biopipen 0.34.1__tar.gz → 0.34.2__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of biopipen might be problematic. Click here for more details.

Files changed (292) hide show
  1. {biopipen-0.34.1 → biopipen-0.34.2}/PKG-INFO +1 -1
  2. biopipen-0.34.2/biopipen/__init__.py +1 -0
  3. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/ns/scrna.py +243 -31
  4. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/ns/tcr.py +4 -4
  5. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/scrna/MarkersFinder.R +34 -28
  6. biopipen-0.34.2/biopipen/scripts/scrna/PseudoBulkDEG.R +592 -0
  7. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/scrna/ScFGSEA.R +35 -35
  8. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/scrna/TopExpressingGenes.R +6 -6
  9. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/tcr/ScRepCombiningExpression.R +2 -2
  10. {biopipen-0.34.1 → biopipen-0.34.2}/pyproject.toml +1 -1
  11. {biopipen-0.34.1 → biopipen-0.34.2}/setup.py +1 -1
  12. biopipen-0.34.1/biopipen/__init__.py +0 -1
  13. biopipen-0.34.1/biopipen/reports/scrna/TopExpressingGenes.svelte +0 -17
  14. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/core/__init__.py +0 -0
  15. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/core/config.py +0 -0
  16. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/core/config.toml +0 -0
  17. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/core/defaults.py +0 -0
  18. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/core/filters.py +0 -0
  19. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/core/proc.py +0 -0
  20. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/core/testing.py +0 -0
  21. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/ns/__init__.py +0 -0
  22. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/ns/bam.py +0 -0
  23. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/ns/bed.py +0 -0
  24. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/ns/cellranger.py +0 -0
  25. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/ns/cellranger_pipeline.py +0 -0
  26. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/ns/cnv.py +0 -0
  27. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/ns/cnvkit.py +0 -0
  28. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/ns/cnvkit_pipeline.py +0 -0
  29. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/ns/delim.py +0 -0
  30. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/ns/gene.py +0 -0
  31. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/ns/gsea.py +0 -0
  32. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/ns/misc.py +0 -0
  33. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/ns/plot.py +0 -0
  34. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/ns/protein.py +0 -0
  35. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/ns/regulatory.py +0 -0
  36. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/ns/rnaseq.py +0 -0
  37. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/ns/scrna_metabolic_landscape.py +0 -0
  38. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/ns/snp.py +0 -0
  39. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/ns/stats.py +0 -0
  40. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/ns/tcgamaf.py +0 -0
  41. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/ns/vcf.py +0 -0
  42. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/ns/web.py +0 -0
  43. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/reports/bam/CNAClinic.svelte +0 -0
  44. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/reports/bam/CNVpytor.svelte +0 -0
  45. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/reports/bam/ControlFREEC.svelte +0 -0
  46. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/reports/cellranger/CellRangerCount.svelte +0 -0
  47. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/reports/cellranger/CellRangerSummary.svelte +0 -0
  48. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/reports/cellranger/CellRangerVdj.svelte +0 -0
  49. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/reports/cnv/AneuploidyScore.svelte +0 -0
  50. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/reports/cnv/AneuploidyScoreSummary.svelte +0 -0
  51. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/reports/cnv/TMADScoreSummary.svelte +0 -0
  52. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/reports/cnvkit/CNVkitDiagram.svelte +0 -0
  53. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/reports/cnvkit/CNVkitHeatmap.svelte +0 -0
  54. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/reports/cnvkit/CNVkitScatter.svelte +0 -0
  55. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/reports/common.svelte +0 -0
  56. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/reports/gsea/FGSEA.svelte +0 -0
  57. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/reports/gsea/GSEA.svelte +0 -0
  58. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/reports/protein/ProdigySummary.svelte +0 -0
  59. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/reports/scrna/CellsDistribution.svelte +0 -0
  60. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/reports/scrna/DimPlots.svelte +0 -0
  61. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/reports/scrna/MarkersFinder.svelte +0 -0
  62. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/reports/scrna/MetaMarkers.svelte +0 -0
  63. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/reports/scrna/RadarPlots.svelte +0 -0
  64. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/reports/scrna_metabolic_landscape/MetabolicFeatures.svelte +0 -0
  65. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/reports/scrna_metabolic_landscape/MetabolicPathwayActivity.svelte +0 -0
  66. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/reports/scrna_metabolic_landscape/MetabolicPathwayHeterogeneity.svelte +0 -0
  67. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/reports/snp/PlinkCallRate.svelte +0 -0
  68. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/reports/snp/PlinkFreq.svelte +0 -0
  69. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/reports/snp/PlinkHWE.svelte +0 -0
  70. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/reports/snp/PlinkHet.svelte +0 -0
  71. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/reports/snp/PlinkIBD.svelte +0 -0
  72. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/reports/tcr/CDR3AAPhyschem.svelte +0 -0
  73. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/reports/tcr/ClonalStats.svelte +0 -0
  74. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/reports/tcr/CloneResidency.svelte +0 -0
  75. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/reports/tcr/Immunarch.svelte +0 -0
  76. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/reports/tcr/SampleDiversity.svelte +0 -0
  77. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/reports/tcr/TCRClusterStats.svelte +0 -0
  78. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/reports/tcr/TESSA.svelte +0 -0
  79. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/reports/tcr/VJUsage.svelte +0 -0
  80. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/reports/utils/misc.liq +0 -0
  81. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/reports/vcf/TruvariBenchSummary.svelte +0 -0
  82. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/reports/vcf/TruvariConsistency.svelte +0 -0
  83. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/bam/BamMerge.py +0 -0
  84. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/bam/BamSampling.py +0 -0
  85. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/bam/BamSort.py +0 -0
  86. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/bam/BamSplitChroms.py +0 -0
  87. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/bam/BamSubsetByBed.py +0 -0
  88. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/bam/CNAClinic.R +0 -0
  89. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/bam/CNVpytor.py +0 -0
  90. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/bam/ControlFREEC.py +0 -0
  91. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/bam/SamtoolsView.py +0 -0
  92. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/bed/Bed2Vcf.py +0 -0
  93. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/bed/BedConsensus.py +0 -0
  94. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/bed/BedLiftOver.sh +0 -0
  95. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/bed/BedtoolsIntersect.py +0 -0
  96. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/bed/BedtoolsMakeWindows.py +0 -0
  97. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/bed/BedtoolsMerge.py +0 -0
  98. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/cellranger/CellRangerCount.py +0 -0
  99. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/cellranger/CellRangerSummary.R +0 -0
  100. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/cellranger/CellRangerVdj.py +0 -0
  101. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/cnv/AneuploidyScore.R +0 -0
  102. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/cnv/AneuploidyScoreSummary.R +0 -0
  103. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/cnv/TMADScore.R +0 -0
  104. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/cnv/TMADScoreSummary.R +0 -0
  105. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/cnvkit/CNVkitAccess.py +0 -0
  106. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/cnvkit/CNVkitAutobin.py +0 -0
  107. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/cnvkit/CNVkitBatch.py +0 -0
  108. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/cnvkit/CNVkitCall.py +0 -0
  109. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/cnvkit/CNVkitCoverage.py +0 -0
  110. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/cnvkit/CNVkitDiagram.py +0 -0
  111. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/cnvkit/CNVkitFix.py +0 -0
  112. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/cnvkit/CNVkitGuessBaits.py +0 -0
  113. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/cnvkit/CNVkitHeatmap.py +0 -0
  114. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/cnvkit/CNVkitReference.py +0 -0
  115. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/cnvkit/CNVkitScatter.py +0 -0
  116. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/cnvkit/CNVkitSegment.py +0 -0
  117. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/cnvkit/guess_baits.py +0 -0
  118. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/delim/RowsBinder.R +0 -0
  119. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/delim/SampleInfo.R +0 -0
  120. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/gene/GeneNameConversion.R +0 -0
  121. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/gene/GenePromoters.R +0 -0
  122. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/gsea/Enrichr.R +0 -0
  123. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/gsea/FGSEA.R +0 -0
  124. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/gsea/GSEA.R +0 -0
  125. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/gsea/PreRank.R +0 -0
  126. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/misc/Config2File.py +0 -0
  127. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/misc/Plot.R +0 -0
  128. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/misc/Shell.sh +0 -0
  129. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/misc/Str2File.py +0 -0
  130. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/plot/Heatmap.R +0 -0
  131. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/plot/Manhattan.R +0 -0
  132. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/plot/QQPlot.R +0 -0
  133. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/plot/ROC.R +0 -0
  134. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/plot/Scatter.R +0 -0
  135. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/plot/VennDiagram.R +0 -0
  136. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/protein/MMCIF2PDB.py +0 -0
  137. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/protein/PDB2Fasta.py +0 -0
  138. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/protein/Prodigy.py +0 -0
  139. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/protein/ProdigySummary.R +0 -0
  140. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/protein/RMSD.py +0 -0
  141. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/regulatory/MotifAffinityTest.R +0 -0
  142. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/regulatory/MotifAffinityTest_AtSNP.R +0 -0
  143. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/regulatory/MotifAffinityTest_MotifBreakR.R +0 -0
  144. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/regulatory/MotifScan.py +0 -0
  145. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/regulatory/VariantMotifPlot.R +0 -0
  146. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/regulatory/motifs-common.R +0 -0
  147. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/rnaseq/Simulation-ESCO.R +0 -0
  148. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/rnaseq/Simulation-RUVcorr.R +0 -0
  149. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/rnaseq/Simulation.R +0 -0
  150. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/rnaseq/UnitConversion.R +0 -0
  151. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/scrna/AnnData2Seurat.R +0 -0
  152. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/scrna/CCPlotR-patch.R +0 -0
  153. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/scrna/CellCellCommunication.py +0 -0
  154. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/scrna/CellCellCommunicationPlots.R +0 -0
  155. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/scrna/CellTypeAnnotation-celltypist.R +0 -0
  156. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/scrna/CellTypeAnnotation-direct.R +0 -0
  157. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/scrna/CellTypeAnnotation-hitype.R +0 -0
  158. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/scrna/CellTypeAnnotation-sccatch.R +0 -0
  159. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/scrna/CellTypeAnnotation-sctype.R +0 -0
  160. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/scrna/CellTypeAnnotation.R +0 -0
  161. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/scrna/CellsDistribution.R +0 -0
  162. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/scrna/DimPlots.R +0 -0
  163. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/scrna/ExprImputation-alra.R +0 -0
  164. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/scrna/ExprImputation-rmagic.R +0 -0
  165. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/scrna/ExprImputation-scimpute.R +0 -0
  166. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/scrna/ExprImputation.R +0 -0
  167. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/scrna/LoomTo10X.R +0 -0
  168. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/scrna/MetaMarkers.R +0 -0
  169. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/scrna/ModuleScoreCalculator.R +0 -0
  170. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/scrna/RadarPlots.R +0 -0
  171. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/scrna/SCImpute.R +0 -0
  172. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/scrna/SCP-plot.R +0 -0
  173. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/scrna/ScSimulation.R +0 -0
  174. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/scrna/ScVelo.py +0 -0
  175. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/scrna/Seurat2AnnData.R +0 -0
  176. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/scrna/SeuratClusterStats-clustree.R +0 -0
  177. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/scrna/SeuratClusterStats-dimplots.R +0 -0
  178. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/scrna/SeuratClusterStats-features.R +0 -0
  179. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/scrna/SeuratClusterStats-ngenes.R +0 -0
  180. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/scrna/SeuratClusterStats-stats.R +0 -0
  181. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/scrna/SeuratClusterStats.R +0 -0
  182. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/scrna/SeuratClustering.R +0 -0
  183. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/scrna/SeuratFilter.R +0 -0
  184. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/scrna/SeuratLoading.R +0 -0
  185. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/scrna/SeuratMap2Ref.R +0 -0
  186. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/scrna/SeuratMetadataMutater.R +0 -0
  187. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/scrna/SeuratPreparing.R +0 -0
  188. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/scrna/SeuratSplit.R +0 -0
  189. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/scrna/SeuratSubClustering.R +0 -0
  190. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/scrna/SeuratSubset.R +0 -0
  191. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/scrna/SeuratTo10X.R +0 -0
  192. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/scrna/Slingshot.R +0 -0
  193. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/scrna/Subset10X.R +0 -0
  194. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/scrna/celltypist-wrapper.py +0 -0
  195. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/scrna/sctype.R +0 -0
  196. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/scrna/seurat_anndata_conversion.py +0 -0
  197. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/scrna_metabolic_landscape/MetabolicFeatures.R +0 -0
  198. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/scrna_metabolic_landscape/MetabolicPathwayActivity.R +0 -0
  199. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/scrna_metabolic_landscape/MetabolicPathwayHeterogeneity.R +0 -0
  200. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/snp/MatrixEQTL.R +0 -0
  201. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/snp/Plink2GTMat.py +0 -0
  202. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/snp/PlinkCallRate.R +0 -0
  203. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/snp/PlinkFilter.py +0 -0
  204. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/snp/PlinkFreq.R +0 -0
  205. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/snp/PlinkFromVcf.py +0 -0
  206. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/snp/PlinkHWE.R +0 -0
  207. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/snp/PlinkHet.R +0 -0
  208. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/snp/PlinkIBD.R +0 -0
  209. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/snp/PlinkSimulation.py +0 -0
  210. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/snp/PlinkUpdateName.py +0 -0
  211. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/stats/ChowTest.R +0 -0
  212. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/stats/DiffCoexpr.R +0 -0
  213. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/stats/LiquidAssoc.R +0 -0
  214. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/stats/Mediation.R +0 -0
  215. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/stats/MetaPvalue.R +0 -0
  216. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/stats/MetaPvalue1.R +0 -0
  217. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/tcgamaf/Maf2Vcf.py +0 -0
  218. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/tcgamaf/MafAddChr.py +0 -0
  219. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/tcgamaf/maf2vcf.pl +0 -0
  220. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/tcr/Attach2Seurat.R +0 -0
  221. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/tcr/CDR3AAPhyschem.R +0 -0
  222. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/tcr/ClonalStats.R +0 -0
  223. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/tcr/CloneResidency.R +0 -0
  224. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/tcr/CloneSizeQQPlot.R +0 -0
  225. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/tcr/GIANA/GIANA.py +0 -0
  226. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/tcr/GIANA/GIANA4.py +0 -0
  227. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/tcr/GIANA/Imgt_Human_TRBV.fasta +0 -0
  228. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/tcr/GIANA/query.py +0 -0
  229. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/tcr/Immunarch-basic.R +0 -0
  230. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/tcr/Immunarch-clonality.R +0 -0
  231. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/tcr/Immunarch-diversity.R +0 -0
  232. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/tcr/Immunarch-geneusage.R +0 -0
  233. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/tcr/Immunarch-kmer.R +0 -0
  234. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/tcr/Immunarch-overlap.R +0 -0
  235. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/tcr/Immunarch-spectratyping.R +0 -0
  236. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/tcr/Immunarch-tracking.R +0 -0
  237. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/tcr/Immunarch-vjjunc.R +0 -0
  238. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/tcr/Immunarch.R +0 -0
  239. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/tcr/Immunarch2VDJtools.R +0 -0
  240. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/tcr/ImmunarchFilter.R +0 -0
  241. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/tcr/ImmunarchLoading.R +0 -0
  242. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/tcr/ImmunarchSplitIdents.R +0 -0
  243. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/tcr/SampleDiversity.R +0 -0
  244. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/tcr/ScRepLoading.R +0 -0
  245. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/tcr/TCRClusterStats.R +0 -0
  246. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/tcr/TCRClustering.R +0 -0
  247. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/tcr/TCRDock.py +0 -0
  248. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/tcr/TESSA.R +0 -0
  249. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/tcr/TESSA_source/Atchley_factors.csv +0 -0
  250. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/tcr/TESSA_source/BriseisEncoder.py +0 -0
  251. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/tcr/TESSA_source/MCMC_control.R +0 -0
  252. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/tcr/TESSA_source/TrainedEncoder.h5 +0 -0
  253. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/tcr/TESSA_source/fixed_b.csv +0 -0
  254. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/tcr/TESSA_source/initialization.R +0 -0
  255. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/tcr/TESSA_source/post_analysis.R +0 -0
  256. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/tcr/TESSA_source/real_data.R +0 -0
  257. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/tcr/TESSA_source/update.R +0 -0
  258. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/tcr/TESSA_source/utility.R +0 -0
  259. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/tcr/VJUsage.R +0 -0
  260. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/tcr/immunarch-patched.R +0 -0
  261. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/tcr/vdjtools-patch.sh +0 -0
  262. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/vcf/BcftoolsAnnotate.py +0 -0
  263. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/vcf/BcftoolsFilter.py +0 -0
  264. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/vcf/BcftoolsMerge.py +0 -0
  265. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/vcf/BcftoolsSort.py +0 -0
  266. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/vcf/BcftoolsView.py +0 -0
  267. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/vcf/TruvariBench.sh +0 -0
  268. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/vcf/TruvariBenchSummary.R +0 -0
  269. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/vcf/TruvariConsistency.R +0 -0
  270. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/vcf/Vcf2Bed.py +0 -0
  271. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/vcf/VcfAnno.py +0 -0
  272. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/vcf/VcfDownSample.sh +0 -0
  273. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/vcf/VcfFilter.py +0 -0
  274. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/vcf/VcfFix.py +0 -0
  275. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/vcf/VcfFix_utils.py +0 -0
  276. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/vcf/VcfIndex.py +0 -0
  277. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/vcf/VcfIntersect.py +0 -0
  278. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/vcf/VcfLiftOver.sh +0 -0
  279. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/vcf/VcfSplitSamples.py +0 -0
  280. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/vcf/bcftools_utils.py +0 -0
  281. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/web/Download.py +0 -0
  282. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/web/DownloadList.py +0 -0
  283. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/web/GCloudStorageDownloadBucket.py +0 -0
  284. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/web/GCloudStorageDownloadFile.py +0 -0
  285. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/scripts/web/gcloud_common.py +0 -0
  286. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/utils/__init__.py +0 -0
  287. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/utils/common_docstrs.py +0 -0
  288. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/utils/gene.py +0 -0
  289. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/utils/misc.py +0 -0
  290. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/utils/reference.py +0 -0
  291. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/utils/reporter.py +0 -0
  292. {biopipen-0.34.1 → biopipen-0.34.2}/biopipen/utils/vcf.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: biopipen
3
- Version: 0.34.1
3
+ Version: 0.34.2
4
4
  Summary: Bioinformatics processes/pipelines that can be run from `pipen run`
5
5
  License: MIT
6
6
  Author: pwwang
@@ -0,0 +1 @@
1
+ __version__ = "0.34.2"
@@ -197,8 +197,8 @@ class SeuratPreparing(Proc):
197
197
 
198
198
  SCTransform (ns): Arguments for [`SCTransform()`](https://satijalab.org/seurat/reference/sctransform).
199
199
  `object` is specified internally, and `-` in the key will be replaced with `.`.
200
- - `return-only-var-genes`: Whether to return only variable genes.
201
- - `min_cells`: The minimum number of cells that a gene must be expressed in to be kept.
200
+ - return-only-var-genes: Whether to return only variable genes.
201
+ - min_cells: The minimum number of cells that a gene must be expressed in to be kept.
202
202
  A hidden argument of `SCTransform` to filter genes.
203
203
  If you try to keep all genes in the `RNA` assay, you can set `min_cells` to `0` and
204
204
  `return-only-var-genes` to `False`.
@@ -491,7 +491,7 @@ class SeuratClusterStats(Proc):
491
491
 
492
492
  ```toml
493
493
  [SeuratClusterStats.envs.stats]
494
- nCells_Sample = { group-by = "Sample" }
494
+ nCells_Sample = { group_by = "Sample" }
495
495
  ```
496
496
 
497
497
  ![nCells_Sample](https://pwwang.github.io/immunopipe/latest/processes/images/SeuratClusterStats_nCells_Sample.png){: width="80%" }
@@ -515,8 +515,6 @@ class SeuratClusterStats(Proc):
515
515
  ```toml
516
516
  [SeuratClusterStats.envs.dimplots.Idents]
517
517
  label = true
518
- label-box = true
519
- repel = true
520
518
  ```
521
519
 
522
520
  ![dimplots](https://pwwang.github.io/immunopipe/latest/processes/images/SeuratClusterStats_dimplots.png){: width="80%" }
@@ -1007,11 +1005,11 @@ class DimPlots(Proc):
1007
1005
  class MarkersFinder(Proc):
1008
1006
  """Find markers between different groups of cells
1009
1007
 
1010
- When only `group-by` is specified as `"seurat_clusters"` in
1008
+ When only `group_by` is specified as `"seurat_clusters"` in
1011
1009
  `envs.cases`, the markers will be found for all the clusters.
1012
1010
 
1013
1011
  You can also find the differentially expressed genes between
1014
- any two groups of cells by setting `group-by` to a different
1012
+ any two groups of cells by setting `group_by` to a different
1015
1013
  column name in metadata. Follow `envs.cases` for more details.
1016
1014
 
1017
1015
  Input:
@@ -1028,16 +1026,16 @@ class MarkersFinder(Proc):
1028
1026
  * Used in `future::plan(strategy = "multicore", workers = <ncores>)` to parallelize some Seurat procedures.
1029
1027
  * See also: <https://satijalab.org/seurat/articles/future_vignette.html>
1030
1028
  mutaters (type=json): The mutaters to mutate the metadata
1031
- group-by: The column name in metadata to group the cells.
1032
- If only `group-by` is specified, and `ident-1` and `ident-2` are
1029
+ group_by: The column name in metadata to group the cells.
1030
+ If only `group_by` is specified, and `ident-1` and `ident-2` are
1033
1031
  not specified, markers will be found for all groups in this column
1034
1032
  in the manner of "group vs rest" comparison.
1035
1033
  `NA` group will be ignored.
1036
1034
  If `None`, `Seurat::Idents(srtobj)` will be used, which is usually
1037
1035
  `"seurat_clusters"` after unsupervised clustering.
1038
- ident-1: The first group of cells to compare
1039
- When this is empty, the comparisons will be expanded to each group v.s. the rest of the cells in `group-by`.
1040
- ident-2: The second group of cells to compare
1036
+ ident_1: The first group of cells to compare
1037
+ When this is empty, the comparisons will be expanded to each group v.s. the rest of the cells in `group_by`.
1038
+ ident_2: The second group of cells to compare
1041
1039
  If not provided, the rest of the cells are used for `ident-2`.
1042
1040
  each: The column name in metadata to separate the cells into different
1043
1041
  cases.
@@ -1164,9 +1162,9 @@ class MarkersFinder(Proc):
1164
1162
  envs = {
1165
1163
  "ncores": config.misc.ncores,
1166
1164
  "mutaters": {},
1167
- "group-by": None,
1168
- "ident-1": None,
1169
- "ident-2": None,
1165
+ "group_by": None,
1166
+ "ident_1": None,
1167
+ "ident_2": None,
1170
1168
  "each": None,
1171
1169
  "dbs": ["KEGG_2021_Human", "MSigDB_Hallmark_2020"],
1172
1170
  "sigmarkers": "p_val_adj < 0.05",
@@ -1241,11 +1239,11 @@ class TopExpressingGenes(Proc):
1241
1239
  Envs:
1242
1240
  mutaters (type=json): The mutaters to mutate the metadata
1243
1241
  ident: The group of cells to find the top expressing genes.
1244
- The cells will be selected by the `group-by` column with this
1242
+ The cells will be selected by the `group_by` column with this
1245
1243
  `ident` value in metadata.
1246
1244
  If not provided, the top expressing genes will be found for all
1247
- groups of cells in the `group-by` column.
1248
- group-by: The column name in metadata to group the cells.
1245
+ groups of cells in the `group_by` column.
1246
+ group_by: The column name in metadata to group the cells.
1249
1247
  each: The column name in metadata to separate the cells into different
1250
1248
  cases.
1251
1249
  dbs (list): The dbs to do enrichment analysis for significant
@@ -1288,7 +1286,7 @@ class TopExpressingGenes(Proc):
1288
1286
  envs = {
1289
1287
  "mutaters": {},
1290
1288
  "ident": None,
1291
- "group-by": None,
1289
+ "group_by": None,
1292
1290
  "each": None,
1293
1291
  "dbs": ["KEGG_2021_Human", "MSigDB_Hallmark_2020"],
1294
1292
  "n": 250,
@@ -1305,7 +1303,7 @@ class TopExpressingGenes(Proc):
1305
1303
  "cases": {},
1306
1304
  }
1307
1305
  plugin_opts = {
1308
- "report": "file://../reports/scrna/TopExpressingGenes.svelte",
1306
+ "report": "file://../reports/common.svelte",
1309
1307
  "report_paging": 8,
1310
1308
  }
1311
1309
 
@@ -1609,9 +1607,9 @@ class ScFGSEA(Proc):
1609
1607
  mutaters (type=json): The mutaters to mutate the metadata.
1610
1608
  The key-value pairs will be passed the `dplyr::mutate()` to mutate the metadata.
1611
1609
 
1612
- group-by: The column name in metadata to group the cells.
1613
- ident-1: The first group of cells to compare
1614
- ident-2: The second group of cells to compare, if not provided, the rest of the cells that are not `NA`s in `group-by` column are used for `ident-2`.
1610
+ group_by: The column name in metadata to group the cells.
1611
+ ident_1: The first group of cells to compare
1612
+ ident_2: The second group of cells to compare, if not provided, the rest of the cells that are not `NA`s in `group_by` column are used for `ident-2`.
1615
1613
  each: The column name in metadata to separate the cells into different subsets to do the analysis.
1616
1614
  subset: An expression to subset the cells.
1617
1615
  gmtfile: The pathways in GMT format, with the gene names/ids in the same format as the seurat object.
@@ -1637,15 +1635,15 @@ class ScFGSEA(Proc):
1637
1635
  If it is < 1, will apply it to `padj`, selecting pathways with `padj` < `top`.
1638
1636
  eps (type=float): This parameter sets the boundary for calculating the p value.
1639
1637
  See <https://rdrr.io/bioc/fgsea/man/fgseaMultilevel.html>
1640
- allpathway_plots_defaults (ns): Default options for the plots to generate for all pathways.
1638
+ alleach_plots_defaults (ns): Default options for the plots to generate for all pathways.
1641
1639
  - plot_type: The type of the plot, currently either dot or heatmap (default)
1642
1640
  - devpars (ns): The device parameters for the plots.
1643
1641
  - res (type=int): The resolution of the plots.
1644
1642
  - height (type=int): The height of the plots.
1645
1643
  - width (type=int): The width of the plots.
1646
1644
  - <more>: See <https://pwwang.github.io/biopipen.utils.R/reference/VizGSEA.html>.
1647
- allpathway_plots (type=json): Cases of the plots to generate for all pathways.
1648
- The keys are the names of the cases and the values are the dicts inherited from `allpathway_plots_defaults`.
1645
+ alleach_plots (type=json): Cases of the plots to generate for all pathways.
1646
+ The keys are the names of the cases and the values are the dicts inherited from `alleach_plots_defaults`.
1649
1647
  minsize (type=int): Minimal size of a gene set to test. All pathways below the threshold are excluded.
1650
1648
  maxsize (type=int): Maximal size of a gene set to test. All pathways above the threshold are excluded.
1651
1649
  rest (type=json;order=98): Rest arguments for [`fgsea()`](https://rdrr.io/bioc/fgsea/man/fgsea.html)
@@ -1668,9 +1666,9 @@ class ScFGSEA(Proc):
1668
1666
  envs = {
1669
1667
  "mutaters": {},
1670
1668
  "ncores": config.misc.ncores,
1671
- "group-by": None,
1672
- "ident-1": None,
1673
- "ident-2": None,
1669
+ "group_by": None,
1670
+ "ident_1": None,
1671
+ "ident_2": None,
1674
1672
  "each": None,
1675
1673
  "subset": None,
1676
1674
  "gmtfile": "KEGG_2021_Human",
@@ -1679,11 +1677,11 @@ class ScFGSEA(Proc):
1679
1677
  "minsize": 10,
1680
1678
  "maxsize": 100,
1681
1679
  "eps": 0,
1682
- "allpathway_plots_defaults": {
1680
+ "alleach_plots_defaults": {
1683
1681
  "plot_type": "heatmap",
1684
1682
  "devpars": {"res": 100},
1685
1683
  },
1686
- "allpathway_plots": {},
1684
+ "alleach_plots": {},
1687
1685
  "rest": {},
1688
1686
  "cases": {},
1689
1687
  }
@@ -2681,3 +2679,217 @@ class LoomTo10X(Proc):
2681
2679
  output = "outdir:dir:{{in.loomfile | stem}}.10X"
2682
2680
  lang = config.lang.rscript
2683
2681
  script = "file://../scripts/scrna/LoomTo10X.R"
2682
+
2683
+
2684
+ class PseudoBulkDEG(Proc):
2685
+ """Pseduo-bulk differential gene expression analysis
2686
+
2687
+ This process performs differential gene expression analysis, instead of
2688
+ on single-cell level, on the pseudo-bulk data, aggregated from the single-cell data.
2689
+
2690
+ Input:
2691
+ sobjfile: The seurat object file in RDS or qs/qs2 format.
2692
+
2693
+ Output:
2694
+ outdir: The output containing the results of the differential gene expression
2695
+ analysis.
2696
+
2697
+ Envs:
2698
+ mutaters (type=json): Mutaters to mutate the metadata of the
2699
+ seurat object. Keys are the new column names and values are the
2700
+ expressions to mutate the columns. These new columns can be
2701
+ used to define your cases.
2702
+ each: The column name in metadata to separate the cells into different cases.
2703
+ When specified, the case will be expanded to multiple cases for
2704
+ each value in the column.
2705
+ subset: An expression in string to subset the cells.
2706
+ aggregate_by: The column names in metadata to aggregate the cells.
2707
+ layer: The layer to pull and aggregate the data.
2708
+ assay: The assay to pull and aggregate the data.
2709
+ error (flag): Error out if no/not enough markers are found or no pathways are enriched.
2710
+ If `False`, empty results will be returned.
2711
+ group_by: The column name in metadata to group the cells.
2712
+ ident_1: The first identity to compare.
2713
+ ident_2: The second identity to compare.
2714
+ If not specified, the rest of the identities will be compared with `ident_1`.
2715
+ paired_by: The column name in metadata to mark the paired samples.
2716
+ For example, subject. If specified, the paired test will be performed.
2717
+ dbs (list): The databases to use for enrichment analysis.
2718
+ The databases are passed to `biopipen.utils::Enrichr()` to do the
2719
+ enrichment analysis. The default databases are `KEGG_2021_Human` and
2720
+ `MSigDB_Hallmark_2020`.
2721
+ See <https://maayanlab.cloud/Enrichr/#libraries> for the available
2722
+ libraries.
2723
+ sigmarkers: An expression passed to `dplyr::filter()` to filter the
2724
+ significant markers for enrichment analysis.
2725
+ The default is `p_val_adj < 0.05`.
2726
+ If `tool = 'DESeq2'`, the variables that can be used for filtering
2727
+ are: `baseMean`, `log2FC`, `lfcSE`, `stat`, `p_val`, `p_val_adj`.
2728
+ If `tool = 'edgeR'`, the variables that can be used for filtering
2729
+ are: `logCPM`, `log2FC`, `LR`, `p_val`, `p_val_adj`.
2730
+ enrich_style (choice): The style of the enrichment analysis.
2731
+ - enrichr: Use `enrichr`-style for the enrichment analysis.
2732
+ - clusterProfiler: Use `clusterProfiler`-style for the enrichment analysis.
2733
+ allmarker_plots_defaults (ns): Default options for the plots for all markers when `ident-1` is not specified.
2734
+ - plot_type: The type of the plot.
2735
+ See <https://pwwang.github.io/scplotter/reference/FeatureStatPlot.html>.
2736
+ Available types are `violin`, `box`, `bar`, `ridge`, `dim`, `heatmap` and `dot`.
2737
+ - more_formats (type=list): The extra formats to save the plot in.
2738
+ - save_code (flag): Whether to save the code to generate the plot.
2739
+ - devpars (ns): The device parameters for the plots.
2740
+ - res (type=int): The resolution of the plots.
2741
+ - height (type=int): The height of the plots.
2742
+ - width (type=int): The width of the plots.
2743
+ - order_by: an expression to order the markers, passed by `dplyr::arrange()`.
2744
+ - genes: The number of top genes to show or an expression passed to `dplyr::filter()` to filter the genes.
2745
+ - <more>: Other arguments passed to [`scplotter::FeatureStatPlot()`](https://pwwang.github.io/scplotter/reference/FeatureStatPlot.html).
2746
+ allmarker_plots (type=json): All marker plot cases.
2747
+ The keys are the names of the cases and the values are the dicts inherited from `allmarker_plots_defaults`.
2748
+ allenrich_plots_defaults (ns): Default options for the plots to generate for the enrichment analysis.
2749
+ - plot_type: The type of the plot.
2750
+ - devpars (ns): The device parameters for the plots.
2751
+ - res (type=int): The resolution of the plots.
2752
+ - height (type=int): The height of the plots.
2753
+ - width (type=int): The width of the plots.
2754
+ - <more>: See <https://pwwang.github.io/scplotter/reference/EnrichmentPlot.html>.
2755
+ allenrich_plots (type=json): Cases of the plots to generate for the enrichment analysis.
2756
+ The keys are the names of the cases and the values are the dicts inherited from `allenrich_plots_defaults`.
2757
+ The cases under `envs.cases` can inherit this options.
2758
+ marker_plots_defaults (ns): Default options for the plots to generate for the markers.
2759
+ - plot_type: The type of the plot.
2760
+ See <https://pwwang.github.io/scplotter/reference/FeatureStatPlot.html>.
2761
+ Available types are `violin`, `box`, `bar`, `ridge`, `dim`, `heatmap` and `dot`.
2762
+ There are two additional types available - `volcano_pct` and `volcano_log2fc`.
2763
+ - more_formats (type=list): The extra formats to save the plot in.
2764
+ - save_code (flag): Whether to save the code to generate the plot.
2765
+ - devpars (ns): The device parameters for the plots.
2766
+ - res (type=int): The resolution of the plots.
2767
+ - height (type=int): The height of the plots.
2768
+ - width (type=int): The width of the plots.
2769
+ - order_by: an expression to order the markers, passed by `dplyr::arrange()`.
2770
+ - genes: The number of top genes to show or an expression passed to `dplyr::filter()` to filter the genes.
2771
+ - <more>: Other arguments passed to [`scplotter::FeatureStatPlot()`](https://pwwang.github.io/scplotter/reference/FeatureStatPlot.html).
2772
+ If `plot_type` is `volcano_pct` or `volcano_log2fc`, they will be passed to
2773
+ [`scplotter::VolcanoPlot()`](https://pwwang.github.io/plotthis/reference/VolcanoPlot.html).
2774
+ marker_plots (type=json): Cases of the plots to generate for the markers.
2775
+ Plot cases. The keys are the names of the cases and the values are the dicts inherited from `marker_plots_defaults`.
2776
+ The cases under `envs.cases` can inherit this options.
2777
+ enrich_plots_defaults (ns): Default options for the plots to generate for the enrichment analysis.
2778
+ - plot_type: The type of the plot.
2779
+ See <https://pwwang.github.io/scplotter/reference/EnrichmentPlot.html>.
2780
+ Available types are `bar`, `dot`, `lollipop`, `network`, `enrichmap` and `wordcloud`.
2781
+ - more_formats (type=list): The extra formats to save the plot in.
2782
+ - save_code (flag): Whether to save the code to generate the plot.
2783
+ - devpars (ns): The device parameters for the plots.
2784
+ - res (type=int): The resolution of the plots.
2785
+ - height (type=int): The height of the plots.
2786
+ - width (type=int): The width of the plots.
2787
+ - <more>: See <https://pwwang.github.io/scplotter/reference/EnrichmentPlot.htmll>.
2788
+ enrich_plots (type=json): Cases of the plots to generate for the enrichment analysis.
2789
+ The keys are the names of the cases and the values are the dicts inherited from `enrich_plots_defaults`.
2790
+ The cases under `envs.cases` can inherit this options.
2791
+ overlaps_defaults (ns): Default options for investigating the overlapping of significant markers between different cases or comparisons.
2792
+ This means either `ident-1` should be empty, so that they can be expanded to multiple comparisons.
2793
+ - sigmarkers: The expression to filter the significant markers for each case.
2794
+ If not provided, `envs.sigmarkers` will be used.
2795
+ - plot_type (choice): The type of the plot to generate for the overlaps.
2796
+ - venn: Use `plotthis::VennDiagram()`.
2797
+ - upset: Use `plotthis::UpsetPlot()`.
2798
+ - more_formats (type=list): The extra formats to save the plot in.
2799
+ - save_code (flag): Whether to save the code to generate the plot.
2800
+ - devpars (ns): The device parameters for the plots.
2801
+ - res (type=int): The resolution of the plots.
2802
+ - height (type=int): The height of the plots.
2803
+ - width (type=int): The width of the plots.
2804
+ - <more>: More arguments pased to `plotthis::VennDiagram()`
2805
+ (<https://pwwang.github.io/plotthis/reference/venndiagram1.html>)
2806
+ or `plotthis::UpsetPlot()`
2807
+ (<https://pwwang.github.io/plotthis/reference/upsetplot1.html>)
2808
+ overlaps (type=json): Cases for investigating the overlapping of significant markers between different cases or comparisons.
2809
+ The keys are the names of the cases and the values are the dicts inherited from `overlaps_defaults`.
2810
+ There are two situations that we can perform overlaps:
2811
+ 1. If `ident-1` is not specified, the overlaps can be performed between different comparisons.
2812
+ 2. If `each` is specified, the overlaps can be performed between different cases, where in each case, `ident-1` must be specified.
2813
+ tool (choice): The method to use for the differential expression analysis.
2814
+ - DESeq2: Use DESeq2 for the analysis.
2815
+ - edgeR: Use edgeR for the analysis.
2816
+ plots_defaults (ns): The default parameters for the plots.
2817
+ - <more>: Parameters passed to `biopipen.utils::VizBulkDEGs()`.
2818
+ See: <https://pwwang.github.io/biopipen.utils.R/reference/VizBulkDEGs.html>
2819
+ plots (type=json): The parameters for the plots.
2820
+ The keys are the names of the plots and the values are the parameters
2821
+ for the plots. The parameters will override the defaults in `plots_defaults`.
2822
+ If not specified, no plots will be generated.
2823
+ cases (type=json): The cases for the analysis.
2824
+ The keys are the names of the cases and the values are the arguments for
2825
+ the analysis. The arguments include the ones inherited from `envs`.
2826
+ If no cases are specified, a default case will be added with
2827
+ the name `DEG Analysis` and the default values specified above.
2828
+ """ # noqa: E501
2829
+ input = "sobjfile:file"
2830
+ output = "outdir:dir:{{in.sobjfile | stem}}.pseudobulk_deg"
2831
+ lang = config.lang.rscript
2832
+ script = "file://../scripts/scrna/PseudoBulkDEG.R"
2833
+ envs = {
2834
+ "mutaters": {},
2835
+ "each": None,
2836
+ "subset": None,
2837
+ "aggregate_by": None,
2838
+ "layer": "counts",
2839
+ "assay": "RNA",
2840
+ "error": True,
2841
+ "group_by": None,
2842
+ "ident_1": None,
2843
+ "ident_2": None,
2844
+ "paired_by": None,
2845
+ "tool": "DESeq2",
2846
+ "dbs": ["KEGG_2021_Human", "MSigDB_Hallmark_2020"],
2847
+ "sigmarkers": "p_val_adj < 0.05",
2848
+ "enrich_style": "enrichr",
2849
+ "allmarker_plots_defaults": {
2850
+ "plot_type": None,
2851
+ "more_formats": [],
2852
+ "save_code": False,
2853
+ "devpars": {"res": 100},
2854
+ "order_by": "desc(abs(log2FC))",
2855
+ "genes": 10,
2856
+ },
2857
+ "allmarker_plots": {},
2858
+ "allenrich_plots_defaults": {
2859
+ "plot_type": "heatmap",
2860
+ "devpars": {"res": 100},
2861
+ },
2862
+ "allenrich_plots": {},
2863
+ "marker_plots_defaults": {
2864
+ "plot_type": None,
2865
+ "more_formats": [],
2866
+ "save_code": False,
2867
+ "devpars": {"res": 100},
2868
+ "order_by": "desc(abs(log2FC))",
2869
+ "genes": 10,
2870
+ },
2871
+ "marker_plots": {
2872
+ "Volcano Plot": {"plot_type": "volcano"},
2873
+ },
2874
+ "enrich_plots_defaults": {
2875
+ "more_formats": [],
2876
+ "save_code": False,
2877
+ "devpars": {"res": 100},
2878
+ },
2879
+ "enrich_plots": {
2880
+ "Bar Plot": {"plot_type": "bar", "ncol": 1, "top_term": 10},
2881
+ },
2882
+ "overlaps_defaults": {
2883
+ "sigmarkers": None,
2884
+ "plot_type": "venn",
2885
+ "more_formats": [],
2886
+ "save_code": False,
2887
+ "devpars": {"res": 100},
2888
+ },
2889
+ "overlaps": {},
2890
+ "cases": {},
2891
+ }
2892
+ plugin_opts = {
2893
+ "report": "file://../reports/common.svelte",
2894
+ "report_paging": 8,
2895
+ }
@@ -1756,10 +1756,10 @@ class ScRepCombiningExpression(Proc):
1756
1756
  a custom variable in the data.
1757
1757
  chain: indicate if both or a specific chain should be used
1758
1758
  e.g. "both", "TRA", "TRG", "IGH", "IGL".
1759
- group-by: The column label in the combined clones in which clone frequency will
1759
+ group_by: The column label in the combined clones in which clone frequency will
1760
1760
  be calculated. NULL or "none" will keep the format of input.data.
1761
1761
  proportion (flag): Whether to proportion (TRUE) or total frequency (FALSE) of
1762
- the clone based on the group.by variable.
1762
+ the clone based on the group_by variable.
1763
1763
  filterNA (flag): Method to subset Seurat/SCE object of barcodes without clone
1764
1764
  information
1765
1765
  cloneSize (type=json): The bins for the grouping based on proportion or
@@ -1767,7 +1767,7 @@ class ScRepCombiningExpression(Proc):
1767
1767
  If proportion is FALSE and the cloneSizes are not set high enough based on
1768
1768
  frequency, the upper limit of cloneSizes will be automatically updated.
1769
1769
  addLabel (flag): This will add a label to the frequency header, allowing the
1770
- user to try multiple group.by variables or recalculate frequencies after
1770
+ user to try multiple group_by variables or recalculate frequencies after
1771
1771
  subsetting the data.
1772
1772
  """
1773
1773
  input = "screpfile:file,srtobj:file"
@@ -1776,7 +1776,7 @@ class ScRepCombiningExpression(Proc):
1776
1776
  envs = {
1777
1777
  "cloneCall": "aa",
1778
1778
  "chain": "both",
1779
- "group-by": "Sample",
1779
+ "group_by": "Sample",
1780
1780
  "proportion": True,
1781
1781
  "filterNA": False,
1782
1782
  "cloneSize": {
@@ -1,6 +1,7 @@
1
1
  library(rlang)
2
2
  library(dplyr)
3
3
  library(Seurat)
4
+ library(tidyseurat)
4
5
  library(plotthis)
5
6
  library(biopipen.utils)
6
7
 
@@ -13,9 +14,9 @@ joboutdir <- {{ job.outdir | r }}
13
14
 
14
15
  ncores <- {{ envs.ncores | int }}
15
16
  mutaters <- {{ envs.mutaters | r }}
16
- group.by <- {{ envs["group-by"] | r }}
17
- ident.1 <- {{ envs["ident-1"] | r }}
18
- ident.2 <- {{ envs["ident-2"] | r }}
17
+ group_by <- {{ envs.group_by | default: envs["group-by"] | default: None | r }}
18
+ ident_1 <- {{ envs.ident_1 | default: envs["ident-1"] | default: None | r }}
19
+ ident_2 <- {{ envs.ident_2 | default: envs["ident-2"] | default: None | r }}
19
20
  each <- {{ envs.each | r }}
20
21
  dbs <- {{ envs.dbs | r }}
21
22
  sigmarkers <- {{ envs.sigmarkers | r }}
@@ -75,9 +76,9 @@ overlaps <- lapply(overlaps, function(x) {
75
76
  })
76
77
 
77
78
  defaults <- list(
78
- group.by = group.by,
79
- ident.1 = ident.1,
80
- ident.2 = ident.2,
79
+ group_by = group_by,
80
+ ident_1 = ident_1,
81
+ ident_2 = ident_2,
81
82
  dbs = dbs,
82
83
  sigmarkers = sigmarkers,
83
84
  enrich_style = enrich_style,
@@ -104,17 +105,17 @@ log$info("Expanding cases ...")
104
105
  post_casing <- function(name, case) {
105
106
  outcases <- list()
106
107
 
107
- case$group.by <- case$group.by %||% "Identity"
108
+ case$group_by <- case$group_by %||% "Identity"
108
109
 
109
110
  if (is.null(case$each) || is.na(case$each) || nchar(case$each) == 0 || isFALSE(each)) {
110
111
  # single cases, no need to expand
111
- if (length(case$ident.1) > 0 && length(case$overlaps) > 0) {
112
+ if (length(case$ident_1) > 0 && length(case$overlaps) > 0) {
112
113
  stop("Cannot perform 'overlaps' with a single comparison (ident-1 is set) in case '", name, "'")
113
114
  }
114
- if (length(case$ident.1) > 0 && length(case$allmarker_plots) > 0) {
115
+ if (length(case$ident_1) > 0 && length(case$allmarker_plots) > 0) {
115
116
  stop("Cannot perform 'allmarker_plots' with a single comparison (ident-1 is set) in case '", name, "'")
116
117
  }
117
- if (length(case$ident.1) > 0 && length(case$allenrich_plots) > 0) {
118
+ if (length(case$ident_1) > 0 && length(case$allenrich_plots) > 0) {
118
119
  stop("Cannot perform 'allenrich_plots' with a single comparison (ident-1 is set) in case '", name, "'")
119
120
  }
120
121
 
@@ -158,8 +159,8 @@ post_casing <- function(name, case) {
158
159
  srtobj@meta.data %>%
159
160
  pull(case$each) %>% na.omit() %>% unique() %>% as.vector()
160
161
  }
161
- if (length(case$overlaps) > 0 && is.null(case$ident.1)) {
162
- stop("Cannot perform 'overlaps' analysis with 'each' and without 'ident.1' in case '", name, "'")
162
+ if (length(case$overlaps) > 0 && is.null(case$ident_1)) {
163
+ stop("Cannot perform 'overlaps' analysis with 'each' and without 'ident_1' in case '", name, "'")
163
164
  }
164
165
 
165
166
  if (length(cases) == 0 && name == "Marker Discovery") {
@@ -173,6 +174,7 @@ post_casing <- function(name, case) {
173
174
  newcase$original_case <- name
174
175
  newcase$each_name <- case$each
175
176
  newcase$each <- each
177
+ newcase$original_subset <- case$subset
176
178
 
177
179
  if (!is.null(case$subset)) {
178
180
  newcase$subset <- paste0(case$subset, " & ", bQuote(case$each), " == '", each, "'")
@@ -443,7 +445,7 @@ process_allenriches <- function(enriches, plotcases, casename, groupname) {
443
445
  }
444
446
 
445
447
  process_overlaps <- function(markers, ovcases, casename, groupname) {
446
- name <- paste0(casename, "::", paste0(groupname, ": Overlaps"))
448
+ name <- paste0(casename, "::", paste0(groupname, " (Overlaps)"))
447
449
  info <- case_info(name, outdir, create = TRUE)
448
450
 
449
451
  for (plotname in names(ovcases)) {
@@ -510,7 +512,7 @@ run_case <- function(name) {
510
512
  case <- extract_vars(
511
513
  case,
512
514
  "dbs", "sigmarkers", "allmarker_plots", "allenrich_plots", "marker_plots", "enrich_plots",
513
- "overlaps", "original_case", "markers", "enriches", "each_name", "each", "enrich_style",
515
+ "overlaps", "original_case", "markers", "enriches", "each_name", "each", "enrich_style", "original_subset",
514
516
  allow_nonexisting = TRUE
515
517
  )
516
518
 
@@ -535,10 +537,14 @@ run_case <- function(name) {
535
537
 
536
538
  if (length(allmarker_plots) > 0) {
537
539
  log$info("- Visualizing all markers together ...")
538
- attr(markers, "object") <- srtobj
539
- attr(markers, "group.by") <- each
540
- attr(markers, "ident.1") <- NULL
541
- attr(markers, "ident.2") <- NULL
540
+ if (is.null(original_subset)) {
541
+ attr(markers, "object") <- srtobj
542
+ } else {
543
+ attr(markers, "object") <- filter(srtobj, !!parse_expr(original_subset))
544
+ }
545
+ attr(markers, "group_by") <- each
546
+ attr(markers, "ident_1") <- NULL
547
+ attr(markers, "ident_2") <- NULL
542
548
  process_allmarkers(markers, allmarker_plots, name, each)
543
549
  }
544
550
 
@@ -579,16 +585,16 @@ run_case <- function(name) {
579
585
  case$object <- NULL
580
586
  gc()
581
587
 
582
- if (is.null(case$ident.1)) {
583
- all_idents <- unique(as.character(markers[[case$group.by]]))
588
+ if (is.null(case$ident_1)) {
589
+ all_idents <- unique(as.character(markers[[case$group_by]]))
584
590
  enriches <- list()
585
591
  for (ident in all_idents) {
586
- log$info("- {case$group.by}: {ident} ...")
587
- ident_markers <- markers[markers[[case$group.by]] == ident, , drop = TRUE]
588
- casename <- paste0(name, "::", paste0(case$group.by, ": ", ident))
592
+ log$info("- {case$group_by}: {ident} ...")
593
+ ident_markers <- markers[markers[[case$group_by]] == ident, , drop = TRUE]
594
+ casename <- paste0(name, "::", paste0(case$group_by, ": ", ident))
589
595
  info <- case_info(casename, outdir, create = TRUE)
590
596
 
591
- attr(ident_markers, "ident.1") <- ident
597
+ attr(ident_markers, "ident_1") <- ident
592
598
  enrich <- process_markers(ident_markers, info = info, case = list(
593
599
  dbs = dbs,
594
600
  sigmarkers = sigmarkers,
@@ -603,17 +609,17 @@ run_case <- function(name) {
603
609
 
604
610
  if (length(allmarker_plots) > 0) {
605
611
  log$info("- Visualizing all markers together ...")
606
- process_allmarkers(markers, allmarker_plots, name, case$group.by)
612
+ process_allmarkers(markers, allmarker_plots, name, case$group_by)
607
613
  }
608
614
 
609
615
  if (length(overlaps) > 0) {
610
616
  log$info("- Visualizing overlaps between subcases ...")
611
- process_overlaps(markers, overlaps, name, case$group.by)
617
+ process_overlaps(markers, overlaps, name, case$group_by)
612
618
  }
613
619
 
614
620
  if (length(allenrich_plots) > 0) {
615
621
  log$info("- Visualizing all enrichments together ...")
616
- process_allenriches(enriches, allenrich_plots, name, case$group.by)
622
+ process_allenriches(enriches, allenrich_plots, name, case$group_by)
617
623
  }
618
624
  } else {
619
625
  info <- case_info(name, outdir, create = TRUE)
@@ -624,7 +630,7 @@ run_case <- function(name) {
624
630
  marker_plots = marker_plots,
625
631
  enrich_plots = enrich_plots,
626
632
  error = case$error,
627
- ident = if (is.null(case$ident.2)) case$ident.1 else paste0(case$ident.1, " vs ", case$ident.2)
633
+ ident = if (is.null(case$ident_2)) case$ident_1 else paste0(case$ident_1, " vs ", case$ident_2)
628
634
  ))
629
635
 
630
636
  if (!is.null(original_case) && !is.null(cases[[original_case]])) {