biopipen 0.34.0__tar.gz → 0.34.2__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of biopipen might be problematic. Click here for more details.

Files changed (293) hide show
  1. {biopipen-0.34.0 → biopipen-0.34.2}/PKG-INFO +1 -1
  2. biopipen-0.34.2/biopipen/__init__.py +1 -0
  3. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/ns/scrna.py +276 -30
  4. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/ns/tcr.py +4 -4
  5. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/scrna/MarkersFinder.R +190 -49
  6. biopipen-0.34.2/biopipen/scripts/scrna/PseudoBulkDEG.R +592 -0
  7. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/scrna/ScFGSEA.R +101 -28
  8. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/scrna/SeuratClusterStats-features.R +4 -0
  9. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/scrna/TopExpressingGenes.R +9 -7
  10. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/tcr/ClonalStats.R +1 -1
  11. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/tcr/ScRepCombiningExpression.R +2 -2
  12. {biopipen-0.34.0 → biopipen-0.34.2}/pyproject.toml +1 -1
  13. {biopipen-0.34.0 → biopipen-0.34.2}/setup.py +1 -1
  14. biopipen-0.34.0/biopipen/__init__.py +0 -1
  15. biopipen-0.34.0/biopipen/reports/scrna/ScFGSEA.svelte +0 -16
  16. biopipen-0.34.0/biopipen/reports/scrna/TopExpressingGenes.svelte +0 -17
  17. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/core/__init__.py +0 -0
  18. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/core/config.py +0 -0
  19. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/core/config.toml +0 -0
  20. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/core/defaults.py +0 -0
  21. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/core/filters.py +0 -0
  22. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/core/proc.py +0 -0
  23. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/core/testing.py +0 -0
  24. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/ns/__init__.py +0 -0
  25. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/ns/bam.py +0 -0
  26. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/ns/bed.py +0 -0
  27. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/ns/cellranger.py +0 -0
  28. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/ns/cellranger_pipeline.py +0 -0
  29. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/ns/cnv.py +0 -0
  30. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/ns/cnvkit.py +0 -0
  31. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/ns/cnvkit_pipeline.py +0 -0
  32. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/ns/delim.py +0 -0
  33. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/ns/gene.py +0 -0
  34. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/ns/gsea.py +0 -0
  35. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/ns/misc.py +0 -0
  36. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/ns/plot.py +0 -0
  37. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/ns/protein.py +0 -0
  38. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/ns/regulatory.py +0 -0
  39. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/ns/rnaseq.py +0 -0
  40. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/ns/scrna_metabolic_landscape.py +0 -0
  41. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/ns/snp.py +0 -0
  42. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/ns/stats.py +0 -0
  43. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/ns/tcgamaf.py +0 -0
  44. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/ns/vcf.py +0 -0
  45. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/ns/web.py +0 -0
  46. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/reports/bam/CNAClinic.svelte +0 -0
  47. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/reports/bam/CNVpytor.svelte +0 -0
  48. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/reports/bam/ControlFREEC.svelte +0 -0
  49. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/reports/cellranger/CellRangerCount.svelte +0 -0
  50. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/reports/cellranger/CellRangerSummary.svelte +0 -0
  51. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/reports/cellranger/CellRangerVdj.svelte +0 -0
  52. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/reports/cnv/AneuploidyScore.svelte +0 -0
  53. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/reports/cnv/AneuploidyScoreSummary.svelte +0 -0
  54. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/reports/cnv/TMADScoreSummary.svelte +0 -0
  55. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/reports/cnvkit/CNVkitDiagram.svelte +0 -0
  56. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/reports/cnvkit/CNVkitHeatmap.svelte +0 -0
  57. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/reports/cnvkit/CNVkitScatter.svelte +0 -0
  58. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/reports/common.svelte +0 -0
  59. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/reports/gsea/FGSEA.svelte +0 -0
  60. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/reports/gsea/GSEA.svelte +0 -0
  61. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/reports/protein/ProdigySummary.svelte +0 -0
  62. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/reports/scrna/CellsDistribution.svelte +0 -0
  63. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/reports/scrna/DimPlots.svelte +0 -0
  64. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/reports/scrna/MarkersFinder.svelte +0 -0
  65. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/reports/scrna/MetaMarkers.svelte +0 -0
  66. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/reports/scrna/RadarPlots.svelte +0 -0
  67. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/reports/scrna_metabolic_landscape/MetabolicFeatures.svelte +0 -0
  68. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/reports/scrna_metabolic_landscape/MetabolicPathwayActivity.svelte +0 -0
  69. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/reports/scrna_metabolic_landscape/MetabolicPathwayHeterogeneity.svelte +0 -0
  70. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/reports/snp/PlinkCallRate.svelte +0 -0
  71. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/reports/snp/PlinkFreq.svelte +0 -0
  72. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/reports/snp/PlinkHWE.svelte +0 -0
  73. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/reports/snp/PlinkHet.svelte +0 -0
  74. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/reports/snp/PlinkIBD.svelte +0 -0
  75. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/reports/tcr/CDR3AAPhyschem.svelte +0 -0
  76. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/reports/tcr/ClonalStats.svelte +0 -0
  77. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/reports/tcr/CloneResidency.svelte +0 -0
  78. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/reports/tcr/Immunarch.svelte +0 -0
  79. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/reports/tcr/SampleDiversity.svelte +0 -0
  80. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/reports/tcr/TCRClusterStats.svelte +0 -0
  81. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/reports/tcr/TESSA.svelte +0 -0
  82. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/reports/tcr/VJUsage.svelte +0 -0
  83. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/reports/utils/misc.liq +0 -0
  84. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/reports/vcf/TruvariBenchSummary.svelte +0 -0
  85. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/reports/vcf/TruvariConsistency.svelte +0 -0
  86. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/bam/BamMerge.py +0 -0
  87. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/bam/BamSampling.py +0 -0
  88. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/bam/BamSort.py +0 -0
  89. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/bam/BamSplitChroms.py +0 -0
  90. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/bam/BamSubsetByBed.py +0 -0
  91. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/bam/CNAClinic.R +0 -0
  92. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/bam/CNVpytor.py +0 -0
  93. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/bam/ControlFREEC.py +0 -0
  94. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/bam/SamtoolsView.py +0 -0
  95. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/bed/Bed2Vcf.py +0 -0
  96. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/bed/BedConsensus.py +0 -0
  97. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/bed/BedLiftOver.sh +0 -0
  98. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/bed/BedtoolsIntersect.py +0 -0
  99. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/bed/BedtoolsMakeWindows.py +0 -0
  100. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/bed/BedtoolsMerge.py +0 -0
  101. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/cellranger/CellRangerCount.py +0 -0
  102. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/cellranger/CellRangerSummary.R +0 -0
  103. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/cellranger/CellRangerVdj.py +0 -0
  104. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/cnv/AneuploidyScore.R +0 -0
  105. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/cnv/AneuploidyScoreSummary.R +0 -0
  106. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/cnv/TMADScore.R +0 -0
  107. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/cnv/TMADScoreSummary.R +0 -0
  108. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/cnvkit/CNVkitAccess.py +0 -0
  109. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/cnvkit/CNVkitAutobin.py +0 -0
  110. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/cnvkit/CNVkitBatch.py +0 -0
  111. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/cnvkit/CNVkitCall.py +0 -0
  112. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/cnvkit/CNVkitCoverage.py +0 -0
  113. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/cnvkit/CNVkitDiagram.py +0 -0
  114. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/cnvkit/CNVkitFix.py +0 -0
  115. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/cnvkit/CNVkitGuessBaits.py +0 -0
  116. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/cnvkit/CNVkitHeatmap.py +0 -0
  117. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/cnvkit/CNVkitReference.py +0 -0
  118. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/cnvkit/CNVkitScatter.py +0 -0
  119. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/cnvkit/CNVkitSegment.py +0 -0
  120. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/cnvkit/guess_baits.py +0 -0
  121. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/delim/RowsBinder.R +0 -0
  122. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/delim/SampleInfo.R +0 -0
  123. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/gene/GeneNameConversion.R +0 -0
  124. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/gene/GenePromoters.R +0 -0
  125. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/gsea/Enrichr.R +0 -0
  126. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/gsea/FGSEA.R +0 -0
  127. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/gsea/GSEA.R +0 -0
  128. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/gsea/PreRank.R +0 -0
  129. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/misc/Config2File.py +0 -0
  130. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/misc/Plot.R +0 -0
  131. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/misc/Shell.sh +0 -0
  132. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/misc/Str2File.py +0 -0
  133. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/plot/Heatmap.R +0 -0
  134. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/plot/Manhattan.R +0 -0
  135. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/plot/QQPlot.R +0 -0
  136. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/plot/ROC.R +0 -0
  137. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/plot/Scatter.R +0 -0
  138. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/plot/VennDiagram.R +0 -0
  139. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/protein/MMCIF2PDB.py +0 -0
  140. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/protein/PDB2Fasta.py +0 -0
  141. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/protein/Prodigy.py +0 -0
  142. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/protein/ProdigySummary.R +0 -0
  143. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/protein/RMSD.py +0 -0
  144. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/regulatory/MotifAffinityTest.R +0 -0
  145. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/regulatory/MotifAffinityTest_AtSNP.R +0 -0
  146. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/regulatory/MotifAffinityTest_MotifBreakR.R +0 -0
  147. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/regulatory/MotifScan.py +0 -0
  148. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/regulatory/VariantMotifPlot.R +0 -0
  149. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/regulatory/motifs-common.R +0 -0
  150. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/rnaseq/Simulation-ESCO.R +0 -0
  151. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/rnaseq/Simulation-RUVcorr.R +0 -0
  152. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/rnaseq/Simulation.R +0 -0
  153. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/rnaseq/UnitConversion.R +0 -0
  154. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/scrna/AnnData2Seurat.R +0 -0
  155. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/scrna/CCPlotR-patch.R +0 -0
  156. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/scrna/CellCellCommunication.py +0 -0
  157. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/scrna/CellCellCommunicationPlots.R +0 -0
  158. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/scrna/CellTypeAnnotation-celltypist.R +0 -0
  159. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/scrna/CellTypeAnnotation-direct.R +0 -0
  160. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/scrna/CellTypeAnnotation-hitype.R +0 -0
  161. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/scrna/CellTypeAnnotation-sccatch.R +0 -0
  162. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/scrna/CellTypeAnnotation-sctype.R +0 -0
  163. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/scrna/CellTypeAnnotation.R +0 -0
  164. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/scrna/CellsDistribution.R +0 -0
  165. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/scrna/DimPlots.R +0 -0
  166. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/scrna/ExprImputation-alra.R +0 -0
  167. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/scrna/ExprImputation-rmagic.R +0 -0
  168. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/scrna/ExprImputation-scimpute.R +0 -0
  169. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/scrna/ExprImputation.R +0 -0
  170. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/scrna/LoomTo10X.R +0 -0
  171. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/scrna/MetaMarkers.R +0 -0
  172. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/scrna/ModuleScoreCalculator.R +0 -0
  173. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/scrna/RadarPlots.R +0 -0
  174. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/scrna/SCImpute.R +0 -0
  175. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/scrna/SCP-plot.R +0 -0
  176. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/scrna/ScSimulation.R +0 -0
  177. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/scrna/ScVelo.py +0 -0
  178. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/scrna/Seurat2AnnData.R +0 -0
  179. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/scrna/SeuratClusterStats-clustree.R +0 -0
  180. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/scrna/SeuratClusterStats-dimplots.R +0 -0
  181. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/scrna/SeuratClusterStats-ngenes.R +0 -0
  182. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/scrna/SeuratClusterStats-stats.R +0 -0
  183. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/scrna/SeuratClusterStats.R +0 -0
  184. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/scrna/SeuratClustering.R +0 -0
  185. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/scrna/SeuratFilter.R +0 -0
  186. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/scrna/SeuratLoading.R +0 -0
  187. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/scrna/SeuratMap2Ref.R +0 -0
  188. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/scrna/SeuratMetadataMutater.R +0 -0
  189. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/scrna/SeuratPreparing.R +0 -0
  190. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/scrna/SeuratSplit.R +0 -0
  191. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/scrna/SeuratSubClustering.R +0 -0
  192. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/scrna/SeuratSubset.R +0 -0
  193. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/scrna/SeuratTo10X.R +0 -0
  194. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/scrna/Slingshot.R +0 -0
  195. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/scrna/Subset10X.R +0 -0
  196. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/scrna/celltypist-wrapper.py +0 -0
  197. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/scrna/sctype.R +0 -0
  198. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/scrna/seurat_anndata_conversion.py +0 -0
  199. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/scrna_metabolic_landscape/MetabolicFeatures.R +0 -0
  200. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/scrna_metabolic_landscape/MetabolicPathwayActivity.R +0 -0
  201. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/scrna_metabolic_landscape/MetabolicPathwayHeterogeneity.R +0 -0
  202. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/snp/MatrixEQTL.R +0 -0
  203. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/snp/Plink2GTMat.py +0 -0
  204. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/snp/PlinkCallRate.R +0 -0
  205. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/snp/PlinkFilter.py +0 -0
  206. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/snp/PlinkFreq.R +0 -0
  207. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/snp/PlinkFromVcf.py +0 -0
  208. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/snp/PlinkHWE.R +0 -0
  209. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/snp/PlinkHet.R +0 -0
  210. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/snp/PlinkIBD.R +0 -0
  211. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/snp/PlinkSimulation.py +0 -0
  212. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/snp/PlinkUpdateName.py +0 -0
  213. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/stats/ChowTest.R +0 -0
  214. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/stats/DiffCoexpr.R +0 -0
  215. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/stats/LiquidAssoc.R +0 -0
  216. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/stats/Mediation.R +0 -0
  217. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/stats/MetaPvalue.R +0 -0
  218. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/stats/MetaPvalue1.R +0 -0
  219. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/tcgamaf/Maf2Vcf.py +0 -0
  220. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/tcgamaf/MafAddChr.py +0 -0
  221. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/tcgamaf/maf2vcf.pl +0 -0
  222. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/tcr/Attach2Seurat.R +0 -0
  223. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/tcr/CDR3AAPhyschem.R +0 -0
  224. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/tcr/CloneResidency.R +0 -0
  225. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/tcr/CloneSizeQQPlot.R +0 -0
  226. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/tcr/GIANA/GIANA.py +0 -0
  227. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/tcr/GIANA/GIANA4.py +0 -0
  228. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/tcr/GIANA/Imgt_Human_TRBV.fasta +0 -0
  229. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/tcr/GIANA/query.py +0 -0
  230. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/tcr/Immunarch-basic.R +0 -0
  231. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/tcr/Immunarch-clonality.R +0 -0
  232. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/tcr/Immunarch-diversity.R +0 -0
  233. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/tcr/Immunarch-geneusage.R +0 -0
  234. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/tcr/Immunarch-kmer.R +0 -0
  235. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/tcr/Immunarch-overlap.R +0 -0
  236. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/tcr/Immunarch-spectratyping.R +0 -0
  237. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/tcr/Immunarch-tracking.R +0 -0
  238. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/tcr/Immunarch-vjjunc.R +0 -0
  239. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/tcr/Immunarch.R +0 -0
  240. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/tcr/Immunarch2VDJtools.R +0 -0
  241. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/tcr/ImmunarchFilter.R +0 -0
  242. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/tcr/ImmunarchLoading.R +0 -0
  243. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/tcr/ImmunarchSplitIdents.R +0 -0
  244. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/tcr/SampleDiversity.R +0 -0
  245. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/tcr/ScRepLoading.R +0 -0
  246. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/tcr/TCRClusterStats.R +0 -0
  247. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/tcr/TCRClustering.R +0 -0
  248. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/tcr/TCRDock.py +0 -0
  249. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/tcr/TESSA.R +0 -0
  250. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/tcr/TESSA_source/Atchley_factors.csv +0 -0
  251. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/tcr/TESSA_source/BriseisEncoder.py +0 -0
  252. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/tcr/TESSA_source/MCMC_control.R +0 -0
  253. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/tcr/TESSA_source/TrainedEncoder.h5 +0 -0
  254. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/tcr/TESSA_source/fixed_b.csv +0 -0
  255. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/tcr/TESSA_source/initialization.R +0 -0
  256. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/tcr/TESSA_source/post_analysis.R +0 -0
  257. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/tcr/TESSA_source/real_data.R +0 -0
  258. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/tcr/TESSA_source/update.R +0 -0
  259. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/tcr/TESSA_source/utility.R +0 -0
  260. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/tcr/VJUsage.R +0 -0
  261. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/tcr/immunarch-patched.R +0 -0
  262. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/tcr/vdjtools-patch.sh +0 -0
  263. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/vcf/BcftoolsAnnotate.py +0 -0
  264. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/vcf/BcftoolsFilter.py +0 -0
  265. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/vcf/BcftoolsMerge.py +0 -0
  266. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/vcf/BcftoolsSort.py +0 -0
  267. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/vcf/BcftoolsView.py +0 -0
  268. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/vcf/TruvariBench.sh +0 -0
  269. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/vcf/TruvariBenchSummary.R +0 -0
  270. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/vcf/TruvariConsistency.R +0 -0
  271. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/vcf/Vcf2Bed.py +0 -0
  272. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/vcf/VcfAnno.py +0 -0
  273. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/vcf/VcfDownSample.sh +0 -0
  274. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/vcf/VcfFilter.py +0 -0
  275. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/vcf/VcfFix.py +0 -0
  276. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/vcf/VcfFix_utils.py +0 -0
  277. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/vcf/VcfIndex.py +0 -0
  278. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/vcf/VcfIntersect.py +0 -0
  279. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/vcf/VcfLiftOver.sh +0 -0
  280. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/vcf/VcfSplitSamples.py +0 -0
  281. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/vcf/bcftools_utils.py +0 -0
  282. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/web/Download.py +0 -0
  283. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/web/DownloadList.py +0 -0
  284. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/web/GCloudStorageDownloadBucket.py +0 -0
  285. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/web/GCloudStorageDownloadFile.py +0 -0
  286. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/scripts/web/gcloud_common.py +0 -0
  287. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/utils/__init__.py +0 -0
  288. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/utils/common_docstrs.py +0 -0
  289. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/utils/gene.py +0 -0
  290. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/utils/misc.py +0 -0
  291. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/utils/reference.py +0 -0
  292. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/utils/reporter.py +0 -0
  293. {biopipen-0.34.0 → biopipen-0.34.2}/biopipen/utils/vcf.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: biopipen
3
- Version: 0.34.0
3
+ Version: 0.34.2
4
4
  Summary: Bioinformatics processes/pipelines that can be run from `pipen run`
5
5
  License: MIT
6
6
  Author: pwwang
@@ -0,0 +1 @@
1
+ __version__ = "0.34.2"
@@ -61,7 +61,8 @@ class SeuratPreparing(Proc):
61
61
  Those paths should be either paths to directoies containing `matrix.mtx`,
62
62
  `barcodes.tsv` and `features.tsv` files that can be loaded by
63
63
  [`Seurat::Read10X()`](https://satijalab.org/seurat/reference/read10x),
64
- or paths to `h5` files that can be loaded by
64
+ or paths of loom files that can be loaded by `SeuratDisk::LoadLoom()`, or paths to
65
+ `h5` files that can be loaded by
65
66
  [`Seurat::Read10X_h5()`](https://satijalab.org/seurat/reference/read10x_h5).
66
67
 
67
68
  Each sample will be loaded individually and then merged into one `Seurat` object, and then perform QC.
@@ -110,9 +111,11 @@ class SeuratPreparing(Proc):
110
111
  min_cells (type=int): The minimum number of cells that a gene must be
111
112
  expressed in to be kept. This is used in `Seurat::CreateSeuratObject()`.
112
113
  Futher QC (`envs.cell_qc`, `envs.gene_qc`) will be performed after this.
114
+ It doesn't work when data is loaded from loom files.
113
115
  min_features (type=int): The minimum number of features that a cell must
114
116
  express to be kept. This is used in `Seurat::CreateSeuratObject()`.
115
117
  Futher QC (`envs.cell_qc`, `envs.gene_qc`) will be performed after this.
118
+ It doesn't work when data is loaded from loom files.
116
119
  cell_qc: Filter expression to filter cells, using
117
120
  `tidyrseurat::filter()`.
118
121
  Available QC keys include `nFeature_RNA`, `nCount_RNA`,
@@ -194,8 +197,8 @@ class SeuratPreparing(Proc):
194
197
 
195
198
  SCTransform (ns): Arguments for [`SCTransform()`](https://satijalab.org/seurat/reference/sctransform).
196
199
  `object` is specified internally, and `-` in the key will be replaced with `.`.
197
- - `return-only-var-genes`: Whether to return only variable genes.
198
- - `min_cells`: The minimum number of cells that a gene must be expressed in to be kept.
200
+ - return-only-var-genes: Whether to return only variable genes.
201
+ - min_cells: The minimum number of cells that a gene must be expressed in to be kept.
199
202
  A hidden argument of `SCTransform` to filter genes.
200
203
  If you try to keep all genes in the `RNA` assay, you can set `min_cells` to `0` and
201
204
  `return-only-var-genes` to `False`.
@@ -488,7 +491,7 @@ class SeuratClusterStats(Proc):
488
491
 
489
492
  ```toml
490
493
  [SeuratClusterStats.envs.stats]
491
- nCells_Sample = { group-by = "Sample" }
494
+ nCells_Sample = { group_by = "Sample" }
492
495
  ```
493
496
 
494
497
  ![nCells_Sample](https://pwwang.github.io/immunopipe/latest/processes/images/SeuratClusterStats_nCells_Sample.png){: width="80%" }
@@ -512,8 +515,6 @@ class SeuratClusterStats(Proc):
512
515
  ```toml
513
516
  [SeuratClusterStats.envs.dimplots.Idents]
514
517
  label = true
515
- label-box = true
516
- repel = true
517
518
  ```
518
519
 
519
520
  ![dimplots](https://pwwang.github.io/immunopipe/latest/processes/images/SeuratClusterStats_dimplots.png){: width="80%" }
@@ -587,9 +588,11 @@ class SeuratClusterStats(Proc):
587
588
  ngenes (type=json): The number of genes expressed in each cell.
588
589
  Keys are the names of the plots and values are the dicts inherited from `env.ngenes_defaults`.
589
590
  features_defaults (ns): The default parameters for `features`.
590
- - features: The features to plot.
591
+ - features (type=auto): The features to plot.
591
592
  It can be either a string with comma separated features, a list of features, a file path with `file://` prefix with features
592
593
  (one per line), or an integer to use the top N features from `VariantFeatures(srtobj)`.
594
+ It can also be a dict with the keys as the feature group names and the values as the features, which
595
+ is used for heatmap to group the features.
593
596
  - order_by (type=auto): The order of the clusters to show on the plot.
594
597
  An expression passed to `dplyr::arrange()` on the grouped meta data frame (by `ident`).
595
598
  For example, you can order the clusters by the activation score of
@@ -1002,11 +1005,11 @@ class DimPlots(Proc):
1002
1005
  class MarkersFinder(Proc):
1003
1006
  """Find markers between different groups of cells
1004
1007
 
1005
- When only `group-by` is specified as `"seurat_clusters"` in
1008
+ When only `group_by` is specified as `"seurat_clusters"` in
1006
1009
  `envs.cases`, the markers will be found for all the clusters.
1007
1010
 
1008
1011
  You can also find the differentially expressed genes between
1009
- any two groups of cells by setting `group-by` to a different
1012
+ any two groups of cells by setting `group_by` to a different
1010
1013
  column name in metadata. Follow `envs.cases` for more details.
1011
1014
 
1012
1015
  Input:
@@ -1023,16 +1026,16 @@ class MarkersFinder(Proc):
1023
1026
  * Used in `future::plan(strategy = "multicore", workers = <ncores>)` to parallelize some Seurat procedures.
1024
1027
  * See also: <https://satijalab.org/seurat/articles/future_vignette.html>
1025
1028
  mutaters (type=json): The mutaters to mutate the metadata
1026
- group-by: The column name in metadata to group the cells.
1027
- If only `group-by` is specified, and `ident-1` and `ident-2` are
1029
+ group_by: The column name in metadata to group the cells.
1030
+ If only `group_by` is specified, and `ident-1` and `ident-2` are
1028
1031
  not specified, markers will be found for all groups in this column
1029
1032
  in the manner of "group vs rest" comparison.
1030
1033
  `NA` group will be ignored.
1031
1034
  If `None`, `Seurat::Idents(srtobj)` will be used, which is usually
1032
1035
  `"seurat_clusters"` after unsupervised clustering.
1033
- ident-1: The first group of cells to compare
1034
- When this is empty, the comparisons will be expanded to each group v.s. the rest of the cells in `group-by`.
1035
- ident-2: The second group of cells to compare
1036
+ ident_1: The first group of cells to compare
1037
+ When this is empty, the comparisons will be expanded to each group v.s. the rest of the cells in `group_by`.
1038
+ ident_2: The second group of cells to compare
1036
1039
  If not provided, the rest of the cells are used for `ident-2`.
1037
1040
  each: The column name in metadata to separate the cells into different
1038
1041
  cases.
@@ -1082,6 +1085,16 @@ class MarkersFinder(Proc):
1082
1085
  - <more>: Other arguments passed to [`scplotter::FeatureStatPlot()`](https://pwwang.github.io/scplotter/reference/FeatureStatPlot.html).
1083
1086
  allmarker_plots (type=json): All marker plot cases.
1084
1087
  The keys are the names of the cases and the values are the dicts inherited from `allmarker_plots_defaults`.
1088
+ allenrich_plots_defaults (ns): Default options for the plots to generate for the enrichment analysis.
1089
+ - plot_type: The type of the plot.
1090
+ - devpars (ns): The device parameters for the plots.
1091
+ - res (type=int): The resolution of the plots.
1092
+ - height (type=int): The height of the plots.
1093
+ - width (type=int): The width of the plots.
1094
+ - <more>: See <https://pwwang.github.io/scplotter/reference/EnrichmentPlot.html>.
1095
+ allenrich_plots (type=json): Cases of the plots to generate for the enrichment analysis.
1096
+ The keys are the names of the cases and the values are the dicts inherited from `allenrich_plots_defaults`.
1097
+ The cases under `envs.cases` can inherit this options.
1085
1098
  marker_plots_defaults (ns): Default options for the plots to generate for the markers.
1086
1099
  - plot_type: The type of the plot.
1087
1100
  See <https://pwwang.github.io/scplotter/reference/FeatureStatPlot.html>.
@@ -1149,9 +1162,9 @@ class MarkersFinder(Proc):
1149
1162
  envs = {
1150
1163
  "ncores": config.misc.ncores,
1151
1164
  "mutaters": {},
1152
- "group-by": None,
1153
- "ident-1": None,
1154
- "ident-2": None,
1165
+ "group_by": None,
1166
+ "ident_1": None,
1167
+ "ident_2": None,
1155
1168
  "each": None,
1156
1169
  "dbs": ["KEGG_2021_Human", "MSigDB_Hallmark_2020"],
1157
1170
  "sigmarkers": "p_val_adj < 0.05",
@@ -1170,6 +1183,11 @@ class MarkersFinder(Proc):
1170
1183
  "genes": 10,
1171
1184
  },
1172
1185
  "allmarker_plots": {},
1186
+ "allenrich_plots_defaults": {
1187
+ "plot_type": "heatmap",
1188
+ "devpars": {"res": 100},
1189
+ },
1190
+ "allenrich_plots": {},
1173
1191
  "marker_plots_defaults": {
1174
1192
  "plot_type": None,
1175
1193
  "more_formats": [],
@@ -1221,11 +1239,11 @@ class TopExpressingGenes(Proc):
1221
1239
  Envs:
1222
1240
  mutaters (type=json): The mutaters to mutate the metadata
1223
1241
  ident: The group of cells to find the top expressing genes.
1224
- The cells will be selected by the `group-by` column with this
1242
+ The cells will be selected by the `group_by` column with this
1225
1243
  `ident` value in metadata.
1226
1244
  If not provided, the top expressing genes will be found for all
1227
- groups of cells in the `group-by` column.
1228
- group-by: The column name in metadata to group the cells.
1245
+ groups of cells in the `group_by` column.
1246
+ group_by: The column name in metadata to group the cells.
1229
1247
  each: The column name in metadata to separate the cells into different
1230
1248
  cases.
1231
1249
  dbs (list): The dbs to do enrichment analysis for significant
@@ -1268,7 +1286,7 @@ class TopExpressingGenes(Proc):
1268
1286
  envs = {
1269
1287
  "mutaters": {},
1270
1288
  "ident": None,
1271
- "group-by": None,
1289
+ "group_by": None,
1272
1290
  "each": None,
1273
1291
  "dbs": ["KEGG_2021_Human", "MSigDB_Hallmark_2020"],
1274
1292
  "n": 250,
@@ -1285,7 +1303,7 @@ class TopExpressingGenes(Proc):
1285
1303
  "cases": {},
1286
1304
  }
1287
1305
  plugin_opts = {
1288
- "report": "file://../reports/scrna/TopExpressingGenes.svelte",
1306
+ "report": "file://../reports/common.svelte",
1289
1307
  "report_paging": 8,
1290
1308
  }
1291
1309
 
@@ -1589,9 +1607,9 @@ class ScFGSEA(Proc):
1589
1607
  mutaters (type=json): The mutaters to mutate the metadata.
1590
1608
  The key-value pairs will be passed the `dplyr::mutate()` to mutate the metadata.
1591
1609
 
1592
- group-by: The column name in metadata to group the cells.
1593
- ident-1: The first group of cells to compare
1594
- ident-2: The second group of cells to compare, if not provided, the rest of the cells that are not `NA`s in `group-by` column are used for `ident-2`.
1610
+ group_by: The column name in metadata to group the cells.
1611
+ ident_1: The first group of cells to compare
1612
+ ident_2: The second group of cells to compare, if not provided, the rest of the cells that are not `NA`s in `group_by` column are used for `ident-2`.
1595
1613
  each: The column name in metadata to separate the cells into different subsets to do the analysis.
1596
1614
  subset: An expression to subset the cells.
1597
1615
  gmtfile: The pathways in GMT format, with the gene names/ids in the same format as the seurat object.
@@ -1617,6 +1635,15 @@ class ScFGSEA(Proc):
1617
1635
  If it is < 1, will apply it to `padj`, selecting pathways with `padj` < `top`.
1618
1636
  eps (type=float): This parameter sets the boundary for calculating the p value.
1619
1637
  See <https://rdrr.io/bioc/fgsea/man/fgseaMultilevel.html>
1638
+ alleach_plots_defaults (ns): Default options for the plots to generate for all pathways.
1639
+ - plot_type: The type of the plot, currently either dot or heatmap (default)
1640
+ - devpars (ns): The device parameters for the plots.
1641
+ - res (type=int): The resolution of the plots.
1642
+ - height (type=int): The height of the plots.
1643
+ - width (type=int): The width of the plots.
1644
+ - <more>: See <https://pwwang.github.io/biopipen.utils.R/reference/VizGSEA.html>.
1645
+ alleach_plots (type=json): Cases of the plots to generate for all pathways.
1646
+ The keys are the names of the cases and the values are the dicts inherited from `alleach_plots_defaults`.
1620
1647
  minsize (type=int): Minimal size of a gene set to test. All pathways below the threshold are excluded.
1621
1648
  maxsize (type=int): Maximal size of a gene set to test. All pathways above the threshold are excluded.
1622
1649
  rest (type=json;order=98): Rest arguments for [`fgsea()`](https://rdrr.io/bioc/fgsea/man/fgsea.html)
@@ -1639,23 +1666,28 @@ class ScFGSEA(Proc):
1639
1666
  envs = {
1640
1667
  "mutaters": {},
1641
1668
  "ncores": config.misc.ncores,
1642
- "group-by": None,
1643
- "ident-1": None,
1644
- "ident-2": None,
1669
+ "group_by": None,
1670
+ "ident_1": None,
1671
+ "ident_2": None,
1645
1672
  "each": None,
1646
1673
  "subset": None,
1647
- "gmtfile": "",
1674
+ "gmtfile": "KEGG_2021_Human",
1648
1675
  "method": "s2n",
1649
1676
  "top": 20,
1650
1677
  "minsize": 10,
1651
1678
  "maxsize": 100,
1652
1679
  "eps": 0,
1680
+ "alleach_plots_defaults": {
1681
+ "plot_type": "heatmap",
1682
+ "devpars": {"res": 100},
1683
+ },
1684
+ "alleach_plots": {},
1653
1685
  "rest": {},
1654
1686
  "cases": {},
1655
1687
  }
1656
1688
  script = "file://../scripts/scrna/ScFGSEA.R"
1657
1689
  plugin_opts = {
1658
- "report": "file://../reports/scrna/ScFGSEA.svelte",
1690
+ "report": "file://../reports/common.svelte",
1659
1691
  "report_paging": 8,
1660
1692
  }
1661
1693
 
@@ -2647,3 +2679,217 @@ class LoomTo10X(Proc):
2647
2679
  output = "outdir:dir:{{in.loomfile | stem}}.10X"
2648
2680
  lang = config.lang.rscript
2649
2681
  script = "file://../scripts/scrna/LoomTo10X.R"
2682
+
2683
+
2684
+ class PseudoBulkDEG(Proc):
2685
+ """Pseduo-bulk differential gene expression analysis
2686
+
2687
+ This process performs differential gene expression analysis, instead of
2688
+ on single-cell level, on the pseudo-bulk data, aggregated from the single-cell data.
2689
+
2690
+ Input:
2691
+ sobjfile: The seurat object file in RDS or qs/qs2 format.
2692
+
2693
+ Output:
2694
+ outdir: The output containing the results of the differential gene expression
2695
+ analysis.
2696
+
2697
+ Envs:
2698
+ mutaters (type=json): Mutaters to mutate the metadata of the
2699
+ seurat object. Keys are the new column names and values are the
2700
+ expressions to mutate the columns. These new columns can be
2701
+ used to define your cases.
2702
+ each: The column name in metadata to separate the cells into different cases.
2703
+ When specified, the case will be expanded to multiple cases for
2704
+ each value in the column.
2705
+ subset: An expression in string to subset the cells.
2706
+ aggregate_by: The column names in metadata to aggregate the cells.
2707
+ layer: The layer to pull and aggregate the data.
2708
+ assay: The assay to pull and aggregate the data.
2709
+ error (flag): Error out if no/not enough markers are found or no pathways are enriched.
2710
+ If `False`, empty results will be returned.
2711
+ group_by: The column name in metadata to group the cells.
2712
+ ident_1: The first identity to compare.
2713
+ ident_2: The second identity to compare.
2714
+ If not specified, the rest of the identities will be compared with `ident_1`.
2715
+ paired_by: The column name in metadata to mark the paired samples.
2716
+ For example, subject. If specified, the paired test will be performed.
2717
+ dbs (list): The databases to use for enrichment analysis.
2718
+ The databases are passed to `biopipen.utils::Enrichr()` to do the
2719
+ enrichment analysis. The default databases are `KEGG_2021_Human` and
2720
+ `MSigDB_Hallmark_2020`.
2721
+ See <https://maayanlab.cloud/Enrichr/#libraries> for the available
2722
+ libraries.
2723
+ sigmarkers: An expression passed to `dplyr::filter()` to filter the
2724
+ significant markers for enrichment analysis.
2725
+ The default is `p_val_adj < 0.05`.
2726
+ If `tool = 'DESeq2'`, the variables that can be used for filtering
2727
+ are: `baseMean`, `log2FC`, `lfcSE`, `stat`, `p_val`, `p_val_adj`.
2728
+ If `tool = 'edgeR'`, the variables that can be used for filtering
2729
+ are: `logCPM`, `log2FC`, `LR`, `p_val`, `p_val_adj`.
2730
+ enrich_style (choice): The style of the enrichment analysis.
2731
+ - enrichr: Use `enrichr`-style for the enrichment analysis.
2732
+ - clusterProfiler: Use `clusterProfiler`-style for the enrichment analysis.
2733
+ allmarker_plots_defaults (ns): Default options for the plots for all markers when `ident-1` is not specified.
2734
+ - plot_type: The type of the plot.
2735
+ See <https://pwwang.github.io/scplotter/reference/FeatureStatPlot.html>.
2736
+ Available types are `violin`, `box`, `bar`, `ridge`, `dim`, `heatmap` and `dot`.
2737
+ - more_formats (type=list): The extra formats to save the plot in.
2738
+ - save_code (flag): Whether to save the code to generate the plot.
2739
+ - devpars (ns): The device parameters for the plots.
2740
+ - res (type=int): The resolution of the plots.
2741
+ - height (type=int): The height of the plots.
2742
+ - width (type=int): The width of the plots.
2743
+ - order_by: an expression to order the markers, passed by `dplyr::arrange()`.
2744
+ - genes: The number of top genes to show or an expression passed to `dplyr::filter()` to filter the genes.
2745
+ - <more>: Other arguments passed to [`scplotter::FeatureStatPlot()`](https://pwwang.github.io/scplotter/reference/FeatureStatPlot.html).
2746
+ allmarker_plots (type=json): All marker plot cases.
2747
+ The keys are the names of the cases and the values are the dicts inherited from `allmarker_plots_defaults`.
2748
+ allenrich_plots_defaults (ns): Default options for the plots to generate for the enrichment analysis.
2749
+ - plot_type: The type of the plot.
2750
+ - devpars (ns): The device parameters for the plots.
2751
+ - res (type=int): The resolution of the plots.
2752
+ - height (type=int): The height of the plots.
2753
+ - width (type=int): The width of the plots.
2754
+ - <more>: See <https://pwwang.github.io/scplotter/reference/EnrichmentPlot.html>.
2755
+ allenrich_plots (type=json): Cases of the plots to generate for the enrichment analysis.
2756
+ The keys are the names of the cases and the values are the dicts inherited from `allenrich_plots_defaults`.
2757
+ The cases under `envs.cases` can inherit this options.
2758
+ marker_plots_defaults (ns): Default options for the plots to generate for the markers.
2759
+ - plot_type: The type of the plot.
2760
+ See <https://pwwang.github.io/scplotter/reference/FeatureStatPlot.html>.
2761
+ Available types are `violin`, `box`, `bar`, `ridge`, `dim`, `heatmap` and `dot`.
2762
+ There are two additional types available - `volcano_pct` and `volcano_log2fc`.
2763
+ - more_formats (type=list): The extra formats to save the plot in.
2764
+ - save_code (flag): Whether to save the code to generate the plot.
2765
+ - devpars (ns): The device parameters for the plots.
2766
+ - res (type=int): The resolution of the plots.
2767
+ - height (type=int): The height of the plots.
2768
+ - width (type=int): The width of the plots.
2769
+ - order_by: an expression to order the markers, passed by `dplyr::arrange()`.
2770
+ - genes: The number of top genes to show or an expression passed to `dplyr::filter()` to filter the genes.
2771
+ - <more>: Other arguments passed to [`scplotter::FeatureStatPlot()`](https://pwwang.github.io/scplotter/reference/FeatureStatPlot.html).
2772
+ If `plot_type` is `volcano_pct` or `volcano_log2fc`, they will be passed to
2773
+ [`scplotter::VolcanoPlot()`](https://pwwang.github.io/plotthis/reference/VolcanoPlot.html).
2774
+ marker_plots (type=json): Cases of the plots to generate for the markers.
2775
+ Plot cases. The keys are the names of the cases and the values are the dicts inherited from `marker_plots_defaults`.
2776
+ The cases under `envs.cases` can inherit this options.
2777
+ enrich_plots_defaults (ns): Default options for the plots to generate for the enrichment analysis.
2778
+ - plot_type: The type of the plot.
2779
+ See <https://pwwang.github.io/scplotter/reference/EnrichmentPlot.html>.
2780
+ Available types are `bar`, `dot`, `lollipop`, `network`, `enrichmap` and `wordcloud`.
2781
+ - more_formats (type=list): The extra formats to save the plot in.
2782
+ - save_code (flag): Whether to save the code to generate the plot.
2783
+ - devpars (ns): The device parameters for the plots.
2784
+ - res (type=int): The resolution of the plots.
2785
+ - height (type=int): The height of the plots.
2786
+ - width (type=int): The width of the plots.
2787
+ - <more>: See <https://pwwang.github.io/scplotter/reference/EnrichmentPlot.htmll>.
2788
+ enrich_plots (type=json): Cases of the plots to generate for the enrichment analysis.
2789
+ The keys are the names of the cases and the values are the dicts inherited from `enrich_plots_defaults`.
2790
+ The cases under `envs.cases` can inherit this options.
2791
+ overlaps_defaults (ns): Default options for investigating the overlapping of significant markers between different cases or comparisons.
2792
+ This means either `ident-1` should be empty, so that they can be expanded to multiple comparisons.
2793
+ - sigmarkers: The expression to filter the significant markers for each case.
2794
+ If not provided, `envs.sigmarkers` will be used.
2795
+ - plot_type (choice): The type of the plot to generate for the overlaps.
2796
+ - venn: Use `plotthis::VennDiagram()`.
2797
+ - upset: Use `plotthis::UpsetPlot()`.
2798
+ - more_formats (type=list): The extra formats to save the plot in.
2799
+ - save_code (flag): Whether to save the code to generate the plot.
2800
+ - devpars (ns): The device parameters for the plots.
2801
+ - res (type=int): The resolution of the plots.
2802
+ - height (type=int): The height of the plots.
2803
+ - width (type=int): The width of the plots.
2804
+ - <more>: More arguments pased to `plotthis::VennDiagram()`
2805
+ (<https://pwwang.github.io/plotthis/reference/venndiagram1.html>)
2806
+ or `plotthis::UpsetPlot()`
2807
+ (<https://pwwang.github.io/plotthis/reference/upsetplot1.html>)
2808
+ overlaps (type=json): Cases for investigating the overlapping of significant markers between different cases or comparisons.
2809
+ The keys are the names of the cases and the values are the dicts inherited from `overlaps_defaults`.
2810
+ There are two situations that we can perform overlaps:
2811
+ 1. If `ident-1` is not specified, the overlaps can be performed between different comparisons.
2812
+ 2. If `each` is specified, the overlaps can be performed between different cases, where in each case, `ident-1` must be specified.
2813
+ tool (choice): The method to use for the differential expression analysis.
2814
+ - DESeq2: Use DESeq2 for the analysis.
2815
+ - edgeR: Use edgeR for the analysis.
2816
+ plots_defaults (ns): The default parameters for the plots.
2817
+ - <more>: Parameters passed to `biopipen.utils::VizBulkDEGs()`.
2818
+ See: <https://pwwang.github.io/biopipen.utils.R/reference/VizBulkDEGs.html>
2819
+ plots (type=json): The parameters for the plots.
2820
+ The keys are the names of the plots and the values are the parameters
2821
+ for the plots. The parameters will override the defaults in `plots_defaults`.
2822
+ If not specified, no plots will be generated.
2823
+ cases (type=json): The cases for the analysis.
2824
+ The keys are the names of the cases and the values are the arguments for
2825
+ the analysis. The arguments include the ones inherited from `envs`.
2826
+ If no cases are specified, a default case will be added with
2827
+ the name `DEG Analysis` and the default values specified above.
2828
+ """ # noqa: E501
2829
+ input = "sobjfile:file"
2830
+ output = "outdir:dir:{{in.sobjfile | stem}}.pseudobulk_deg"
2831
+ lang = config.lang.rscript
2832
+ script = "file://../scripts/scrna/PseudoBulkDEG.R"
2833
+ envs = {
2834
+ "mutaters": {},
2835
+ "each": None,
2836
+ "subset": None,
2837
+ "aggregate_by": None,
2838
+ "layer": "counts",
2839
+ "assay": "RNA",
2840
+ "error": True,
2841
+ "group_by": None,
2842
+ "ident_1": None,
2843
+ "ident_2": None,
2844
+ "paired_by": None,
2845
+ "tool": "DESeq2",
2846
+ "dbs": ["KEGG_2021_Human", "MSigDB_Hallmark_2020"],
2847
+ "sigmarkers": "p_val_adj < 0.05",
2848
+ "enrich_style": "enrichr",
2849
+ "allmarker_plots_defaults": {
2850
+ "plot_type": None,
2851
+ "more_formats": [],
2852
+ "save_code": False,
2853
+ "devpars": {"res": 100},
2854
+ "order_by": "desc(abs(log2FC))",
2855
+ "genes": 10,
2856
+ },
2857
+ "allmarker_plots": {},
2858
+ "allenrich_plots_defaults": {
2859
+ "plot_type": "heatmap",
2860
+ "devpars": {"res": 100},
2861
+ },
2862
+ "allenrich_plots": {},
2863
+ "marker_plots_defaults": {
2864
+ "plot_type": None,
2865
+ "more_formats": [],
2866
+ "save_code": False,
2867
+ "devpars": {"res": 100},
2868
+ "order_by": "desc(abs(log2FC))",
2869
+ "genes": 10,
2870
+ },
2871
+ "marker_plots": {
2872
+ "Volcano Plot": {"plot_type": "volcano"},
2873
+ },
2874
+ "enrich_plots_defaults": {
2875
+ "more_formats": [],
2876
+ "save_code": False,
2877
+ "devpars": {"res": 100},
2878
+ },
2879
+ "enrich_plots": {
2880
+ "Bar Plot": {"plot_type": "bar", "ncol": 1, "top_term": 10},
2881
+ },
2882
+ "overlaps_defaults": {
2883
+ "sigmarkers": None,
2884
+ "plot_type": "venn",
2885
+ "more_formats": [],
2886
+ "save_code": False,
2887
+ "devpars": {"res": 100},
2888
+ },
2889
+ "overlaps": {},
2890
+ "cases": {},
2891
+ }
2892
+ plugin_opts = {
2893
+ "report": "file://../reports/common.svelte",
2894
+ "report_paging": 8,
2895
+ }
@@ -1756,10 +1756,10 @@ class ScRepCombiningExpression(Proc):
1756
1756
  a custom variable in the data.
1757
1757
  chain: indicate if both or a specific chain should be used
1758
1758
  e.g. "both", "TRA", "TRG", "IGH", "IGL".
1759
- group-by: The column label in the combined clones in which clone frequency will
1759
+ group_by: The column label in the combined clones in which clone frequency will
1760
1760
  be calculated. NULL or "none" will keep the format of input.data.
1761
1761
  proportion (flag): Whether to proportion (TRUE) or total frequency (FALSE) of
1762
- the clone based on the group.by variable.
1762
+ the clone based on the group_by variable.
1763
1763
  filterNA (flag): Method to subset Seurat/SCE object of barcodes without clone
1764
1764
  information
1765
1765
  cloneSize (type=json): The bins for the grouping based on proportion or
@@ -1767,7 +1767,7 @@ class ScRepCombiningExpression(Proc):
1767
1767
  If proportion is FALSE and the cloneSizes are not set high enough based on
1768
1768
  frequency, the upper limit of cloneSizes will be automatically updated.
1769
1769
  addLabel (flag): This will add a label to the frequency header, allowing the
1770
- user to try multiple group.by variables or recalculate frequencies after
1770
+ user to try multiple group_by variables or recalculate frequencies after
1771
1771
  subsetting the data.
1772
1772
  """
1773
1773
  input = "screpfile:file,srtobj:file"
@@ -1776,7 +1776,7 @@ class ScRepCombiningExpression(Proc):
1776
1776
  envs = {
1777
1777
  "cloneCall": "aa",
1778
1778
  "chain": "both",
1779
- "group-by": "Sample",
1779
+ "group_by": "Sample",
1780
1780
  "proportion": True,
1781
1781
  "filterNA": False,
1782
1782
  "cloneSize": {