
|
4
|
+
from triton import language as tl
|
|
5
|
+
|
|
6
|
+
from blksprs.utils.tools import get_triton_block_size
|
|
7
|
+
from blksprs.utils.validation import validate_triton_block_size, validate_dimensions, validate_device, \
|
|
8
|
+
validate_contiguous
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
def build_distribution_layout(indices: Tensor, sparsity_layout_indices: Tensor,
|
|
12
|
+
size_target: torch.Size,
|
|
13
|
+
sparsity_block_size: int, triton_block_size: int = None) -> Tensor:
|
|
14
|
+
"""Builds the sparsity layout of either the source of a gather or the target of a scatter operation.
|
|
15
|
+
|
|
16
|
+
Args:
|
|
17
|
+
indices (Tensor): The block-sparse indices tensor in compressed form used for the gather or scatter operation.
|
|
18
|
+
sparsity_layout_indices (Tensor): The sparsity layout of the indices block-sparse tensor.
|
|
19
|
+
size_target (torch.Size): The size of the block-sparse target tensor in regular form.
|
|
20
|
+
sparsity_block_size (int): The size of the sparsity blocks.
|
|
21
|
+
triton_block_size (int, optional): The block size to use for the triton kernel (default ``None``).
|
|
22
|
+
|
|
23
|
+
Returns:
|
|
24
|
+
Tensor: The sparsity layout of the source or target tensor.
|
|
25
|
+
|
|
26
|
+
"""
|
|
27
|
+
validate_dimensions(indices)
|
|
28
|
+
validate_contiguous(indices)
|
|
29
|
+
validate_device(indices)
|
|
30
|
+
|
|
31
|
+
sparsity_lut_i = torch.nonzero(sparsity_layout_indices).contiguous()
|
|
32
|
+
|
|
33
|
+
output = torch.zeros(size_target[0], size_target[1] // sparsity_block_size, size_target[2] // sparsity_block_size,
|
|
34
|
+
device=indices.device, dtype=torch.int32)
|
|
35
|
+
|
|
36
|
+
i_b, i_r, i_c = indices.size()
|
|
37
|
+
i_b_s, i_r_s, i_c_s = indices.stride()
|
|
38
|
+
s_l_i_b, s_l_i_r, s_l_i_c = sparsity_layout_indices.size()
|
|
39
|
+
s_l_i_b_s, s_l_i_r_s, s_l_i_c_s = sparsity_layout_indices.stride()
|
|
40
|
+
s_lut_i_r, s_lut_i_c = sparsity_lut_i.size()
|
|
41
|
+
s_lut_i_r_s, s_lut_i_c_s = sparsity_lut_i.stride()
|
|
42
|
+
o_b, o_r, o_c = output.size()
|
|
43
|
+
o_b_s, o_r_s, o_c_s = output.stride()
|
|
44
|
+
|
|
45
|
+
if triton_block_size is None:
|
|
46
|
+
triton_block_size = get_triton_block_size(sparsity_block_size)
|
|
47
|
+
|
|
48
|
+
validate_triton_block_size(triton_block_size, sparsity_block_size)
|
|
49
|
+
|
|
50
|
+
triton_grid = lambda meta: [i_b,
|
|
51
|
+
triton.cdiv(i_r, meta["TRITON_BLOCK_SIZE"]),
|
|
52
|
+
triton.cdiv(i_c, meta["TRITON_BLOCK_SIZE"])]
|
|
53
|
+
|
|
54
|
+
(kernel_distribution_layout[triton_grid]
|
|
55
|
+
(indices,
|
|
56
|
+
i_b, i_b_s, i_r_s, i_c_s,
|
|
57
|
+
sparsity_layout_indices,
|
|
58
|
+
s_l_i_b, s_l_i_b_s, s_l_i_r, s_l_i_r_s, s_l_i_c, s_l_i_c_s,
|
|
59
|
+
sparsity_lut_i,
|
|
60
|
+
s_lut_i_r, s_lut_i_r_s, s_lut_i_c, s_lut_i_c_s,
|
|
61
|
+
output,
|
|
62
|
+
o_b, o_b_s, o_r, o_r_s, o_c, o_c_s,
|
|
63
|
+
sparsity_block_size,
|
|
64
|
+
triton_block_size))
|
|
65
|
+
|
|
66
|
+
return output
|
|
67
|
+
|
|
68
|
+
|
|
69
|
+
@triton.jit
|
|
70
|
+
def kernel_distribution_layout(i,
|
|
71
|
+
i_b, i_b_s, i_r_s, i_c_s,
|
|
72
|
+
s_l_i,
|
|
73
|
+
s_l_i_b, s_l_i_b_s, s_l_i_r, s_l_i_r_s, s_l_i_c, s_l_i_c_s,
|
|
74
|
+
s_lut_i,
|
|
75
|
+
s_lut_i_r, s_lut_i_r_s, s_lut_i_c, s_lut_i_c_s,
|
|
76
|
+
o,
|
|
77
|
+
o_b, o_b_s, o_r, o_r_s, o_c, o_c_s,
|
|
78
|
+
sparsity_block_size,
|
|
79
|
+
TRITON_BLOCK_SIZE: tl.constexpr) -> None:
|
|
80
|
+
# Get triton block indices
|
|
81
|
+
pid_blk = tl.program_id(axis=0)
|
|
82
|
+
pid_row = tl.program_id(axis=1)
|
|
83
|
+
pid_col = tl.program_id(axis=2)
|
|
84
|
+
|
|
85
|
+
# Get position of current sparsity block consisting of its batch, row, and column index
|
|
86
|
+
spa_bat_i_idx = (pid_blk * s_lut_i_r_s + 0 * s_lut_i_c_s)
|
|
87
|
+
spa_bat_i_msk = (spa_bat_i_idx < s_lut_i_r * s_lut_i_r_s)
|
|
88
|
+
spa_bat_i = tl.load(s_lut_i + spa_bat_i_idx, mask=spa_bat_i_msk)
|
|
89
|
+
|
|
90
|
+
spa_row_i_idx = (pid_blk * s_lut_i_r_s + 1 * s_lut_i_c_s)
|
|
91
|
+
spa_row_i_msk = (spa_row_i_idx < s_lut_i_r * s_lut_i_r_s)
|
|
92
|
+
spa_row_i = tl.load(s_lut_i + spa_row_i_idx, mask=spa_row_i_msk)
|
|
93
|
+
|
|
94
|
+
blk_i_idx = (pid_blk * i_b_s +
|
|
95
|
+
((pid_row * TRITON_BLOCK_SIZE + tl.arange(0, TRITON_BLOCK_SIZE)) * i_r_s)[:, None] +
|
|
96
|
+
((pid_col * TRITON_BLOCK_SIZE + tl.arange(0, TRITON_BLOCK_SIZE)) * i_c_s)[None, :])
|
|
97
|
+
blk_i_msk = (blk_i_idx < i_b * i_b_s)
|
|
98
|
+
blk_i = tl.load(i + blk_i_idx, mask=blk_i_msk)
|
|
99
|
+
|
|
100
|
+
blk_i = blk_i // sparsity_block_size
|
|
101
|
+
blk_v = tl.full((TRITON_BLOCK_SIZE, TRITON_BLOCK_SIZE), 1, dtype=tl.int32)
|
|
102
|
+
|
|
103
|
+
blk_o_idx = ((spa_bat_i * o_b_s) +
|
|
104
|
+
(spa_row_i * o_r_s) +
|
|
105
|
+
(blk_i * o_c_s))
|
|
106
|
+
blk_o_msk = (blk_o_idx < o_b * o_b_s)
|
|
107
|
+
tl.store(o + blk_o_idx, blk_v, mask=blk_o_msk)
|
|
108
|
+
|
|
109
|
+
# if tl.min(blk_x) != 0 or tl.max(blk_x) != 0:
|
|
110
|
+
# blk_o_idx = (pid_bat * o_b_s +
|
|
111
|
+
# (((pid_row * TRITON_BLOCK_SIZE) // sparsity_block_size) * o_r_s +
|
|
112
|
+
# ((pid_col * TRITON_BLOCK_SIZE) // sparsity_block_size) * o_c_s))
|
|
113
|
+
# blk_o_msk = (blk_o_idx < o_b * o_b_s)
|
|
114
|
+
# tl.store(o + blk_o_idx, 1, mask=blk_o_msk)
|
|
@@ -5,13 +5,23 @@ from triton import language as tl
|
|
|
5
5
|
|
|
6
6
|
from blksprs.utils.tools import get_triton_block_size
|
|
7
7
|
from blksprs.utils.validation import validate_triton_block_size, validate_dimensions, validate_device, \
|
|
8
|
-
|
|
8
|
+
validate_contiguous
|
|
9
9
|
|
|
10
10
|
|
|
11
|
-
def
|
|
11
|
+
def build_sparsity_layout(x: Tensor, sparsity_block_size: int, triton_block_size: int = None) -> Tensor:
|
|
12
|
+
"""Builds the sparsity layout of a dense tensor covering its sparse blocks.
|
|
13
|
+
|
|
14
|
+
Args:
|
|
15
|
+
x (Tensor): A block-sparse (or dense) tensor in regular form.
|
|
16
|
+
sparsity_block_size (int): The size of the sparsity blocks.
|
|
17
|
+
triton_block_size (int, optional): The block size to use for the triton kernel (default ``None``).
|
|
18
|
+
|
|
19
|
+
Returns:
|
|
20
|
+
Tensor: The sparsity layout of the input block-sparse (or dense) tensor.
|
|
21
|
+
|
|
22
|
+
"""
|
|
12
23
|
validate_dimensions(x)
|
|
13
24
|
validate_contiguous(x)
|
|
14
|
-
validate_dtype_float(x)
|
|
15
25
|
validate_device(x)
|
|
16
26
|
|
|
17
27
|
output = torch.zeros(x.size(0), x.size(1) // sparsity_block_size, x.size(2) // sparsity_block_size,
|
|
@@ -33,9 +43,9 @@ def create_sparsity_layout(x: Tensor, sparsity_block_size: int, triton_block_siz
|
|
|
33
43
|
|
|
34
44
|
(kernel_sparsity_layout[triton_grid]
|
|
35
45
|
(x,
|
|
36
|
-
x_b, x_b_s,
|
|
46
|
+
x_b, x_b_s, x_r_s, x_c_s,
|
|
37
47
|
output,
|
|
38
|
-
o_b, o_b_s,
|
|
48
|
+
o_b, o_b_s, o_r_s, o_c_s,
|
|
39
49
|
sparsity_block_size,
|
|
40
50
|
triton_block_size))
|
|
41
51
|
|
|
@@ -44,9 +54,9 @@ def create_sparsity_layout(x: Tensor, sparsity_block_size: int, triton_block_siz
|
|
|
44
54
|
|
|
45
55
|
@triton.jit
|
|
46
56
|
def kernel_sparsity_layout(x,
|
|
47
|
-
x_b, x_b_s,
|
|
57
|
+
x_b, x_b_s, x_r_s, x_c_s,
|
|
48
58
|
o,
|
|
49
|
-
o_b, o_b_s,
|
|
59
|
+
o_b, o_b_s, o_r_s, o_c_s,
|
|
50
60
|
sparsity_block_size,
|
|
51
61
|
TRITON_BLOCK_SIZE: tl.constexpr) -> None:
|
|
52
62
|
# Get triton block indices
|
|
@@ -0,0 +1,132 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
import triton
|
|
3
|
+
from torch import Tensor
|
|
4
|
+
from triton import language as tl
|
|
5
|
+
|
|
6
|
+
from blksprs.utils.tools import get_triton_block_size
|
|
7
|
+
from blksprs.utils.validation import validate_contiguous, validate_device, \
|
|
8
|
+
validate_sparsity_block_size, validate_triton_block_size
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
def broadcast_addition(x: Tensor, y: Tensor, sparsity_layout_output: Tensor,
|
|
12
|
+
sparsity_block_size: int, triton_block_size: int = None) -> Tensor:
|
|
13
|
+
"""Performs a broadcast and subsequent addition of two dense tensors x and y. Returns a block-sparse tensor in
|
|
14
|
+
compressed form.
|
|
15
|
+
|
|
16
|
+
Args:
|
|
17
|
+
x (Tensor): A dense input tensor.
|
|
18
|
+
y (Tensor): A dense input tensor.
|
|
19
|
+
sparsity_layout_output (Tensor): The sparsity layout of the output tensor.
|
|
20
|
+
sparsity_block_size (int): The size of the sparsity blocks.
|
|
21
|
+
triton_block_size (int, optional): The block size to use for the triton kernel (default ``None``).
|
|
22
|
+
|
|
23
|
+
Returns:
|
|
24
|
+
Tensor: The result of the operation as a block-sparse tensor in compressed form. Each element o(i, j) of the
|
|
25
|
+
output tensor corresponds to x(i) + y(j).
|
|
26
|
+
|
|
27
|
+
"""
|
|
28
|
+
validate_device(x, y)
|
|
29
|
+
validate_contiguous(x, y)
|
|
30
|
+
if x.size(-1) != y.size(-1):
|
|
31
|
+
raise ValueError("Dimensions of tensors must match")
|
|
32
|
+
validate_sparsity_block_size(sparsity_block_size)
|
|
33
|
+
validate_triton_block_size(triton_block_size, sparsity_block_size)
|
|
34
|
+
|
|
35
|
+
sparsity_lut_o = torch.nonzero(sparsity_layout_output).contiguous()
|
|
36
|
+
|
|
37
|
+
n_sparse_blocks = torch.sum(sparsity_layout_output.to(torch.int)).item()
|
|
38
|
+
|
|
39
|
+
validate_contiguous(sparsity_layout_output, sparsity_lut_o)
|
|
40
|
+
|
|
41
|
+
output = torch.zeros(n_sparse_blocks, sparsity_block_size, sparsity_block_size, device=x.device)
|
|
42
|
+
|
|
43
|
+
x_b, x_c = x.size()
|
|
44
|
+
x_b_s, x_c_s = x.stride()
|
|
45
|
+
y_b, y_c = y.size()
|
|
46
|
+
y_b_s, y_c_s = y.stride()
|
|
47
|
+
o_b, o_r, o_c = output.size()
|
|
48
|
+
o_b_s, o_r_s, o_c_s = output.stride()
|
|
49
|
+
s_lut_o_r, s_lut_o_c = sparsity_lut_o.size()
|
|
50
|
+
s_lut_o_r_s, s_lut_o_c_s = sparsity_lut_o.stride()
|
|
51
|
+
|
|
52
|
+
if triton_block_size is None:
|
|
53
|
+
triton_block_size = get_triton_block_size(sparsity_block_size)
|
|
54
|
+
|
|
55
|
+
triton_grid = lambda meta: [o_b,
|
|
56
|
+
triton.cdiv(o_r, meta["TRITON_BLOCK_SIZE"]),
|
|
57
|
+
triton.cdiv(o_c, meta["TRITON_BLOCK_SIZE"])]
|
|
58
|
+
|
|
59
|
+
(kernel_broadcast_addition[triton_grid]
|
|
60
|
+
(x,
|
|
61
|
+
x_b, x_b_s, x_c_s,
|
|
62
|
+
y,
|
|
63
|
+
y_b, y_b_s, y_c_s,
|
|
64
|
+
output,
|
|
65
|
+
o_b, o_b_s, o_r_s, o_c_s,
|
|
66
|
+
sparsity_lut_o, s_lut_o_r, s_lut_o_r_s, s_lut_o_c_s,
|
|
67
|
+
sparsity_block_size,
|
|
68
|
+
triton_block_size))
|
|
69
|
+
|
|
70
|
+
return output
|
|
71
|
+
|
|
72
|
+
|
|
73
|
+
def broadcast_subtraction(x: Tensor, y: Tensor, sparsity_layout_output: Tensor,
|
|
74
|
+
sparsity_block_size: int, triton_block_size: int = None) -> Tensor:
|
|
75
|
+
"""Wrapper for ``broadcast_addition`` with negated y.
|
|
76
|
+
|
|
77
|
+
"""
|
|
78
|
+
return broadcast_addition(x, torch.neg(y), sparsity_layout_output, sparsity_block_size, triton_block_size)
|
|
79
|
+
|
|
80
|
+
|
|
81
|
+
@triton.jit
|
|
82
|
+
def kernel_broadcast_addition(x,
|
|
83
|
+
x_b, x_b_s, x_c_s,
|
|
84
|
+
y,
|
|
85
|
+
y_b, y_b_s, y_c_s,
|
|
86
|
+
o,
|
|
87
|
+
o_b, o_b_s, o_r_s, o_c_s,
|
|
88
|
+
s_lut_o, s_lut_o_r, s_lut_o_r_s, s_lut_o_c_s,
|
|
89
|
+
sparsity_block_size,
|
|
90
|
+
TRITON_BLOCK_SIZE: tl.constexpr) -> None:
|
|
91
|
+
# Get triton block indices
|
|
92
|
+
pid_blk = tl.program_id(axis=0)
|
|
93
|
+
pid_row = tl.program_id(axis=1)
|
|
94
|
+
pid_col = tl.program_id(axis=2)
|
|
95
|
+
|
|
96
|
+
# Get position of current sparsity block consisting of its batch, row, and column index
|
|
97
|
+
spa_bat_o_idx = (pid_blk * s_lut_o_r_s + 0 * s_lut_o_c_s)
|
|
98
|
+
spa_bat_o_msk = (spa_bat_o_idx < s_lut_o_r * s_lut_o_r_s)
|
|
99
|
+
spa_bat_o = tl.load(s_lut_o + spa_bat_o_idx, mask=spa_bat_o_msk)
|
|
100
|
+
|
|
101
|
+
spa_row_o_idx = (pid_blk * s_lut_o_r_s + 1 * s_lut_o_c_s)
|
|
102
|
+
spa_row_o_msk = (spa_row_o_idx < s_lut_o_r * s_lut_o_r_s)
|
|
103
|
+
spa_row_o = tl.load(s_lut_o + spa_row_o_idx, mask=spa_row_o_msk)
|
|
104
|
+
|
|
105
|
+
spa_col_o_idx = (pid_blk * s_lut_o_r_s + 2 * s_lut_o_c_s)
|
|
106
|
+
spa_col_o_msk = (spa_col_o_idx < s_lut_o_r * s_lut_o_r_s)
|
|
107
|
+
spa_col_o = tl.load(s_lut_o + spa_col_o_idx, mask=spa_col_o_msk)
|
|
108
|
+
|
|
109
|
+
# Load x block
|
|
110
|
+
blk_x_idx = (spa_bat_o * x_b_s +
|
|
111
|
+
((spa_row_o * sparsity_block_size + pid_row * TRITON_BLOCK_SIZE +
|
|
112
|
+
tl.arange(0, TRITON_BLOCK_SIZE)) * x_c_s)[None, :])
|
|
113
|
+
blk_x_msk = (blk_x_idx < x_b * x_b_s)
|
|
114
|
+
blk_x = tl.load(x + blk_x_idx, mask=blk_x_msk)
|
|
115
|
+
|
|
116
|
+
# Load y block
|
|
117
|
+
blk_y_idx = (spa_bat_o * y_b_s +
|
|
118
|
+
((spa_col_o * sparsity_block_size + pid_col * TRITON_BLOCK_SIZE +
|
|
119
|
+
tl.arange(0, TRITON_BLOCK_SIZE)) * y_c_s)[None, :])
|
|
120
|
+
blk_y_msk = (blk_y_idx < y_b * y_b_s)
|
|
121
|
+
blk_y = tl.load(y + blk_y_idx, mask=blk_y_msk)
|
|
122
|
+
|
|
123
|
+
# Compute sum
|
|
124
|
+
blk_x, blk_y = tl.broadcast(tl.trans(blk_x), blk_y)
|
|
125
|
+
buf = blk_x + blk_y
|
|
126
|
+
|
|
127
|
+
# Store result
|
|
128
|
+
blk_o_idx = ((pid_blk * o_b_s) +
|
|
129
|
+
((pid_row * TRITON_BLOCK_SIZE + tl.arange(0, TRITON_BLOCK_SIZE)) * o_r_s)[:, None] +
|
|
130
|
+
((pid_col * TRITON_BLOCK_SIZE + tl.arange(0, TRITON_BLOCK_SIZE)) * o_c_s)[None, :])
|
|
131
|
+
blk_o_msk = (blk_o_idx < o_b * o_b_s)
|
|
132
|
+
tl.store(o + blk_o_idx, buf, mask=blk_o_msk)
|
|
@@ -4,21 +4,33 @@ from torch import Tensor
|
|
|
4
4
|
from triton import language as tl
|
|
5
5
|
|
|
6
6
|
from blksprs.utils.tools import get_triton_block_size
|
|
7
|
-
from blksprs.utils.validation import validate_contiguous, validate_dimensions,
|
|
7
|
+
from blksprs.utils.validation import validate_contiguous, validate_dimensions, validate_device, \
|
|
8
|
+
validate_sparsity, validate_sparsity_block_size, validate_triton_block_size
|
|
8
9
|
|
|
9
10
|
|
|
10
11
|
def to_dense(x: Tensor, sparsity_layout: Tensor, sparsity_block_size: int, fill_value: float = 0,
|
|
11
12
|
triton_block_size: int = None) -> Tensor:
|
|
12
|
-
"""Converts a
|
|
13
|
+
"""Converts a block-sparse tensor in compressed form to a block-sparse tensor in regular form based on the given
|
|
14
|
+
sparsity layout.
|
|
13
15
|
|
|
14
|
-
|
|
15
|
-
|
|
16
|
+
Args:
|
|
17
|
+
x (Tensor): A block-sparse tensor in compressed form.
|
|
18
|
+
sparsity_layout (Tensor): The sparsity layout of the block-sparse tensor.
|
|
19
|
+
sparsity_block_size (int): The size of the sparsity blocks.
|
|
20
|
+
fill_value (float): The value to fill the resulting dense tensor with where the block-sparse tensor is not
|
|
21
|
+
present (default ``0``).
|
|
22
|
+
triton_block_size (int): The block size to use for the triton kernel (default ``None``).
|
|
23
|
+
|
|
24
|
+
Returns:
|
|
25
|
+
Tensor: The block-sparse tensor converted to regular form.
|
|
16
26
|
|
|
17
27
|
"""
|
|
18
28
|
validate_dimensions(x)
|
|
19
29
|
validate_contiguous(x, sparsity_layout)
|
|
20
|
-
validate_dtype_float(x)
|
|
21
30
|
validate_device(x)
|
|
31
|
+
validate_sparsity(sparsity_block_size, (x, sparsity_layout))
|
|
32
|
+
validate_sparsity_block_size(sparsity_block_size, x)
|
|
33
|
+
validate_triton_block_size(triton_block_size, sparsity_block_size)
|
|
22
34
|
|
|
23
35
|
sparsity_layout_flat = sparsity_layout.reshape(-1)
|
|
24
36
|
sparsity_reverse_lut = ((torch.cumsum(sparsity_layout_flat, dim=-1) - 1) *
|
|
@@ -68,7 +80,7 @@ class _BlocksparseToDense(torch.autograd.Function):
|
|
|
68
80
|
sparsity_block_size,
|
|
69
81
|
triton_block_size))
|
|
70
82
|
|
|
71
|
-
ctx.sparsity_layout
|
|
83
|
+
ctx.save_for_backward(sparsity_layout)
|
|
72
84
|
ctx.sparsity_block_size = sparsity_block_size
|
|
73
85
|
ctx.triton_block_size = triton_block_size
|
|
74
86
|
|
|
@@ -76,11 +88,12 @@ class _BlocksparseToDense(torch.autograd.Function):
|
|
|
76
88
|
|
|
77
89
|
@staticmethod
|
|
78
90
|
def backward(ctx, grad_output):
|
|
79
|
-
sparsity_layout = ctx.
|
|
91
|
+
sparsity_layout = ctx.saved_tensors[0]
|
|
80
92
|
sparsity_block_size = ctx.sparsity_block_size
|
|
81
93
|
triton_block_size = ctx.triton_block_size
|
|
82
94
|
|
|
83
|
-
return to_sparse(grad_output, sparsity_layout, sparsity_block_size,
|
|
95
|
+
return to_sparse(grad_output, sparsity_layout, sparsity_block_size,
|
|
96
|
+
triton_block_size), None, None, None, None, None
|
|
84
97
|
|
|
85
98
|
@staticmethod
|
|
86
99
|
@triton.jit
|
|
@@ -124,18 +137,29 @@ class _BlocksparseToDense(torch.autograd.Function):
|
|
|
124
137
|
|
|
125
138
|
|
|
126
139
|
def to_sparse(x: Tensor, sparsity_layout: Tensor, sparsity_block_size: int, triton_block_size: int = None) -> Tensor:
|
|
127
|
-
"""Converts a
|
|
140
|
+
"""Converts a block-sparse tensor in regular form to a block-sparse tensor in compressed form based on the given
|
|
141
|
+
sparsity layout.
|
|
142
|
+
|
|
143
|
+
Args:
|
|
144
|
+
x (Tensor): A block-sparse tensor in regular form.
|
|
145
|
+
sparsity_layout (Tensor): The sparsity layout of the block-sparse tensor.
|
|
146
|
+
sparsity_block_size (int): The size of the sparsity blocks.
|
|
147
|
+
triton_block_size (int): The block size to use for the triton kernel (default ``None``).
|
|
148
|
+
|
|
149
|
+
Returns:
|
|
150
|
+
Tensor: The block-sparse tensor converted to compressed form.
|
|
128
151
|
|
|
129
152
|
"""
|
|
130
153
|
validate_dimensions(x)
|
|
131
|
-
validate_contiguous(x
|
|
132
|
-
validate_dtype_float(x)
|
|
154
|
+
validate_contiguous(x)
|
|
133
155
|
validate_device(x)
|
|
156
|
+
validate_sparsity_block_size(sparsity_block_size, x)
|
|
157
|
+
validate_triton_block_size(triton_block_size, sparsity_block_size)
|
|
134
158
|
|
|
135
159
|
sparsity_lut = torch.nonzero(sparsity_layout).contiguous()
|
|
136
160
|
n_sparse_blocks = torch.sum(sparsity_layout.to(torch.int)).item()
|
|
137
161
|
|
|
138
|
-
validate_contiguous(sparsity_lut)
|
|
162
|
+
validate_contiguous(sparsity_layout, sparsity_lut)
|
|
139
163
|
|
|
140
164
|
return _BlocksparseToSparse.apply(x,
|
|
141
165
|
sparsity_layout, sparsity_lut,
|
|
@@ -149,7 +173,8 @@ class _BlocksparseToSparse(torch.autograd.Function):
|
|
|
149
173
|
def forward(ctx, x: Tensor,
|
|
150
174
|
sparsity_layout: Tensor, sparsity_lut: Tensor,
|
|
151
175
|
sparsity_block_size: int, n_sparse_blocks: int, triton_block_size: int) -> Tensor:
|
|
152
|
-
output = torch.empty(size=(n_sparse_blocks, sparsity_block_size, sparsity_block_size),
|
|
176
|
+
output = torch.empty(size=(n_sparse_blocks, sparsity_block_size, sparsity_block_size), dtype=x.dtype,
|
|
177
|
+
device=x.device)
|
|
153
178
|
|
|
154
179
|
x_b, x_r, x_c = x.size()
|
|
155
180
|
x_b_s, x_r_s, x_c_s = x.stride()
|
|
@@ -172,7 +197,7 @@ class _BlocksparseToSparse(torch.autograd.Function):
|
|
|
172
197
|
sparsity_block_size,
|
|
173
198
|
triton_block_size))
|
|
174
199
|
|
|
175
|
-
ctx.sparsity_layout
|
|
200
|
+
ctx.save_for_backward(sparsity_layout)
|
|
176
201
|
ctx.sparsity_block_size = sparsity_block_size
|
|
177
202
|
ctx.triton_block_size = triton_block_size
|
|
178
203
|
|
|
@@ -180,7 +205,7 @@ class _BlocksparseToSparse(torch.autograd.Function):
|
|
|
180
205
|
|
|
181
206
|
@staticmethod
|
|
182
207
|
def backward(ctx, grad_output):
|
|
183
|
-
sparsity_layout = ctx.
|
|
208
|
+
sparsity_layout = ctx.saved_tensors[0]
|
|
184
209
|
sparsity_block_size = ctx.sparsity_block_size
|
|
185
210
|
triton_block_size = ctx.triton_block_size
|
|
186
211
|
|