biopipen 0.34.1__tar.gz → 0.34.3__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of biopipen might be problematic. Click here for more details.

Files changed (292) hide show
  1. {biopipen-0.34.1 → biopipen-0.34.3}/PKG-INFO +1 -1
  2. biopipen-0.34.3/biopipen/__init__.py +1 -0
  3. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/ns/scrna.py +259 -34
  4. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/ns/scrna_metabolic_landscape.py +1 -1
  5. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/ns/tcr.py +9 -4
  6. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/reports/scrna_metabolic_landscape/MetabolicFeatures.svelte +12 -3
  7. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/reports/scrna_metabolic_landscape/MetabolicPathwayActivity.svelte +12 -3
  8. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/reports/scrna_metabolic_landscape/MetabolicPathwayHeterogeneity.svelte +12 -3
  9. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/scrna/CellTypeAnnotation-celltypist.R +3 -10
  10. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/scrna/MarkersFinder.R +34 -28
  11. biopipen-0.34.3/biopipen/scripts/scrna/PseudoBulkDEG.R +592 -0
  12. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/scrna/ScFGSEA.R +35 -35
  13. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/scrna/SeuratClusterStats-clustree.R +16 -0
  14. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/scrna/SeuratClusterStats-dimplots.R +1 -1
  15. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/scrna/SeuratClusterStats-features.R +29 -6
  16. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/scrna/SeuratClusterStats-stats.R +29 -1
  17. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/scrna/SeuratClusterStats.R +1 -0
  18. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/scrna/TopExpressingGenes.R +6 -6
  19. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/scrna/celltypist-wrapper.py +2 -0
  20. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/scrna_metabolic_landscape/MetabolicFeatures.R +9 -3
  21. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/scrna_metabolic_landscape/MetabolicPathwayActivity.R +2 -2
  22. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/scrna_metabolic_landscape/MetabolicPathwayHeterogeneity.R +1 -0
  23. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/tcr/GIANA/GIANA4.py +2 -4
  24. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/tcr/ScRepCombiningExpression.R +3 -2
  25. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/tcr/ScRepLoading.R +7 -2
  26. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/tcr/TCRClustering.R +9 -23
  27. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/tcr/TESSA.R +4 -2
  28. {biopipen-0.34.1 → biopipen-0.34.3}/pyproject.toml +1 -1
  29. {biopipen-0.34.1 → biopipen-0.34.3}/setup.py +1 -1
  30. biopipen-0.34.1/biopipen/__init__.py +0 -1
  31. biopipen-0.34.1/biopipen/reports/scrna/TopExpressingGenes.svelte +0 -17
  32. biopipen-0.34.1/biopipen/scripts/scrna/SCP-plot.R +0 -15202
  33. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/core/__init__.py +0 -0
  34. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/core/config.py +0 -0
  35. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/core/config.toml +0 -0
  36. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/core/defaults.py +0 -0
  37. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/core/filters.py +0 -0
  38. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/core/proc.py +0 -0
  39. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/core/testing.py +0 -0
  40. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/ns/__init__.py +0 -0
  41. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/ns/bam.py +0 -0
  42. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/ns/bed.py +0 -0
  43. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/ns/cellranger.py +0 -0
  44. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/ns/cellranger_pipeline.py +0 -0
  45. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/ns/cnv.py +0 -0
  46. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/ns/cnvkit.py +0 -0
  47. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/ns/cnvkit_pipeline.py +0 -0
  48. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/ns/delim.py +0 -0
  49. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/ns/gene.py +0 -0
  50. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/ns/gsea.py +0 -0
  51. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/ns/misc.py +0 -0
  52. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/ns/plot.py +0 -0
  53. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/ns/protein.py +0 -0
  54. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/ns/regulatory.py +0 -0
  55. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/ns/rnaseq.py +0 -0
  56. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/ns/snp.py +0 -0
  57. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/ns/stats.py +0 -0
  58. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/ns/tcgamaf.py +0 -0
  59. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/ns/vcf.py +0 -0
  60. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/ns/web.py +0 -0
  61. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/reports/bam/CNAClinic.svelte +0 -0
  62. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/reports/bam/CNVpytor.svelte +0 -0
  63. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/reports/bam/ControlFREEC.svelte +0 -0
  64. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/reports/cellranger/CellRangerCount.svelte +0 -0
  65. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/reports/cellranger/CellRangerSummary.svelte +0 -0
  66. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/reports/cellranger/CellRangerVdj.svelte +0 -0
  67. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/reports/cnv/AneuploidyScore.svelte +0 -0
  68. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/reports/cnv/AneuploidyScoreSummary.svelte +0 -0
  69. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/reports/cnv/TMADScoreSummary.svelte +0 -0
  70. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/reports/cnvkit/CNVkitDiagram.svelte +0 -0
  71. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/reports/cnvkit/CNVkitHeatmap.svelte +0 -0
  72. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/reports/cnvkit/CNVkitScatter.svelte +0 -0
  73. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/reports/common.svelte +0 -0
  74. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/reports/gsea/FGSEA.svelte +0 -0
  75. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/reports/gsea/GSEA.svelte +0 -0
  76. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/reports/protein/ProdigySummary.svelte +0 -0
  77. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/reports/scrna/CellsDistribution.svelte +0 -0
  78. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/reports/scrna/DimPlots.svelte +0 -0
  79. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/reports/scrna/MarkersFinder.svelte +0 -0
  80. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/reports/scrna/MetaMarkers.svelte +0 -0
  81. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/reports/scrna/RadarPlots.svelte +0 -0
  82. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/reports/snp/PlinkCallRate.svelte +0 -0
  83. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/reports/snp/PlinkFreq.svelte +0 -0
  84. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/reports/snp/PlinkHWE.svelte +0 -0
  85. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/reports/snp/PlinkHet.svelte +0 -0
  86. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/reports/snp/PlinkIBD.svelte +0 -0
  87. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/reports/tcr/CDR3AAPhyschem.svelte +0 -0
  88. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/reports/tcr/ClonalStats.svelte +0 -0
  89. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/reports/tcr/CloneResidency.svelte +0 -0
  90. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/reports/tcr/Immunarch.svelte +0 -0
  91. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/reports/tcr/SampleDiversity.svelte +0 -0
  92. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/reports/tcr/TCRClusterStats.svelte +0 -0
  93. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/reports/tcr/TESSA.svelte +0 -0
  94. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/reports/tcr/VJUsage.svelte +0 -0
  95. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/reports/utils/misc.liq +0 -0
  96. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/reports/vcf/TruvariBenchSummary.svelte +0 -0
  97. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/reports/vcf/TruvariConsistency.svelte +0 -0
  98. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/bam/BamMerge.py +0 -0
  99. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/bam/BamSampling.py +0 -0
  100. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/bam/BamSort.py +0 -0
  101. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/bam/BamSplitChroms.py +0 -0
  102. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/bam/BamSubsetByBed.py +0 -0
  103. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/bam/CNAClinic.R +0 -0
  104. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/bam/CNVpytor.py +0 -0
  105. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/bam/ControlFREEC.py +0 -0
  106. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/bam/SamtoolsView.py +0 -0
  107. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/bed/Bed2Vcf.py +0 -0
  108. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/bed/BedConsensus.py +0 -0
  109. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/bed/BedLiftOver.sh +0 -0
  110. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/bed/BedtoolsIntersect.py +0 -0
  111. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/bed/BedtoolsMakeWindows.py +0 -0
  112. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/bed/BedtoolsMerge.py +0 -0
  113. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/cellranger/CellRangerCount.py +0 -0
  114. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/cellranger/CellRangerSummary.R +0 -0
  115. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/cellranger/CellRangerVdj.py +0 -0
  116. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/cnv/AneuploidyScore.R +0 -0
  117. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/cnv/AneuploidyScoreSummary.R +0 -0
  118. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/cnv/TMADScore.R +0 -0
  119. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/cnv/TMADScoreSummary.R +0 -0
  120. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/cnvkit/CNVkitAccess.py +0 -0
  121. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/cnvkit/CNVkitAutobin.py +0 -0
  122. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/cnvkit/CNVkitBatch.py +0 -0
  123. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/cnvkit/CNVkitCall.py +0 -0
  124. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/cnvkit/CNVkitCoverage.py +0 -0
  125. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/cnvkit/CNVkitDiagram.py +0 -0
  126. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/cnvkit/CNVkitFix.py +0 -0
  127. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/cnvkit/CNVkitGuessBaits.py +0 -0
  128. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/cnvkit/CNVkitHeatmap.py +0 -0
  129. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/cnvkit/CNVkitReference.py +0 -0
  130. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/cnvkit/CNVkitScatter.py +0 -0
  131. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/cnvkit/CNVkitSegment.py +0 -0
  132. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/cnvkit/guess_baits.py +0 -0
  133. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/delim/RowsBinder.R +0 -0
  134. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/delim/SampleInfo.R +0 -0
  135. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/gene/GeneNameConversion.R +0 -0
  136. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/gene/GenePromoters.R +0 -0
  137. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/gsea/Enrichr.R +0 -0
  138. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/gsea/FGSEA.R +0 -0
  139. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/gsea/GSEA.R +0 -0
  140. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/gsea/PreRank.R +0 -0
  141. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/misc/Config2File.py +0 -0
  142. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/misc/Plot.R +0 -0
  143. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/misc/Shell.sh +0 -0
  144. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/misc/Str2File.py +0 -0
  145. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/plot/Heatmap.R +0 -0
  146. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/plot/Manhattan.R +0 -0
  147. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/plot/QQPlot.R +0 -0
  148. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/plot/ROC.R +0 -0
  149. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/plot/Scatter.R +0 -0
  150. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/plot/VennDiagram.R +0 -0
  151. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/protein/MMCIF2PDB.py +0 -0
  152. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/protein/PDB2Fasta.py +0 -0
  153. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/protein/Prodigy.py +0 -0
  154. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/protein/ProdigySummary.R +0 -0
  155. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/protein/RMSD.py +0 -0
  156. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/regulatory/MotifAffinityTest.R +0 -0
  157. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/regulatory/MotifAffinityTest_AtSNP.R +0 -0
  158. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/regulatory/MotifAffinityTest_MotifBreakR.R +0 -0
  159. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/regulatory/MotifScan.py +0 -0
  160. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/regulatory/VariantMotifPlot.R +0 -0
  161. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/regulatory/motifs-common.R +0 -0
  162. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/rnaseq/Simulation-ESCO.R +0 -0
  163. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/rnaseq/Simulation-RUVcorr.R +0 -0
  164. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/rnaseq/Simulation.R +0 -0
  165. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/rnaseq/UnitConversion.R +0 -0
  166. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/scrna/AnnData2Seurat.R +0 -0
  167. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/scrna/CCPlotR-patch.R +0 -0
  168. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/scrna/CellCellCommunication.py +0 -0
  169. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/scrna/CellCellCommunicationPlots.R +0 -0
  170. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/scrna/CellTypeAnnotation-direct.R +0 -0
  171. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/scrna/CellTypeAnnotation-hitype.R +0 -0
  172. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/scrna/CellTypeAnnotation-sccatch.R +0 -0
  173. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/scrna/CellTypeAnnotation-sctype.R +0 -0
  174. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/scrna/CellTypeAnnotation.R +0 -0
  175. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/scrna/CellsDistribution.R +0 -0
  176. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/scrna/DimPlots.R +0 -0
  177. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/scrna/ExprImputation-alra.R +0 -0
  178. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/scrna/ExprImputation-rmagic.R +0 -0
  179. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/scrna/ExprImputation-scimpute.R +0 -0
  180. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/scrna/ExprImputation.R +0 -0
  181. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/scrna/LoomTo10X.R +0 -0
  182. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/scrna/MetaMarkers.R +0 -0
  183. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/scrna/ModuleScoreCalculator.R +0 -0
  184. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/scrna/RadarPlots.R +0 -0
  185. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/scrna/SCImpute.R +0 -0
  186. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/scrna/ScSimulation.R +0 -0
  187. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/scrna/ScVelo.py +0 -0
  188. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/scrna/Seurat2AnnData.R +0 -0
  189. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/scrna/SeuratClusterStats-ngenes.R +0 -0
  190. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/scrna/SeuratClustering.R +0 -0
  191. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/scrna/SeuratFilter.R +0 -0
  192. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/scrna/SeuratLoading.R +0 -0
  193. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/scrna/SeuratMap2Ref.R +0 -0
  194. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/scrna/SeuratMetadataMutater.R +0 -0
  195. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/scrna/SeuratPreparing.R +0 -0
  196. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/scrna/SeuratSplit.R +0 -0
  197. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/scrna/SeuratSubClustering.R +0 -0
  198. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/scrna/SeuratSubset.R +0 -0
  199. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/scrna/SeuratTo10X.R +0 -0
  200. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/scrna/Slingshot.R +0 -0
  201. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/scrna/Subset10X.R +0 -0
  202. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/scrna/sctype.R +0 -0
  203. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/scrna/seurat_anndata_conversion.py +0 -0
  204. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/snp/MatrixEQTL.R +0 -0
  205. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/snp/Plink2GTMat.py +0 -0
  206. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/snp/PlinkCallRate.R +0 -0
  207. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/snp/PlinkFilter.py +0 -0
  208. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/snp/PlinkFreq.R +0 -0
  209. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/snp/PlinkFromVcf.py +0 -0
  210. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/snp/PlinkHWE.R +0 -0
  211. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/snp/PlinkHet.R +0 -0
  212. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/snp/PlinkIBD.R +0 -0
  213. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/snp/PlinkSimulation.py +0 -0
  214. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/snp/PlinkUpdateName.py +0 -0
  215. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/stats/ChowTest.R +0 -0
  216. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/stats/DiffCoexpr.R +0 -0
  217. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/stats/LiquidAssoc.R +0 -0
  218. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/stats/Mediation.R +0 -0
  219. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/stats/MetaPvalue.R +0 -0
  220. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/stats/MetaPvalue1.R +0 -0
  221. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/tcgamaf/Maf2Vcf.py +0 -0
  222. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/tcgamaf/MafAddChr.py +0 -0
  223. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/tcgamaf/maf2vcf.pl +0 -0
  224. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/tcr/Attach2Seurat.R +0 -0
  225. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/tcr/CDR3AAPhyschem.R +0 -0
  226. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/tcr/ClonalStats.R +0 -0
  227. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/tcr/CloneResidency.R +0 -0
  228. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/tcr/CloneSizeQQPlot.R +0 -0
  229. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/tcr/GIANA/GIANA.py +0 -0
  230. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/tcr/GIANA/Imgt_Human_TRBV.fasta +0 -0
  231. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/tcr/GIANA/query.py +0 -0
  232. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/tcr/Immunarch-basic.R +0 -0
  233. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/tcr/Immunarch-clonality.R +0 -0
  234. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/tcr/Immunarch-diversity.R +0 -0
  235. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/tcr/Immunarch-geneusage.R +0 -0
  236. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/tcr/Immunarch-kmer.R +0 -0
  237. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/tcr/Immunarch-overlap.R +0 -0
  238. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/tcr/Immunarch-spectratyping.R +0 -0
  239. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/tcr/Immunarch-tracking.R +0 -0
  240. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/tcr/Immunarch-vjjunc.R +0 -0
  241. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/tcr/Immunarch.R +0 -0
  242. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/tcr/Immunarch2VDJtools.R +0 -0
  243. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/tcr/ImmunarchFilter.R +0 -0
  244. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/tcr/ImmunarchLoading.R +0 -0
  245. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/tcr/ImmunarchSplitIdents.R +0 -0
  246. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/tcr/SampleDiversity.R +0 -0
  247. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/tcr/TCRClusterStats.R +0 -0
  248. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/tcr/TCRDock.py +0 -0
  249. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/tcr/TESSA_source/Atchley_factors.csv +0 -0
  250. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/tcr/TESSA_source/BriseisEncoder.py +0 -0
  251. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/tcr/TESSA_source/MCMC_control.R +0 -0
  252. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/tcr/TESSA_source/TrainedEncoder.h5 +0 -0
  253. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/tcr/TESSA_source/fixed_b.csv +0 -0
  254. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/tcr/TESSA_source/initialization.R +0 -0
  255. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/tcr/TESSA_source/post_analysis.R +0 -0
  256. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/tcr/TESSA_source/real_data.R +0 -0
  257. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/tcr/TESSA_source/update.R +0 -0
  258. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/tcr/TESSA_source/utility.R +0 -0
  259. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/tcr/VJUsage.R +0 -0
  260. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/tcr/immunarch-patched.R +0 -0
  261. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/tcr/vdjtools-patch.sh +0 -0
  262. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/vcf/BcftoolsAnnotate.py +0 -0
  263. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/vcf/BcftoolsFilter.py +0 -0
  264. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/vcf/BcftoolsMerge.py +0 -0
  265. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/vcf/BcftoolsSort.py +0 -0
  266. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/vcf/BcftoolsView.py +0 -0
  267. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/vcf/TruvariBench.sh +0 -0
  268. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/vcf/TruvariBenchSummary.R +0 -0
  269. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/vcf/TruvariConsistency.R +0 -0
  270. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/vcf/Vcf2Bed.py +0 -0
  271. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/vcf/VcfAnno.py +0 -0
  272. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/vcf/VcfDownSample.sh +0 -0
  273. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/vcf/VcfFilter.py +0 -0
  274. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/vcf/VcfFix.py +0 -0
  275. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/vcf/VcfFix_utils.py +0 -0
  276. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/vcf/VcfIndex.py +0 -0
  277. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/vcf/VcfIntersect.py +0 -0
  278. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/vcf/VcfLiftOver.sh +0 -0
  279. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/vcf/VcfSplitSamples.py +0 -0
  280. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/vcf/bcftools_utils.py +0 -0
  281. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/web/Download.py +0 -0
  282. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/web/DownloadList.py +0 -0
  283. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/web/GCloudStorageDownloadBucket.py +0 -0
  284. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/web/GCloudStorageDownloadFile.py +0 -0
  285. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/scripts/web/gcloud_common.py +0 -0
  286. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/utils/__init__.py +0 -0
  287. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/utils/common_docstrs.py +0 -0
  288. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/utils/gene.py +0 -0
  289. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/utils/misc.py +0 -0
  290. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/utils/reference.py +0 -0
  291. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/utils/reporter.py +0 -0
  292. {biopipen-0.34.1 → biopipen-0.34.3}/biopipen/utils/vcf.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: biopipen
3
- Version: 0.34.1
3
+ Version: 0.34.3
4
4
  Summary: Bioinformatics processes/pipelines that can be run from `pipen run`
5
5
  License: MIT
6
6
  Author: pwwang
@@ -0,0 +1 @@
1
+ __version__ = "0.34.3"
@@ -197,8 +197,8 @@ class SeuratPreparing(Proc):
197
197
 
198
198
  SCTransform (ns): Arguments for [`SCTransform()`](https://satijalab.org/seurat/reference/sctransform).
199
199
  `object` is specified internally, and `-` in the key will be replaced with `.`.
200
- - `return-only-var-genes`: Whether to return only variable genes.
201
- - `min_cells`: The minimum number of cells that a gene must be expressed in to be kept.
200
+ - return-only-var-genes: Whether to return only variable genes.
201
+ - min_cells: The minimum number of cells that a gene must be expressed in to be kept.
202
202
  A hidden argument of `SCTransform` to filter genes.
203
203
  If you try to keep all genes in the `RNA` assay, you can set `min_cells` to `0` and
204
204
  `return-only-var-genes` to `False`.
@@ -491,7 +491,7 @@ class SeuratClusterStats(Proc):
491
491
 
492
492
  ```toml
493
493
  [SeuratClusterStats.envs.stats]
494
- nCells_Sample = { group-by = "Sample" }
494
+ nCells_Sample = { group_by = "Sample" }
495
495
  ```
496
496
 
497
497
  ![nCells_Sample](https://pwwang.github.io/immunopipe/latest/processes/images/SeuratClusterStats_nCells_Sample.png){: width="80%" }
@@ -515,8 +515,6 @@ class SeuratClusterStats(Proc):
515
515
  ```toml
516
516
  [SeuratClusterStats.envs.dimplots.Idents]
517
517
  label = true
518
- label-box = true
519
- repel = true
520
518
  ```
521
519
 
522
520
  ![dimplots](https://pwwang.github.io/immunopipe/latest/processes/images/SeuratClusterStats_dimplots.png){: width="80%" }
@@ -533,6 +531,8 @@ class SeuratClusterStats(Proc):
533
531
  Envs:
534
532
  mutaters (type=json): The mutaters to mutate the metadata to subset the cells.
535
533
  The mutaters will be applied in the order specified.
534
+ You can also use the clone selectors to select the TCR clones/clusters.
535
+ See <https://pwwang.github.io/scplotter/reference/clone_selectors.html>.
536
536
  cache (type=auto): Whether to cache the plots.
537
537
  Currently only plots for features are supported, since creating the those
538
538
  plots can be time consuming.
@@ -566,6 +566,7 @@ class SeuratClusterStats(Proc):
566
566
  - res (type=int): The resolution of the plots.
567
567
  - height (type=int): The height of the plots.
568
568
  - width (type=int): The width of the plots.
569
+ - descr: The description of the plot, showing in the report.
569
570
  - more_formats (type=list): The formats to save the plots other than `png`.
570
571
  - save_code (flag): Whether to save the code to reproduce the plot.
571
572
  - save_data (flag): Whether to save the data used to generate the plot.
@@ -657,6 +658,7 @@ class SeuratClusterStats(Proc):
657
658
  "clustrees": {},
658
659
  "stats_defaults": {
659
660
  "subset": None,
661
+ "descr": None,
660
662
  "devpars": {"res": 100},
661
663
  "more_formats": [],
662
664
  "save_code": False,
@@ -665,10 +667,12 @@ class SeuratClusterStats(Proc):
665
667
  "stats": {
666
668
  "Number of cells in each cluster (Bar Chart)": {
667
669
  "plot_type": "bar",
670
+ "x_text_angle": 90,
668
671
  },
669
672
  "Number of cells in each cluster by Sample (Bar Chart)": {
670
673
  "plot_type": "bar",
671
674
  "group_by": "Sample",
675
+ "x_text_angle": 90,
672
676
  },
673
677
  },
674
678
  "ngenes_defaults": {
@@ -700,7 +704,6 @@ class SeuratClusterStats(Proc):
700
704
  "dimplots": {
701
705
  "Dimensional reduction plot": {
702
706
  "label": True,
703
- "label_insitu": True,
704
707
  },
705
708
  },
706
709
  }
@@ -1007,11 +1010,11 @@ class DimPlots(Proc):
1007
1010
  class MarkersFinder(Proc):
1008
1011
  """Find markers between different groups of cells
1009
1012
 
1010
- When only `group-by` is specified as `"seurat_clusters"` in
1013
+ When only `group_by` is specified as `"seurat_clusters"` in
1011
1014
  `envs.cases`, the markers will be found for all the clusters.
1012
1015
 
1013
1016
  You can also find the differentially expressed genes between
1014
- any two groups of cells by setting `group-by` to a different
1017
+ any two groups of cells by setting `group_by` to a different
1015
1018
  column name in metadata. Follow `envs.cases` for more details.
1016
1019
 
1017
1020
  Input:
@@ -1027,17 +1030,19 @@ class MarkersFinder(Proc):
1027
1030
  ncores (type=int): Number of cores to use for parallel computing for some `Seurat` procedures.
1028
1031
  * Used in `future::plan(strategy = "multicore", workers = <ncores>)` to parallelize some Seurat procedures.
1029
1032
  * See also: <https://satijalab.org/seurat/articles/future_vignette.html>
1030
- mutaters (type=json): The mutaters to mutate the metadata
1031
- group-by: The column name in metadata to group the cells.
1032
- If only `group-by` is specified, and `ident-1` and `ident-2` are
1033
+ mutaters (type=json): The mutaters to mutate the metadata.
1034
+ You can also use the clone selectors to select the TCR clones/clusters.
1035
+ See <https://pwwang.github.io/scplotter/reference/clone_selectors.html>.
1036
+ group_by: The column name in metadata to group the cells.
1037
+ If only `group_by` is specified, and `ident-1` and `ident-2` are
1033
1038
  not specified, markers will be found for all groups in this column
1034
1039
  in the manner of "group vs rest" comparison.
1035
1040
  `NA` group will be ignored.
1036
1041
  If `None`, `Seurat::Idents(srtobj)` will be used, which is usually
1037
1042
  `"seurat_clusters"` after unsupervised clustering.
1038
- ident-1: The first group of cells to compare
1039
- When this is empty, the comparisons will be expanded to each group v.s. the rest of the cells in `group-by`.
1040
- ident-2: The second group of cells to compare
1043
+ ident_1: The first group of cells to compare
1044
+ When this is empty, the comparisons will be expanded to each group v.s. the rest of the cells in `group_by`.
1045
+ ident_2: The second group of cells to compare
1041
1046
  If not provided, the rest of the cells are used for `ident-2`.
1042
1047
  each: The column name in metadata to separate the cells into different
1043
1048
  cases.
@@ -1164,9 +1169,9 @@ class MarkersFinder(Proc):
1164
1169
  envs = {
1165
1170
  "ncores": config.misc.ncores,
1166
1171
  "mutaters": {},
1167
- "group-by": None,
1168
- "ident-1": None,
1169
- "ident-2": None,
1172
+ "group_by": None,
1173
+ "ident_1": None,
1174
+ "ident_2": None,
1170
1175
  "each": None,
1171
1176
  "dbs": ["KEGG_2021_Human", "MSigDB_Hallmark_2020"],
1172
1177
  "sigmarkers": "p_val_adj < 0.05",
@@ -1239,13 +1244,15 @@ class TopExpressingGenes(Proc):
1239
1244
  outdir: The output directory for the tables and plots
1240
1245
 
1241
1246
  Envs:
1242
- mutaters (type=json): The mutaters to mutate the metadata
1247
+ mutaters (type=json): The mutaters to mutate the metadata.
1248
+ You can also use the clone selectors to select the TCR clones/clusters.
1249
+ See <https://pwwang.github.io/scplotter/reference/clone_selectors.html>.
1243
1250
  ident: The group of cells to find the top expressing genes.
1244
- The cells will be selected by the `group-by` column with this
1251
+ The cells will be selected by the `group_by` column with this
1245
1252
  `ident` value in metadata.
1246
1253
  If not provided, the top expressing genes will be found for all
1247
- groups of cells in the `group-by` column.
1248
- group-by: The column name in metadata to group the cells.
1254
+ groups of cells in the `group_by` column.
1255
+ group_by: The column name in metadata to group the cells.
1249
1256
  each: The column name in metadata to separate the cells into different
1250
1257
  cases.
1251
1258
  dbs (list): The dbs to do enrichment analysis for significant
@@ -1288,7 +1295,7 @@ class TopExpressingGenes(Proc):
1288
1295
  envs = {
1289
1296
  "mutaters": {},
1290
1297
  "ident": None,
1291
- "group-by": None,
1298
+ "group_by": None,
1292
1299
  "each": None,
1293
1300
  "dbs": ["KEGG_2021_Human", "MSigDB_Hallmark_2020"],
1294
1301
  "n": 250,
@@ -1305,7 +1312,7 @@ class TopExpressingGenes(Proc):
1305
1312
  "cases": {},
1306
1313
  }
1307
1314
  plugin_opts = {
1308
- "report": "file://../reports/scrna/TopExpressingGenes.svelte",
1315
+ "report": "file://../reports/common.svelte",
1309
1316
  "report_paging": 8,
1310
1317
  }
1311
1318
 
@@ -1608,10 +1615,12 @@ class ScFGSEA(Proc):
1608
1615
  Passed to `nproc` of `fgseaMultilevel()`.
1609
1616
  mutaters (type=json): The mutaters to mutate the metadata.
1610
1617
  The key-value pairs will be passed the `dplyr::mutate()` to mutate the metadata.
1618
+ You can also use the clone selectors to select the TCR clones/clusters.
1619
+ See <https://pwwang.github.io/scplotter/reference/clone_selectors.html>.
1611
1620
 
1612
- group-by: The column name in metadata to group the cells.
1613
- ident-1: The first group of cells to compare
1614
- ident-2: The second group of cells to compare, if not provided, the rest of the cells that are not `NA`s in `group-by` column are used for `ident-2`.
1621
+ group_by: The column name in metadata to group the cells.
1622
+ ident_1: The first group of cells to compare
1623
+ ident_2: The second group of cells to compare, if not provided, the rest of the cells that are not `NA`s in `group_by` column are used for `ident-2`.
1615
1624
  each: The column name in metadata to separate the cells into different subsets to do the analysis.
1616
1625
  subset: An expression to subset the cells.
1617
1626
  gmtfile: The pathways in GMT format, with the gene names/ids in the same format as the seurat object.
@@ -1637,15 +1646,15 @@ class ScFGSEA(Proc):
1637
1646
  If it is < 1, will apply it to `padj`, selecting pathways with `padj` < `top`.
1638
1647
  eps (type=float): This parameter sets the boundary for calculating the p value.
1639
1648
  See <https://rdrr.io/bioc/fgsea/man/fgseaMultilevel.html>
1640
- allpathway_plots_defaults (ns): Default options for the plots to generate for all pathways.
1649
+ alleach_plots_defaults (ns): Default options for the plots to generate for all pathways.
1641
1650
  - plot_type: The type of the plot, currently either dot or heatmap (default)
1642
1651
  - devpars (ns): The device parameters for the plots.
1643
1652
  - res (type=int): The resolution of the plots.
1644
1653
  - height (type=int): The height of the plots.
1645
1654
  - width (type=int): The width of the plots.
1646
1655
  - <more>: See <https://pwwang.github.io/biopipen.utils.R/reference/VizGSEA.html>.
1647
- allpathway_plots (type=json): Cases of the plots to generate for all pathways.
1648
- The keys are the names of the cases and the values are the dicts inherited from `allpathway_plots_defaults`.
1656
+ alleach_plots (type=json): Cases of the plots to generate for all pathways.
1657
+ The keys are the names of the cases and the values are the dicts inherited from `alleach_plots_defaults`.
1649
1658
  minsize (type=int): Minimal size of a gene set to test. All pathways below the threshold are excluded.
1650
1659
  maxsize (type=int): Maximal size of a gene set to test. All pathways above the threshold are excluded.
1651
1660
  rest (type=json;order=98): Rest arguments for [`fgsea()`](https://rdrr.io/bioc/fgsea/man/fgsea.html)
@@ -1668,9 +1677,9 @@ class ScFGSEA(Proc):
1668
1677
  envs = {
1669
1678
  "mutaters": {},
1670
1679
  "ncores": config.misc.ncores,
1671
- "group-by": None,
1672
- "ident-1": None,
1673
- "ident-2": None,
1680
+ "group_by": None,
1681
+ "ident_1": None,
1682
+ "ident_2": None,
1674
1683
  "each": None,
1675
1684
  "subset": None,
1676
1685
  "gmtfile": "KEGG_2021_Human",
@@ -1679,11 +1688,11 @@ class ScFGSEA(Proc):
1679
1688
  "minsize": 10,
1680
1689
  "maxsize": 100,
1681
1690
  "eps": 0,
1682
- "allpathway_plots_defaults": {
1691
+ "alleach_plots_defaults": {
1683
1692
  "plot_type": "heatmap",
1684
1693
  "devpars": {"res": 100},
1685
1694
  },
1686
- "allpathway_plots": {},
1695
+ "alleach_plots": {},
1687
1696
  "rest": {},
1688
1697
  "cases": {},
1689
1698
  }
@@ -2681,3 +2690,219 @@ class LoomTo10X(Proc):
2681
2690
  output = "outdir:dir:{{in.loomfile | stem}}.10X"
2682
2691
  lang = config.lang.rscript
2683
2692
  script = "file://../scripts/scrna/LoomTo10X.R"
2693
+
2694
+
2695
+ class PseudoBulkDEG(Proc):
2696
+ """Pseduo-bulk differential gene expression analysis
2697
+
2698
+ This process performs differential gene expression analysis, instead of
2699
+ on single-cell level, on the pseudo-bulk data, aggregated from the single-cell data.
2700
+
2701
+ Input:
2702
+ sobjfile: The seurat object file in RDS or qs/qs2 format.
2703
+
2704
+ Output:
2705
+ outdir: The output containing the results of the differential gene expression
2706
+ analysis.
2707
+
2708
+ Envs:
2709
+ mutaters (type=json): Mutaters to mutate the metadata of the
2710
+ seurat object. Keys are the new column names and values are the
2711
+ expressions to mutate the columns. These new columns can be
2712
+ used to define your cases.
2713
+ You can also use the clone selectors to select the TCR clones/clusters.
2714
+ See <https://pwwang.github.io/scplotter/reference/clone_selectors.html>.
2715
+ each: The column name in metadata to separate the cells into different cases.
2716
+ When specified, the case will be expanded to multiple cases for
2717
+ each value in the column.
2718
+ subset: An expression in string to subset the cells.
2719
+ aggregate_by: The column names in metadata to aggregate the cells.
2720
+ layer: The layer to pull and aggregate the data.
2721
+ assay: The assay to pull and aggregate the data.
2722
+ error (flag): Error out if no/not enough markers are found or no pathways are enriched.
2723
+ If `False`, empty results will be returned.
2724
+ group_by: The column name in metadata to group the cells.
2725
+ ident_1: The first identity to compare.
2726
+ ident_2: The second identity to compare.
2727
+ If not specified, the rest of the identities will be compared with `ident_1`.
2728
+ paired_by: The column name in metadata to mark the paired samples.
2729
+ For example, subject. If specified, the paired test will be performed.
2730
+ dbs (list): The databases to use for enrichment analysis.
2731
+ The databases are passed to `biopipen.utils::Enrichr()` to do the
2732
+ enrichment analysis. The default databases are `KEGG_2021_Human` and
2733
+ `MSigDB_Hallmark_2020`.
2734
+ See <https://maayanlab.cloud/Enrichr/#libraries> for the available
2735
+ libraries.
2736
+ sigmarkers: An expression passed to `dplyr::filter()` to filter the
2737
+ significant markers for enrichment analysis.
2738
+ The default is `p_val_adj < 0.05`.
2739
+ If `tool = 'DESeq2'`, the variables that can be used for filtering
2740
+ are: `baseMean`, `log2FC`, `lfcSE`, `stat`, `p_val`, `p_val_adj`.
2741
+ If `tool = 'edgeR'`, the variables that can be used for filtering
2742
+ are: `logCPM`, `log2FC`, `LR`, `p_val`, `p_val_adj`.
2743
+ enrich_style (choice): The style of the enrichment analysis.
2744
+ - enrichr: Use `enrichr`-style for the enrichment analysis.
2745
+ - clusterProfiler: Use `clusterProfiler`-style for the enrichment analysis.
2746
+ allmarker_plots_defaults (ns): Default options for the plots for all markers when `ident-1` is not specified.
2747
+ - plot_type: The type of the plot.
2748
+ See <https://pwwang.github.io/scplotter/reference/FeatureStatPlot.html>.
2749
+ Available types are `violin`, `box`, `bar`, `ridge`, `dim`, `heatmap` and `dot`.
2750
+ - more_formats (type=list): The extra formats to save the plot in.
2751
+ - save_code (flag): Whether to save the code to generate the plot.
2752
+ - devpars (ns): The device parameters for the plots.
2753
+ - res (type=int): The resolution of the plots.
2754
+ - height (type=int): The height of the plots.
2755
+ - width (type=int): The width of the plots.
2756
+ - order_by: an expression to order the markers, passed by `dplyr::arrange()`.
2757
+ - genes: The number of top genes to show or an expression passed to `dplyr::filter()` to filter the genes.
2758
+ - <more>: Other arguments passed to [`scplotter::FeatureStatPlot()`](https://pwwang.github.io/scplotter/reference/FeatureStatPlot.html).
2759
+ allmarker_plots (type=json): All marker plot cases.
2760
+ The keys are the names of the cases and the values are the dicts inherited from `allmarker_plots_defaults`.
2761
+ allenrich_plots_defaults (ns): Default options for the plots to generate for the enrichment analysis.
2762
+ - plot_type: The type of the plot.
2763
+ - devpars (ns): The device parameters for the plots.
2764
+ - res (type=int): The resolution of the plots.
2765
+ - height (type=int): The height of the plots.
2766
+ - width (type=int): The width of the plots.
2767
+ - <more>: See <https://pwwang.github.io/scplotter/reference/EnrichmentPlot.html>.
2768
+ allenrich_plots (type=json): Cases of the plots to generate for the enrichment analysis.
2769
+ The keys are the names of the cases and the values are the dicts inherited from `allenrich_plots_defaults`.
2770
+ The cases under `envs.cases` can inherit this options.
2771
+ marker_plots_defaults (ns): Default options for the plots to generate for the markers.
2772
+ - plot_type: The type of the plot.
2773
+ See <https://pwwang.github.io/scplotter/reference/FeatureStatPlot.html>.
2774
+ Available types are `violin`, `box`, `bar`, `ridge`, `dim`, `heatmap` and `dot`.
2775
+ There are two additional types available - `volcano_pct` and `volcano_log2fc`.
2776
+ - more_formats (type=list): The extra formats to save the plot in.
2777
+ - save_code (flag): Whether to save the code to generate the plot.
2778
+ - devpars (ns): The device parameters for the plots.
2779
+ - res (type=int): The resolution of the plots.
2780
+ - height (type=int): The height of the plots.
2781
+ - width (type=int): The width of the plots.
2782
+ - order_by: an expression to order the markers, passed by `dplyr::arrange()`.
2783
+ - genes: The number of top genes to show or an expression passed to `dplyr::filter()` to filter the genes.
2784
+ - <more>: Other arguments passed to [`scplotter::FeatureStatPlot()`](https://pwwang.github.io/scplotter/reference/FeatureStatPlot.html).
2785
+ If `plot_type` is `volcano_pct` or `volcano_log2fc`, they will be passed to
2786
+ [`scplotter::VolcanoPlot()`](https://pwwang.github.io/plotthis/reference/VolcanoPlot.html).
2787
+ marker_plots (type=json): Cases of the plots to generate for the markers.
2788
+ Plot cases. The keys are the names of the cases and the values are the dicts inherited from `marker_plots_defaults`.
2789
+ The cases under `envs.cases` can inherit this options.
2790
+ enrich_plots_defaults (ns): Default options for the plots to generate for the enrichment analysis.
2791
+ - plot_type: The type of the plot.
2792
+ See <https://pwwang.github.io/scplotter/reference/EnrichmentPlot.html>.
2793
+ Available types are `bar`, `dot`, `lollipop`, `network`, `enrichmap` and `wordcloud`.
2794
+ - more_formats (type=list): The extra formats to save the plot in.
2795
+ - save_code (flag): Whether to save the code to generate the plot.
2796
+ - devpars (ns): The device parameters for the plots.
2797
+ - res (type=int): The resolution of the plots.
2798
+ - height (type=int): The height of the plots.
2799
+ - width (type=int): The width of the plots.
2800
+ - <more>: See <https://pwwang.github.io/scplotter/reference/EnrichmentPlot.htmll>.
2801
+ enrich_plots (type=json): Cases of the plots to generate for the enrichment analysis.
2802
+ The keys are the names of the cases and the values are the dicts inherited from `enrich_plots_defaults`.
2803
+ The cases under `envs.cases` can inherit this options.
2804
+ overlaps_defaults (ns): Default options for investigating the overlapping of significant markers between different cases or comparisons.
2805
+ This means either `ident-1` should be empty, so that they can be expanded to multiple comparisons.
2806
+ - sigmarkers: The expression to filter the significant markers for each case.
2807
+ If not provided, `envs.sigmarkers` will be used.
2808
+ - plot_type (choice): The type of the plot to generate for the overlaps.
2809
+ - venn: Use `plotthis::VennDiagram()`.
2810
+ - upset: Use `plotthis::UpsetPlot()`.
2811
+ - more_formats (type=list): The extra formats to save the plot in.
2812
+ - save_code (flag): Whether to save the code to generate the plot.
2813
+ - devpars (ns): The device parameters for the plots.
2814
+ - res (type=int): The resolution of the plots.
2815
+ - height (type=int): The height of the plots.
2816
+ - width (type=int): The width of the plots.
2817
+ - <more>: More arguments pased to `plotthis::VennDiagram()`
2818
+ (<https://pwwang.github.io/plotthis/reference/venndiagram1.html>)
2819
+ or `plotthis::UpsetPlot()`
2820
+ (<https://pwwang.github.io/plotthis/reference/upsetplot1.html>)
2821
+ overlaps (type=json): Cases for investigating the overlapping of significant markers between different cases or comparisons.
2822
+ The keys are the names of the cases and the values are the dicts inherited from `overlaps_defaults`.
2823
+ There are two situations that we can perform overlaps:
2824
+ 1. If `ident-1` is not specified, the overlaps can be performed between different comparisons.
2825
+ 2. If `each` is specified, the overlaps can be performed between different cases, where in each case, `ident-1` must be specified.
2826
+ tool (choice): The method to use for the differential expression analysis.
2827
+ - DESeq2: Use DESeq2 for the analysis.
2828
+ - edgeR: Use edgeR for the analysis.
2829
+ plots_defaults (ns): The default parameters for the plots.
2830
+ - <more>: Parameters passed to `biopipen.utils::VizBulkDEGs()`.
2831
+ See: <https://pwwang.github.io/biopipen.utils.R/reference/VizBulkDEGs.html>
2832
+ plots (type=json): The parameters for the plots.
2833
+ The keys are the names of the plots and the values are the parameters
2834
+ for the plots. The parameters will override the defaults in `plots_defaults`.
2835
+ If not specified, no plots will be generated.
2836
+ cases (type=json): The cases for the analysis.
2837
+ The keys are the names of the cases and the values are the arguments for
2838
+ the analysis. The arguments include the ones inherited from `envs`.
2839
+ If no cases are specified, a default case will be added with
2840
+ the name `DEG Analysis` and the default values specified above.
2841
+ """ # noqa: E501
2842
+ input = "sobjfile:file"
2843
+ output = "outdir:dir:{{in.sobjfile | stem}}.pseudobulk_deg"
2844
+ lang = config.lang.rscript
2845
+ script = "file://../scripts/scrna/PseudoBulkDEG.R"
2846
+ envs = {
2847
+ "mutaters": {},
2848
+ "each": None,
2849
+ "subset": None,
2850
+ "aggregate_by": None,
2851
+ "layer": "counts",
2852
+ "assay": "RNA",
2853
+ "error": True,
2854
+ "group_by": None,
2855
+ "ident_1": None,
2856
+ "ident_2": None,
2857
+ "paired_by": None,
2858
+ "tool": "DESeq2",
2859
+ "dbs": ["KEGG_2021_Human", "MSigDB_Hallmark_2020"],
2860
+ "sigmarkers": "p_val_adj < 0.05",
2861
+ "enrich_style": "enrichr",
2862
+ "allmarker_plots_defaults": {
2863
+ "plot_type": None,
2864
+ "more_formats": [],
2865
+ "save_code": False,
2866
+ "devpars": {"res": 100},
2867
+ "order_by": "desc(abs(log2FC))",
2868
+ "genes": 10,
2869
+ },
2870
+ "allmarker_plots": {},
2871
+ "allenrich_plots_defaults": {
2872
+ "plot_type": "heatmap",
2873
+ "devpars": {"res": 100},
2874
+ },
2875
+ "allenrich_plots": {},
2876
+ "marker_plots_defaults": {
2877
+ "plot_type": None,
2878
+ "more_formats": [],
2879
+ "save_code": False,
2880
+ "devpars": {"res": 100},
2881
+ "order_by": "desc(abs(log2FC))",
2882
+ "genes": 10,
2883
+ },
2884
+ "marker_plots": {
2885
+ "Volcano Plot": {"plot_type": "volcano"},
2886
+ },
2887
+ "enrich_plots_defaults": {
2888
+ "more_formats": [],
2889
+ "save_code": False,
2890
+ "devpars": {"res": 100},
2891
+ },
2892
+ "enrich_plots": {
2893
+ "Bar Plot": {"plot_type": "bar", "ncol": 1, "top_term": 10},
2894
+ },
2895
+ "overlaps_defaults": {
2896
+ "sigmarkers": None,
2897
+ "plot_type": "venn",
2898
+ "more_formats": [],
2899
+ "save_code": False,
2900
+ "devpars": {"res": 100},
2901
+ },
2902
+ "overlaps": {},
2903
+ "cases": {},
2904
+ }
2905
+ plugin_opts = {
2906
+ "report": "file://../reports/common.svelte",
2907
+ "report_paging": 8,
2908
+ }
@@ -165,7 +165,7 @@ class MetabolicFeatures(Proc):
165
165
  `1`, `2` and `3` in the `group_by` column, we could have
166
166
  `comparisons = ["1", "2"]`, which will compare the group `1` with groups
167
167
  `2` and `3`, and the group `2` with groups `1` and `3`. We could also
168
- have `comparisons = ["1,2", "1,3"]`, which will compare the group `1` with
168
+ have `comparisons = ["1:2", "1:3"]`, which will compare the group `1` with
169
169
  group `2` and group `1` with group `3`.
170
170
  fgsea_args (type=json): Other arguments for the `fgsea::fgsea()` function.
171
171
  For example, `{"minSize": 15, "maxSize": 500}`.
@@ -1749,6 +1749,11 @@ class ScRepCombiningExpression(Proc):
1749
1749
 
1750
1750
  Output:
1751
1751
  outfile: The `Seurat` object with the TCR/BCR data combined
1752
+ In addition to the meta columns added by
1753
+ `scRepertoire::combineExpression()`, a new column `TCR_Presence` will be
1754
+ added to the metadata. It indicates whether the cell has a TCR/BCR
1755
+ sequence or not. The value is `TRUE` if the cell has a TCR/BCR sequence,
1756
+ and `FALSE` otherwise.
1752
1757
 
1753
1758
  Envs:
1754
1759
  cloneCall: How to call the clone - VDJC gene (gene), CDR3 nucleotide (nt),
@@ -1756,10 +1761,10 @@ class ScRepCombiningExpression(Proc):
1756
1761
  a custom variable in the data.
1757
1762
  chain: indicate if both or a specific chain should be used
1758
1763
  e.g. "both", "TRA", "TRG", "IGH", "IGL".
1759
- group-by: The column label in the combined clones in which clone frequency will
1764
+ group_by: The column label in the combined clones in which clone frequency will
1760
1765
  be calculated. NULL or "none" will keep the format of input.data.
1761
1766
  proportion (flag): Whether to proportion (TRUE) or total frequency (FALSE) of
1762
- the clone based on the group.by variable.
1767
+ the clone based on the group_by variable.
1763
1768
  filterNA (flag): Method to subset Seurat/SCE object of barcodes without clone
1764
1769
  information
1765
1770
  cloneSize (type=json): The bins for the grouping based on proportion or
@@ -1767,7 +1772,7 @@ class ScRepCombiningExpression(Proc):
1767
1772
  If proportion is FALSE and the cloneSizes are not set high enough based on
1768
1773
  frequency, the upper limit of cloneSizes will be automatically updated.
1769
1774
  addLabel (flag): This will add a label to the frequency header, allowing the
1770
- user to try multiple group.by variables or recalculate frequencies after
1775
+ user to try multiple group_by variables or recalculate frequencies after
1771
1776
  subsetting the data.
1772
1777
  """
1773
1778
  input = "screpfile:file,srtobj:file"
@@ -1776,7 +1781,7 @@ class ScRepCombiningExpression(Proc):
1776
1781
  envs = {
1777
1782
  "cloneCall": "aa",
1778
1783
  "chain": "both",
1779
- "group-by": "Sample",
1784
+ "group_by": "Sample",
1780
1785
  "proportion": True,
1781
1786
  "filterNA": False,
1782
1787
  "cloneSize": {
@@ -34,15 +34,15 @@ The cells are grouped at 2 dimensions: `subset_by`, usually the clinic groups th
34
34
 
35
35
  <UnorderedList>
36
36
  <ListItem>
37
- <a href="../MetabolicPathwayActivity/index.html">MetabolicPathwayActivity</a>
37
+ <a href="?proc=MetabolicPathwayActivity" class="listitem">MetabolicPathwayActivity</a>
38
38
  <Tile><p>Investigating the metabolic pathways of the cells in different subsets and groups.</p></Tile>
39
39
  </ListItem>
40
40
  <ListItem>
41
- <a href="../MetabolicPathwayHeterogeneity/index.html">MetabolicPathwayHeterogeneity</a>
41
+ <a href="?proc=MetabolicPathwayHeterogeneity" class="listitem">MetabolicPathwayHeterogeneity</a>
42
42
  <Tile><p>Showing metabolic pathways enriched in genes with highest contribution to the metabolic heterogeneities</p></Tile>
43
43
  </ListItem>
44
44
  <ListItem>
45
- MetabolicFeatures (this page)
45
+ <span class="listitem">MetabolicFeatures (this page)</span>
46
46
  <Tile>
47
47
  <p>Gene set enrichment analysis against the metabolic pathways for comparisons by different groups in different subsets.</p>
48
48
  <p>The metabolic features are actual gene set enrichment analysis (GSEA) results for the metabolic pathways with given comparisons.</p>
@@ -59,3 +59,12 @@ The cells are grouped at 2 dimensions: `subset_by`, usually the clinic groups th
59
59
  {%- endmacro -%}
60
60
 
61
61
  {{ report_jobs(jobs, head_job, report_job) }}
62
+
63
+ <style>
64
+ .listitem {
65
+ font-size: large;
66
+ font-weight: bold;
67
+ margin: 1rem 0 0.5rem 0;
68
+ display: inline-block;
69
+ }
70
+ </style>
@@ -34,7 +34,7 @@ The cells are grouped at 2 dimensions: `subset_by`, usually the clinic groups th
34
34
 
35
35
  <UnorderedList>
36
36
  <ListItem>
37
- MetabolicPathwayActivity (this page)
37
+ <span class="listitem">MetabolicPathwayActivity (this page)</span>
38
38
  <Tile>
39
39
  <p>Investigating the metabolic pathways of the cells in different subsets and groups.</p>
40
40
  <p>The cells are first subset by subsets and then the metabolic activities are examined for each groups in different subsets.</p>
@@ -69,13 +69,13 @@ The cells are grouped at 2 dimensions: `subset_by`, usually the clinic groups th
69
69
  </Tile>
70
70
  </ListItem>
71
71
  <ListItem>
72
- <a href="../MetabolicPathwayHeterogeneity/index.html">MetabolicPathwayHeterogeneity</a>
72
+ <a href="?proc=MetabolicPathwayHeterogeneity" class="listitem">MetabolicPathwayHeterogeneity</a>
73
73
  <Tile>
74
74
  <p>Showing metabolic pathways enriched in genes with highest contribution to the metabolic heterogeneities</p>
75
75
  </Tile>
76
76
  </ListItem>
77
77
  <ListItem>
78
- <a href="../MetabolicFeatures/index.html">MetabolicFeatures</a>
78
+ <a href="?proc=MetabolicFeatures" class="listitem">MetabolicFeatures</a>
79
79
  <Tile>
80
80
  <p>Gene set enrichment analysis against the metabolic pathways for comparisons by different groups in different subsets.</p>
81
81
  </Tile>
@@ -91,3 +91,12 @@ The cells are grouped at 2 dimensions: `subset_by`, usually the clinic groups th
91
91
  {%- endmacro -%}
92
92
 
93
93
  {{ report_jobs(jobs, head_job, report_job) }}
94
+
95
+ <style>
96
+ .listitem {
97
+ font-size: large;
98
+ font-weight: bold;
99
+ margin: 1rem 0 0.5rem 0;
100
+ display: inline-block;
101
+ }
102
+ </style>
@@ -34,13 +34,13 @@ The cells are grouped at 2 dimensions: `subset_by`, usually the clinic groups th
34
34
 
35
35
  <UnorderedList>
36
36
  <ListItem>
37
- <a href="../MetabolicPathwayActivity/index.html">MetabolicPathwayActivity</a>
37
+ <a href="?proc=MetabolicPathwayActivity" class="listitem">MetabolicPathwayActivity</a>
38
38
  <Tile>
39
39
  <p>Investigating the metabolic pathways of the cells in different subsets and groups.</p>
40
40
  </Tile>
41
41
  </ListItem>
42
42
  <ListItem>
43
- MetabolicPathwayHeterogeneity (this page)
43
+ <span class="listitem">MetabolicPathwayHeterogeneity (this page)</span>
44
44
  <Tile>
45
45
  <p>Showing metabolic pathways enriched in genes with highest contribution to the metabolic heterogeneities</p>
46
46
  <p>
@@ -54,7 +54,7 @@ The cells are grouped at 2 dimensions: `subset_by`, usually the clinic groups th
54
54
  </Tile>
55
55
  </ListItem>
56
56
  <ListItem>
57
- <a href="../MetabolicFeatures/index.html">MetabolicFeatures</a>
57
+ <a href="?proc=MetabolicFeatures" class="listitem">MetabolicFeatures</a>
58
58
  <Tile>
59
59
  <p>Gene set enrichment analysis against the metabolic pathways for comparisons by different groups in different subsets.</p>
60
60
  </Tile>
@@ -70,3 +70,12 @@ The cells are grouped at 2 dimensions: `subset_by`, usually the clinic groups th
70
70
  {%- endmacro -%}
71
71
 
72
72
  {{ report_jobs(jobs, head_job, report_job) }}
73
+
74
+ <style>
75
+ .listitem {
76
+ font-size: large;
77
+ font-weight: bold;
78
+ margin: 1rem 0 0.5rem 0;
79
+ display: inline-block;
80
+ }
81
+ </style>
@@ -26,15 +26,8 @@ if (is.null(celltypist_args$model)) {
26
26
  }
27
27
  dir.create(file.path(outdir, "data", "models"), recursive = TRUE, showWarnings = FALSE)
28
28
  modelfile <- file.path(outdir, "data", "models", basename(celltypist_args$model))
29
- if (!file.exists(modelfile)) {
30
- file.symlink(celltypist_args$model, modelfile)
31
- } else {
32
- real_modelfile <- normalizePath(Sys.readlink(modelfile))
33
- if (real_modelfile != normalizePath(celltypist_args$model)) {
34
- file.remove(modelfile)
35
- file.symlink(celltypist_args$model, modelfile)
36
- }
37
- }
29
+ suppressWarnings(file.remove(modelfile))
30
+ file.symlink(normalizePath(celltypist_args$model), modelfile)
38
31
 
39
32
  sobj <- NULL
40
33
  if (!endsWith(sobjfile, ".h5ad")) {
@@ -43,7 +36,7 @@ if (!endsWith(sobjfile, ".h5ad")) {
43
36
  # find the default ident name in meta.data
44
37
  for (col in colnames(sobj@meta.data)) {
45
38
  if (!is.factor(sobj@meta.data[[col]])) { next }
46
- if (isTRUE(all.equal(Idents(sobj), sobj@meta.data[[col]]))) {
39
+ if (isTRUE(all.equal(unname(Idents(sobj)), sobj@meta.data[[col]]))) {
47
40
  celltypist_args$over_clustering <- col
48
41
  break
49
42
  }