biopipen 0.27.3__tar.gz → 0.27.4__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of biopipen might be problematic. Click here for more details.

Files changed (246) hide show
  1. {biopipen-0.27.3 → biopipen-0.27.4}/PKG-INFO +1 -2
  2. biopipen-0.27.4/biopipen/__init__.py +1 -0
  3. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/ns/delim.py +1 -1
  4. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/ns/plot.py +36 -0
  5. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/ns/scrna.py +9 -9
  6. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/ns/scrna_metabolic_landscape.py +3 -3
  7. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/ns/snp.py +65 -0
  8. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/ns/tcr.py +6 -6
  9. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/delim/SampleInfo.R +6 -6
  10. biopipen-0.27.4/biopipen/scripts/plot/ROC.R +88 -0
  11. biopipen-0.27.4/biopipen/scripts/snp/MatrixEQTL.R +157 -0
  12. {biopipen-0.27.3 → biopipen-0.27.4}/pyproject.toml +1 -2
  13. {biopipen-0.27.3 → biopipen-0.27.4}/setup.py +2 -3
  14. biopipen-0.27.3/biopipen/__init__.py +0 -1
  15. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/core/__init__.py +0 -0
  16. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/core/config.py +0 -0
  17. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/core/config.toml +0 -0
  18. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/core/defaults.py +0 -0
  19. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/core/filters.py +0 -0
  20. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/core/proc.py +0 -0
  21. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/core/testing.py +0 -0
  22. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/ns/__init__.py +0 -0
  23. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/ns/bam.py +0 -0
  24. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/ns/bcftools.py +0 -0
  25. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/ns/bed.py +0 -0
  26. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/ns/cellranger.py +0 -0
  27. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/ns/cellranger_pipeline.py +0 -0
  28. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/ns/cnv.py +0 -0
  29. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/ns/cnvkit.py +0 -0
  30. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/ns/cnvkit_pipeline.py +0 -0
  31. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/ns/gene.py +0 -0
  32. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/ns/gsea.py +0 -0
  33. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/ns/misc.py +0 -0
  34. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/ns/rnaseq.py +0 -0
  35. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/ns/stats.py +0 -0
  36. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/ns/tcgamaf.py +0 -0
  37. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/ns/vcf.py +0 -0
  38. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/ns/web.py +0 -0
  39. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/reports/bam/CNAClinic.svelte +0 -0
  40. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/reports/bam/CNVpytor.svelte +0 -0
  41. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/reports/bam/ControlFREEC.svelte +0 -0
  42. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/reports/cellranger/CellRangerCount.svelte +0 -0
  43. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/reports/cellranger/CellRangerSummary.svelte +0 -0
  44. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/reports/cellranger/CellRangerVdj.svelte +0 -0
  45. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/reports/cnv/AneuploidyScore.svelte +0 -0
  46. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/reports/cnv/AneuploidyScoreSummary.svelte +0 -0
  47. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/reports/cnv/TMADScoreSummary.svelte +0 -0
  48. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/reports/cnvkit/CNVkitDiagram.svelte +0 -0
  49. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/reports/cnvkit/CNVkitHeatmap.svelte +0 -0
  50. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/reports/cnvkit/CNVkitScatter.svelte +0 -0
  51. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/reports/delim/SampleInfo.svelte +0 -0
  52. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/reports/gsea/FGSEA.svelte +0 -0
  53. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/reports/gsea/GSEA.svelte +0 -0
  54. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/reports/scrna/CellsDistribution.svelte +0 -0
  55. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/reports/scrna/DimPlots.svelte +0 -0
  56. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/reports/scrna/MarkersFinder.svelte +0 -0
  57. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/reports/scrna/MetaMarkers.svelte +0 -0
  58. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/reports/scrna/RadarPlots.svelte +0 -0
  59. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/reports/scrna/ScFGSEA.svelte +0 -0
  60. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/reports/scrna/SeuratClusterStats.svelte +0 -0
  61. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/reports/scrna/SeuratMap2Ref.svelte +0 -0
  62. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/reports/scrna/SeuratPreparing.svelte +0 -0
  63. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/reports/scrna/TopExpressingGenes.svelte +0 -0
  64. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/reports/scrna_metabolic_landscape/MetabolicFeatures.svelte +0 -0
  65. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/reports/scrna_metabolic_landscape/MetabolicFeaturesIntraSubset.svelte +0 -0
  66. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/reports/scrna_metabolic_landscape/MetabolicPathwayActivity.svelte +0 -0
  67. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/reports/scrna_metabolic_landscape/MetabolicPathwayHeterogeneity.svelte +0 -0
  68. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/reports/tcr/CDR3AAPhyschem.svelte +0 -0
  69. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/reports/tcr/CloneResidency.svelte +0 -0
  70. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/reports/tcr/Immunarch.svelte +0 -0
  71. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/reports/tcr/SampleDiversity.svelte +0 -0
  72. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/reports/tcr/TCRClusterStats.svelte +0 -0
  73. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/reports/tcr/TESSA.svelte +0 -0
  74. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/reports/tcr/VJUsage.svelte +0 -0
  75. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/reports/utils/gsea.liq +0 -0
  76. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/reports/utils/misc.liq +0 -0
  77. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/reports/vcf/TruvariBenchSummary.svelte +0 -0
  78. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/reports/vcf/TruvariConsistency.svelte +0 -0
  79. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/bam/BamMerge.py +0 -0
  80. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/bam/BamSplitChroms.py +0 -0
  81. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/bam/CNAClinic.R +0 -0
  82. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/bam/CNVpytor.py +0 -0
  83. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/bam/ControlFREEC.py +0 -0
  84. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/bcftools/BcftoolsAnnotate.py +0 -0
  85. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/bcftools/BcftoolsFilter.py +0 -0
  86. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/bcftools/BcftoolsSort.py +0 -0
  87. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/bed/Bed2Vcf.py +0 -0
  88. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/bed/BedConsensus.py +0 -0
  89. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/bed/BedLiftOver.sh +0 -0
  90. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/bed/BedtoolsMerge.py +0 -0
  91. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/cellranger/CellRangerCount.py +0 -0
  92. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/cellranger/CellRangerSummary.R +0 -0
  93. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/cellranger/CellRangerVdj.py +0 -0
  94. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/cnv/AneuploidyScore.R +0 -0
  95. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/cnv/AneuploidyScoreSummary.R +0 -0
  96. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/cnv/TMADScore.R +0 -0
  97. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/cnv/TMADScoreSummary.R +0 -0
  98. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/cnvkit/CNVkitAccess.py +0 -0
  99. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/cnvkit/CNVkitAutobin.py +0 -0
  100. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/cnvkit/CNVkitBatch.py +0 -0
  101. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/cnvkit/CNVkitCall.py +0 -0
  102. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/cnvkit/CNVkitCoverage.py +0 -0
  103. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/cnvkit/CNVkitDiagram.py +0 -0
  104. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/cnvkit/CNVkitFix.py +0 -0
  105. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/cnvkit/CNVkitGuessBaits.py +0 -0
  106. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/cnvkit/CNVkitHeatmap.py +0 -0
  107. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/cnvkit/CNVkitReference.py +0 -0
  108. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/cnvkit/CNVkitScatter.py +0 -0
  109. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/cnvkit/CNVkitSegment.py +0 -0
  110. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/cnvkit/guess_baits.py +0 -0
  111. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/delim/RowsBinder.R +0 -0
  112. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/gene/GeneNameConversion.py +0 -0
  113. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/gsea/Enrichr.R +0 -0
  114. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/gsea/FGSEA.R +0 -0
  115. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/gsea/GSEA.R +0 -0
  116. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/gsea/PreRank.R +0 -0
  117. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/misc/Config2File.py +0 -0
  118. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/misc/Str2File.py +0 -0
  119. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/plot/Heatmap.R +0 -0
  120. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/plot/VennDiagram.R +0 -0
  121. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/rnaseq/Simulation-ESCO.R +0 -0
  122. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/rnaseq/Simulation-RUVcorr.R +0 -0
  123. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/rnaseq/Simulation.R +0 -0
  124. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/rnaseq/UnitConversion.R +0 -0
  125. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/scrna/AnnData2Seurat.R +0 -0
  126. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/scrna/CellTypeAnnotation-celltypist.R +0 -0
  127. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/scrna/CellTypeAnnotation-direct.R +0 -0
  128. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/scrna/CellTypeAnnotation-hitype.R +0 -0
  129. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/scrna/CellTypeAnnotation-sccatch.R +0 -0
  130. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/scrna/CellTypeAnnotation-sctype.R +0 -0
  131. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/scrna/CellTypeAnnotation.R +0 -0
  132. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/scrna/CellsDistribution.R +0 -0
  133. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/scrna/DimPlots.R +0 -0
  134. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/scrna/ExprImpution-alra.R +0 -0
  135. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/scrna/ExprImpution-rmagic.R +0 -0
  136. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/scrna/ExprImpution-scimpute.R +0 -0
  137. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/scrna/ExprImpution.R +0 -0
  138. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/scrna/MarkersFinder.R +0 -0
  139. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/scrna/MetaMarkers.R +0 -0
  140. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/scrna/ModuleScoreCalculator.R +0 -0
  141. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/scrna/RadarPlots.R +0 -0
  142. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/scrna/SCImpute.R +0 -0
  143. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/scrna/ScFGSEA.R +0 -0
  144. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/scrna/Seurat2AnnData.R +0 -0
  145. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/scrna/SeuratClusterStats-dimplots.R +0 -0
  146. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/scrna/SeuratClusterStats-features.R +0 -0
  147. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/scrna/SeuratClusterStats-hists.R +0 -0
  148. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/scrna/SeuratClusterStats-ngenes.R +0 -0
  149. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/scrna/SeuratClusterStats-stats.R +0 -0
  150. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/scrna/SeuratClusterStats.R +0 -0
  151. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/scrna/SeuratClustering.R +0 -0
  152. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/scrna/SeuratFilter.R +0 -0
  153. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/scrna/SeuratLoading.R +0 -0
  154. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/scrna/SeuratMap2Ref.R +0 -0
  155. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/scrna/SeuratMetadataMutater.R +0 -0
  156. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/scrna/SeuratPreparing.R +0 -0
  157. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/scrna/SeuratSplit.R +0 -0
  158. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/scrna/SeuratSubClustering.R +0 -0
  159. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/scrna/SeuratSubset.R +0 -0
  160. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/scrna/SeuratTo10X.R +0 -0
  161. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/scrna/TopExpressingGenes.R +0 -0
  162. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/scrna/Write10X.R +0 -0
  163. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/scrna/celltypist-wrapper.py +0 -0
  164. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/scrna/sctype.R +0 -0
  165. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/scrna_metabolic_landscape/MetabolicFeatures.R +0 -0
  166. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/scrna_metabolic_landscape/MetabolicFeaturesIntraSubset.R +0 -0
  167. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/scrna_metabolic_landscape/MetabolicPathwayActivity.R +0 -0
  168. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/scrna_metabolic_landscape/MetabolicPathwayHeterogeneity.R +0 -0
  169. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/snp/PlinkSimulation.py +0 -0
  170. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/stats/ChowTest.R +0 -0
  171. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/stats/DiffCoexpr.R +0 -0
  172. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/stats/LiquidAssoc.R +0 -0
  173. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/stats/MetaPvalue.R +0 -0
  174. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/tcgamaf/Maf2Vcf.py +0 -0
  175. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/tcgamaf/MafAddChr.py +0 -0
  176. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/tcgamaf/maf2vcf.pl +0 -0
  177. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/tcr/Attach2Seurat.R +0 -0
  178. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/tcr/CDR3AAPhyschem.R +0 -0
  179. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/tcr/CloneResidency.R +0 -0
  180. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/tcr/CloneSizeQQPlot.R +0 -0
  181. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/tcr/GIANA/GIANA.py +0 -0
  182. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/tcr/GIANA/GIANA4.py +0 -0
  183. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/tcr/GIANA/Imgt_Human_TRBV.fasta +0 -0
  184. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/tcr/GIANA/query.py +0 -0
  185. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/tcr/Immunarch-basic.R +0 -0
  186. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/tcr/Immunarch-clonality.R +0 -0
  187. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/tcr/Immunarch-diversity.R +0 -0
  188. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/tcr/Immunarch-geneusage.R +0 -0
  189. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/tcr/Immunarch-kmer.R +0 -0
  190. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/tcr/Immunarch-overlap.R +0 -0
  191. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/tcr/Immunarch-spectratyping.R +0 -0
  192. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/tcr/Immunarch-tracking.R +0 -0
  193. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/tcr/Immunarch-vjjunc.R +0 -0
  194. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/tcr/Immunarch.R +0 -0
  195. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/tcr/Immunarch2VDJtools.R +0 -0
  196. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/tcr/ImmunarchFilter.R +0 -0
  197. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/tcr/ImmunarchLoading.R +0 -0
  198. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/tcr/ImmunarchSplitIdents.R +0 -0
  199. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/tcr/SampleDiversity.R +0 -0
  200. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/tcr/TCRClusterStats.R +0 -0
  201. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/tcr/TCRClustering.R +0 -0
  202. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/tcr/TCRDock.py +0 -0
  203. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/tcr/TESSA.R +0 -0
  204. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/tcr/TESSA_source/Atchley_factors.csv +0 -0
  205. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/tcr/TESSA_source/BriseisEncoder.py +0 -0
  206. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/tcr/TESSA_source/MCMC_control.R +0 -0
  207. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/tcr/TESSA_source/TrainedEncoder.h5 +0 -0
  208. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/tcr/TESSA_source/fixed_b.csv +0 -0
  209. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/tcr/TESSA_source/initialization.R +0 -0
  210. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/tcr/TESSA_source/post_analysis.R +0 -0
  211. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/tcr/TESSA_source/real_data.R +0 -0
  212. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/tcr/TESSA_source/update.R +0 -0
  213. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/tcr/TESSA_source/utility.R +0 -0
  214. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/tcr/VJUsage.R +0 -0
  215. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/tcr/immunarch-patched.R +0 -0
  216. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/tcr/vdjtools-patch.sh +0 -0
  217. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/vcf/TruvariBench.sh +0 -0
  218. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/vcf/TruvariBenchSummary.R +0 -0
  219. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/vcf/TruvariConsistency.R +0 -0
  220. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/vcf/Vcf2Bed.py +0 -0
  221. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/vcf/VcfAnno.py +0 -0
  222. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/vcf/VcfDownSample.sh +0 -0
  223. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/vcf/VcfFilter.py +0 -0
  224. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/vcf/VcfFix.py +0 -0
  225. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/vcf/VcfFix_utils.py +0 -0
  226. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/vcf/VcfIndex.py +0 -0
  227. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/vcf/VcfIntersect.py +0 -0
  228. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/vcf/VcfLiftOver.sh +0 -0
  229. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/vcf/VcfSplitSamples.py +0 -0
  230. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/web/Download.py +0 -0
  231. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/scripts/web/DownloadList.py +0 -0
  232. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/utils/__init__.py +0 -0
  233. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/utils/caching.R +0 -0
  234. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/utils/common_docstrs.py +0 -0
  235. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/utils/gene.R +0 -0
  236. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/utils/gene.py +0 -0
  237. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/utils/gsea.R +0 -0
  238. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/utils/io.R +0 -0
  239. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/utils/misc.R +0 -0
  240. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/utils/misc.py +0 -0
  241. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/utils/mutate_helpers.R +0 -0
  242. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/utils/plot.R +0 -0
  243. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/utils/reference.py +0 -0
  244. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/utils/rnaseq.R +0 -0
  245. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/utils/single_cell.R +0 -0
  246. {biopipen-0.27.3 → biopipen-0.27.4}/biopipen/utils/vcf.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: biopipen
3
- Version: 0.27.3
3
+ Version: 0.27.4
4
4
  Summary: Bioinformatics processes/pipelines that can be run from `pipen run`
5
5
  License: MIT
6
6
  Author: pwwang
@@ -20,4 +20,3 @@ Requires-Dist: pipen-filters (>=0.12,<0.13)
20
20
  Requires-Dist: pipen-poplog (>=0.1.2,<0.2.0)
21
21
  Requires-Dist: pipen-runinfo (>=0.6,<0.7) ; extra == "runinfo"
22
22
  Requires-Dist: pipen-verbose (>=0.11,<0.12)
23
- Requires-Dist: pyyaml-include (==1.*)
@@ -0,0 +1 @@
1
+ __version__ = "0.27.4"
@@ -113,7 +113,7 @@ class SampleInfo(Proc):
113
113
  "exclude_cols": None,
114
114
  "defaults": {
115
115
  "on": "Sample",
116
- "distinct": None,
116
+ # "distinct": None,
117
117
  "group": None,
118
118
  "na_group": False,
119
119
  "each": None,
@@ -114,3 +114,39 @@ class Heatmap(Proc):
114
114
  "globals": "",
115
115
  }
116
116
  script = "file://../scripts/plot/Heatmap.R"
117
+
118
+
119
+ class ROC(Proc):
120
+ """Plot ROC curve using [`plotROC`](https://cran.r-project.org/web/packages/plotROC/vignettes/examples.html).
121
+
122
+ Input:
123
+ infile: The input file for data, tab-separated.
124
+ The first column should be ids of the records (this is optional if `envs.noids` is True).
125
+ The second column should be the labels of the records (1 for positive, 0 for negative).
126
+ If they are not binary, you can specify the positive label by `envs.pos_label`.
127
+ From the third column, it should be the scores of the different models.
128
+
129
+ Output:
130
+ outfile: The output figure file
131
+
132
+ Envs:
133
+ noids: Whether the input file has ids (first column) or not.
134
+ pos_label: The positive label.
135
+ ci: Whether to use `geom_rocci()` instead of `geom_roc()`.
136
+ devpars: The parameters for `png()`
137
+ args: Additional arguments for `geom_roc()` or `geom_rocci()` if `envs.ci` is True.
138
+ style_roc: Arguments for `style_roc()`
139
+ """ # noqa: E501
140
+ input = "infile:file"
141
+ output = "outfile:file:{{in.infile | stem}}.roc.png"
142
+ lang = config.lang.rscript
143
+ envs = {
144
+ "noids": False,
145
+ "pos_label": 1,
146
+ "ci": False,
147
+ "devpars": {"res": 100, "width": 750, "height": 600},
148
+ "args": {"labels": False},
149
+ "style_roc": {},
150
+ "show_auc": True,
151
+ }
152
+ script = "file://../scripts/plot/ROC.R"
@@ -413,7 +413,7 @@ class SeuratClusterStats(Proc):
413
413
  nCells_All = { }
414
414
  ```
415
415
 
416
- ![nCells_All](https://pwwang.github.io/immunopipe/processes/images/SeuratClusterStats_nCells_All.png){: width="80%" }
416
+ ![nCells_All](https://pwwang.github.io/immunopipe/latest/processes/images/SeuratClusterStats_nCells_All.png){: width="80%" }
417
417
 
418
418
  ### Number of cells in each cluster by groups
419
419
 
@@ -422,7 +422,7 @@ class SeuratClusterStats(Proc):
422
422
  nCells_Sample = { group-by = "Sample" }
423
423
  ```
424
424
 
425
- ![nCells_Sample](https://pwwang.github.io/immunopipe/processes/images/SeuratClusterStats_nCells_Sample.png){: width="80%" }
425
+ ![nCells_Sample](https://pwwang.github.io/immunopipe/latest/processes/images/SeuratClusterStats_nCells_Sample.png){: width="80%" }
426
426
 
427
427
  ### Violin plots for the gene expressions
428
428
 
@@ -435,8 +435,8 @@ class SeuratClusterStats(Proc):
435
435
  vlnplots_1 = { features = ["FOXP3", "IL2RA"], pt-size = 0, kind = "vln" }
436
436
  ```
437
437
 
438
- ![vlnplots](https://pwwang.github.io/immunopipe/processes/images/SeuratClusterStats_vlnplots.png){: width="80%" }
439
- ![vlnplots_1](https://pwwang.github.io/immunopipe/processes/images/SeuratClusterStats_vlnplots_1.png){: width="80%" }
438
+ ![vlnplots](https://pwwang.github.io/immunopipe/latest/processes/images/SeuratClusterStats_vlnplots.png){: width="80%" }
439
+ ![vlnplots_1](https://pwwang.github.io/immunopipe/latest/processes/images/SeuratClusterStats_vlnplots_1.png){: width="80%" }
440
440
 
441
441
  ### Dimension reduction plot with labels
442
442
 
@@ -447,7 +447,7 @@ class SeuratClusterStats(Proc):
447
447
  repel = true
448
448
  ```
449
449
 
450
- ![dimplots](https://pwwang.github.io/immunopipe/processes/images/SeuratClusterStats_dimplots.png){: width="80%" }
450
+ ![dimplots](https://pwwang.github.io/immunopipe/latest/processes/images/SeuratClusterStats_dimplots.png){: width="80%" }
451
451
 
452
452
  Input:
453
453
  srtobj: The seurat object loaded by `SeuratClustering`
@@ -857,7 +857,7 @@ class CellsDistribution(Proc):
857
857
  group_order = [ "Tumor", "Normal" ]
858
858
  ```
859
859
 
860
- ![CellsDistribution_example](https://pwwang.github.io/immunopipe/processes/images/CellsDistribution_example.png)
860
+ ![CellsDistribution_example](https://pwwang.github.io/immunopipe/latest/processes/images/CellsDistribution_example.png)
861
861
 
862
862
  Input:
863
863
  srtobj: The seurat object in RDS format
@@ -1870,7 +1870,7 @@ class RadarPlots(Proc):
1870
1870
 
1871
1871
  Then we will have a radar plots like this:
1872
1872
 
1873
- ![Radar plots](https://pwwang.github.io/immunopipe/processes/images/RadarPlots-default.png)
1873
+ ![Radar plots](https://pwwang.github.io/immunopipe/latest/processes/images/RadarPlots-default.png)
1874
1874
 
1875
1875
  We can use `each` to separate the cells into different cases:
1876
1876
 
@@ -1882,7 +1882,7 @@ class RadarPlots(Proc):
1882
1882
 
1883
1883
  Then we will have two radar plots, one for `Pre` and one for `Post`:
1884
1884
 
1885
- ![Radar plots](https://pwwang.github.io/immunopipe/processes/images/RadarPlots-each.png)
1885
+ ![Radar plots](https://pwwang.github.io/immunopipe/latest/processes/images/RadarPlots-each.png)
1886
1886
 
1887
1887
  Using `cluster_order` to change the order of the clusters and show only the first 3 clusters:
1888
1888
 
@@ -1893,7 +1893,7 @@ class RadarPlots(Proc):
1893
1893
  breaks = [0, 50, 100] # also change the breaks
1894
1894
  ```
1895
1895
 
1896
- ![Radar plots cluster_order](https://pwwang.github.io/immunopipe/processes/images/RadarPlots-cluster_order.png)
1896
+ ![Radar plots cluster_order](https://pwwang.github.io/immunopipe/latest/processes/images/RadarPlots-cluster_order.png)
1897
1897
 
1898
1898
 
1899
1899
  /// Attention
@@ -22,11 +22,11 @@ class MetabolicPathwayActivity(Proc):
22
22
  For each subset, a heatmap and a violin plot will be generated.
23
23
  The heatmap shows the pathway activities for each group and each metabolic pathway
24
24
 
25
- ![MetabolicPathwayActivity_heatmap](https://pwwang.github.io/immunopipe/processes/images/MetabolicPathwayActivity_heatmap.png){: width="80%"}
25
+ ![MetabolicPathwayActivity_heatmap](https://pwwang.github.io/immunopipe/latest/processes/images/MetabolicPathwayActivity_heatmap.png){: width="80%"}
26
26
 
27
27
  The violin plot shows the distribution of the pathway activities for each group
28
28
 
29
- ![MetabolicPathwayActivity_violin](https://pwwang.github.io/immunopipe/processes/images/MetabolicPathwayActivity_violin.png){: width="45%"}
29
+ ![MetabolicPathwayActivity_violin](https://pwwang.github.io/immunopipe/latest/processes/images/MetabolicPathwayActivity_violin.png){: width="45%"}
30
30
 
31
31
  Envs:
32
32
  ntimes (type=int): Number of times to do the permutation
@@ -294,7 +294,7 @@ class MetabolicPathwayHeterogeneity(Proc):
294
294
  The heterogeneity can be reflected by the NES values and the p-values in
295
295
  different groups for the metabolic pathways.
296
296
 
297
- ![MetabolicPathwayHeterogeneity](https://pwwang.github.io/immunopipe/processes/images/MetabolicPathwayHeterogeneity.png)
297
+ ![MetabolicPathwayHeterogeneity](https://pwwang.github.io/immunopipe/latest/processes/images/MetabolicPathwayHeterogeneity.png)
298
298
 
299
299
 
300
300
  Envs:
@@ -71,3 +71,68 @@ class PlinkSimulation(Proc):
71
71
  "sample_prefix": None,
72
72
  }
73
73
  script = "file://../scripts/snp/PlinkSimulation.py"
74
+
75
+
76
+ class MatrixEQTL(Proc):
77
+ """Run Matrix eQTL
78
+
79
+ See also <https://www.bios.unc.edu/research/genomic_software/Matrix_eQTL/>
80
+
81
+ Input:
82
+ geno: Genotype matrix file with rows representing SNPs and columns
83
+ representing samples.
84
+ expr: Expression matrix file with rows representing genes and columns
85
+ representing samples.
86
+ cov: Covariate matrix file with rows representing covariates and columns
87
+ representing samples.
88
+
89
+ Output:
90
+ alleqtls: Matrix eQTL output file
91
+ cisqtls: The cis-eQTL file if `snppos` and `genepos` are provided.
92
+ Otherwise it'll be empty.
93
+
94
+ Envs:
95
+ model (choice): The model to use.
96
+ - `linear`: Linear model
97
+ - `modelLINEAR`: Same as `linear`
98
+ - `anova`: ANOVA model
99
+ - `modelANOVA`: Same as `anova`
100
+ pval (type=float): P-value threshold for eQTLs
101
+ transp (type=float): P-value threshold for trans-eQTLs.
102
+ If cis-eQTLs are not enabled (`snppos` and `genepos` are not set),
103
+ this defaults to 1e-5.
104
+ If cis-eQTLs are enabled, this defaults to `None`, which will disable
105
+ trans-eQTL analysis.
106
+ fdr (flag): Do FDR calculation or not (save memory if not).
107
+ snppos: The path of the SNP position file.
108
+ It could be a BED, GFF, VCF or a tab-delimited file with
109
+ `snp`, `chr`, `pos` as the first 3 columns.
110
+ genepos: The path of the gene position file.
111
+ It could be a BED or GFF file.
112
+ dist (type=int): Distance threshold for cis-eQTLs.
113
+ transpose_geno (flag): If set, the genotype matrix (`in.geno`)
114
+ will be transposed.
115
+ transpose_expr (flag): If set, the expression matrix (`in.expr`)
116
+ will be transposed.
117
+ transpose_cov (flag): If set, the covariate matrix (`in.cov`)
118
+ will be transposed.
119
+ """
120
+ input = "geno:file, expr:file, cov:file"
121
+ output = [
122
+ "alleqtls:file:{{in.geno | stem}}.alleqtls.txt",
123
+ "cisqtls:file:{{in.geno | stem}}.cisqtls.txt",
124
+ ]
125
+ lang = config.lang.rscript
126
+ envs = {
127
+ "model": "linear",
128
+ "pval": 1e-3,
129
+ "transp": None,
130
+ "fdr": False,
131
+ "snppos": None,
132
+ "genepos": config.ref.refgene,
133
+ "dist": 250000,
134
+ "transpose_geno": False,
135
+ "transpose_expr": False,
136
+ "transpose_cov": False,
137
+ }
138
+ script = "file://../scripts/snp/MatrixEQTL.R"
@@ -923,7 +923,7 @@ class CloneResidency(Proc):
923
923
 
924
924
  - Residency plots showing the residency of clones in the two groups
925
925
 
926
- ![CloneResidency_residency](https://pwwang.github.io/immunopipe/processes/images/CloneResidency.png)
926
+ ![CloneResidency_residency](https://pwwang.github.io/immunopipe/latest/processes/images/CloneResidency.png)
927
927
 
928
928
  The points in the plot are jittered to avoid overplotting. The x-axis is the residency in the first group and
929
929
  the y-axis is the residency in the second group. The size of the points are relative to the normalized size of
@@ -943,7 +943,7 @@ class CloneResidency(Proc):
943
943
 
944
944
  - Venn diagrams showing the overlap of the clones in the two groups
945
945
 
946
- ![CloneResidency_venn](https://pwwang.github.io/immunopipe/processes/images/CloneResidency_venn.png){: width="60%"}
946
+ ![CloneResidency_venn](https://pwwang.github.io/immunopipe/latest/processes/images/CloneResidency_venn.png){: width="60%"}
947
947
 
948
948
  Input:
949
949
  immdata: The data loaded by `immunarch::repLoad()`
@@ -1259,7 +1259,7 @@ class TCRClusterStats(Proc):
1259
1259
  by = "Sample"
1260
1260
  ```
1261
1261
 
1262
- ![Cluster_size](https://pwwang.github.io/immunopipe/processes/images/TCRClusteringStats_cluster_size.png){: width="80%"}
1262
+ ![Cluster_size](https://pwwang.github.io/immunopipe/latest/processes/images/TCRClusteringStats_cluster_size.png){: width="80%"}
1263
1263
 
1264
1264
  ### Shared clusters
1265
1265
 
@@ -1269,7 +1269,7 @@ class TCRClusterStats(Proc):
1269
1269
  heatmap_meta = ["region"]
1270
1270
  ```
1271
1271
 
1272
- ![Shared_clusters](https://pwwang.github.io/immunopipe/processes/images/TCRClusteringStats_shared_clusters.png){: width="80%"}
1272
+ ![Shared_clusters](https://pwwang.github.io/immunopipe/latest/processes/images/TCRClusteringStats_shared_clusters.png){: width="80%"}
1273
1273
 
1274
1274
  ### Sample diversity
1275
1275
 
@@ -1278,11 +1278,11 @@ class TCRClusterStats(Proc):
1278
1278
  method = "gini"
1279
1279
  ```
1280
1280
 
1281
- ![Sample_diversity](https://pwwang.github.io/immunopipe/processes/images/TCRClusteringStats_sample_diversity.png){: width="80%"}
1281
+ ![Sample_diversity](https://pwwang.github.io/immunopipe/latest/processes/images/TCRClusteringStats_sample_diversity.png){: width="80%"}
1282
1282
 
1283
1283
  Compared to the sample diversity using TCR clones:
1284
1284
 
1285
- ![Sample_diversity](https://pwwang.github.io/immunopipe/processes/images/Immunarch_sample_diversity.png){: width="80%"}
1285
+ ![Sample_diversity](https://pwwang.github.io/immunopipe/latest/processes/images/Immunarch_sample_diversity.png){: width="80%"}
1286
1286
 
1287
1287
  Input:
1288
1288
  immfile: The immunarch object with TCR clusters attached
@@ -113,14 +113,14 @@ for (name in names(stats)) {
113
113
  if (stat$plot == "boxplot" || stat$plot == "box") {
114
114
  p <- ggplot(data, aes(x=!!group, y=!!sym(stat$on), fill=!!group)) +
115
115
  geom_boxplot(position = "dodge") +
116
- scale_fill_biopipen() +
116
+ scale_fill_biopipen(alpha = .6) +
117
117
  xlab("")
118
118
  } else if (stat$plot == "violin" ||
119
119
  stat$plot == "violinplot" ||
120
120
  stat$plot == "vlnplot") {
121
121
  p <- ggplot(data, aes(x = !!group, y = !!sym(stat$on), fill=!!group)) +
122
122
  geom_violin(position = "dodge") +
123
- scale_fill_biopipen() +
123
+ scale_fill_biopipen(alpha = .6) +
124
124
  xlab("")
125
125
  } else if (
126
126
  (grepl("violin", stat$plot) || grepl("vln", stat$plot)) &&
@@ -129,12 +129,12 @@ for (name in names(stats)) {
129
129
  p <- ggplot(data, aes(x = !!group, y = !!sym(stat$on), fill = !!group)) +
130
130
  geom_violin(position = "dodge") +
131
131
  geom_boxplot(width = 0.1, position = position_dodge(0.9), fill="white") +
132
- scale_fill_biopipen() +
132
+ scale_fill_biopipen(alpha = .6) +
133
133
  xlab("")
134
134
  } else if (stat$plot == "histogram" || stat$plot == "hist") {
135
135
  p <- ggplot(data, aes(x = !!sym(stat$on), fill = !!group)) +
136
136
  geom_histogram(bins = 10, position = "dodge", alpha = 0.8, color = "white") +
137
- scale_fill_biopipen()
137
+ scale_fill_biopipen(alpha = .6)
138
138
  } else if (stat$plot == "pie" || stat$plot == "piechart") {
139
139
  if (is.null(stat$each)) {
140
140
  data <- data %>% distinct(!!group, .keep_all = TRUE)
@@ -157,7 +157,7 @@ for (name in names(stats)) {
157
157
  fill="#EEEEEE",
158
158
  size=4
159
159
  ) +
160
- scale_fill_biopipen(name = group) +
160
+ scale_fill_biopipen(alpha = .6, name = group) +
161
161
  ggtitle(paste0("# ", stat$on))
162
162
  } else if (stat$plot == "bar" || stat$plot == "barplot") {
163
163
  if (is.null(stat$each)) {
@@ -169,7 +169,7 @@ for (name in names(stats)) {
169
169
  data,
170
170
  aes(x = !!group, y = !!sym(count_on), fill = !!group)) +
171
171
  geom_bar(stat = "identity") +
172
- scale_fill_biopipen() +
172
+ scale_fill_biopipen(alpha = .6) +
173
173
  ylab(paste0("# ", stat$on))
174
174
  } else {
175
175
  stop("Unknown plot type: ", stat$plot)
@@ -0,0 +1,88 @@
1
+
2
+ source("{{biopipen_dir}}/utils/misc.R")
3
+
4
+ library(rlang)
5
+ library(ggplot2)
6
+ library(plotROC)
7
+
8
+ infile <- {{in.infile | r}}
9
+ outfile <- {{out.outfile | r}}
10
+ joboutdir <- {{job.outdir | r}}
11
+ noids <- {{envs.noids | r}}
12
+ pos_label <- {{envs.pos_label | r}}
13
+ ci <- {{envs.ci | r}}
14
+ devpars <- {{envs.devpars | r}}
15
+ show_auc <- {{envs.show_auc | r}}
16
+ args <- {{envs.args | r: todot="-"}}
17
+ style_roc_args <- {{envs.style_roc | r: todot="-"}}
18
+ if (!is.null(style_roc_args$theme)) {
19
+ style_roc_args$theme <- eval(parse(text=style_roc_args$theme))
20
+ }
21
+
22
+ data <- read.table(infile, header=TRUE, sep="\t", row.names = NULL, check.names = FALSE, stringsAsFactors=FALSE)
23
+ if (!noids) {
24
+ data <- data[, -1]
25
+ }
26
+
27
+ # Normalize the first column (labels) into 0 and 1.
28
+ # If they are not 0/1, use pos_label to determine the positive class.
29
+ label_col <- colnames(data)[1]
30
+ if (is.character(data[[label_col]])) {
31
+ data[[label_col]] <- as.numeric(data[[label_col]] == pos_label)
32
+ }
33
+
34
+ models <- colnames(data)[2:ncol(data)]
35
+
36
+ if (length(models) > 1) {
37
+ # pivot longer the models, and put the model names into the column 'model'
38
+ data <- melt_roc(data, label_col, colnames(data)[2:ncol(data)])
39
+ } else {
40
+ data <- data.frame(
41
+ D = data[[label_col]],
42
+ M = data[[models]],
43
+ name = rep(models, nrow(data))
44
+ )
45
+ }
46
+
47
+ # Plot the ROC curve
48
+ p <- ggplot(data, aes(d = D, m = M, color = name))
49
+
50
+ if (isTRUE(ci)) {
51
+ p <- p + do.call(geom_rocci, args)
52
+ } else {
53
+ p <- p + do.call(geom_roc, args)
54
+ }
55
+
56
+ p <- p + do.call(style_roc, style_roc_args)
57
+ p <- p + scale_color_biopipen()
58
+
59
+ if (length(models) > 1) {
60
+ p <- p + theme(legend.title = element_blank())
61
+ } else {
62
+ p <- p + theme(legend.position = "none")
63
+ }
64
+
65
+ aucs = calc_auc(p)
66
+ write.table(aucs, file=file.path(joboutdir, "aucs.tsv"), sep="\t", quote=FALSE, row.names=FALSE)
67
+
68
+ if (show_auc) {
69
+ aucs = split(aucs$AUC, aucs$name)
70
+ if (length(aucs) > 1) {
71
+ # Add AUC values to the legend items
72
+ p <- p +
73
+ scale_color_manual(
74
+ values = pal_biopipen()(length(models)),
75
+ labels = sapply(models, function(m) paste(m, " (AUC =", round(aucs[[m]], 2), ")")),
76
+ breaks = models)
77
+ } else {
78
+ p <- p +
79
+ geom_text(
80
+ x = 0.8, y = 0.2, label = paste("AUC =", round(unlist(aucs), 2)),
81
+ color = "black", size = 4)
82
+ }
83
+ }
84
+
85
+ devpars$filename <- outfile
86
+ do.call(png, devpars)
87
+ print(p)
88
+ dev.off()
@@ -0,0 +1,157 @@
1
+ source("{{biopipen_dir}}/utils/misc.R")
2
+ library(rlang)
3
+ library(MatrixEQTL)
4
+
5
+ snpfile = {{in.geno | r}}
6
+ expfile = {{in.expr | r}}
7
+ covfile = {{in.cov | r}}
8
+ joboutdir = {{job.outdir | r}}
9
+ alleqtl = {{out.alleqtls | r}}
10
+ outfile = {{out.cisqtls | r}}
11
+
12
+ model = {{envs.model | r}}
13
+ pval = {{envs.pval | r}}
14
+ transp = {{envs.transp | r}}
15
+ fdr = {{envs.fdr | r}}
16
+ snppos = {{envs.snppos | r}}
17
+ genepos = {{envs.genepos | r}}
18
+ dist = {{envs.dist | r}}
19
+
20
+ transpose_geno = {{envs.transpose_geno | r}}
21
+ transpose_expr = {{envs.transpose_expr | r}}
22
+ transpose_cov = {{envs.transpose_cov | r}}
23
+
24
+ arg_match(model, c("modelANOVA", "modelLINEAR", "linear", "anova"))
25
+ if (model == "linear") model = "modelLINEAR"
26
+ if (model == "anova") model = "modelANOVA"
27
+ model = get(model)
28
+
29
+ trans_enabled = !is.null(transp)
30
+ cis_enabled = !is.null(snppos) && !is.null(genepos) && dist > 0
31
+
32
+ # if trans is disabled, all files needed for cis should be provided
33
+ if (!trans_enabled && !cis_enabled) {
34
+ log_warn("Using `envs.transp = 1e-5` since cis-eQTL is disabled.")
35
+ trans_enabled <- TRUE
36
+ transp <- 1e-5
37
+ }
38
+
39
+ transpose_file <- function(file) {
40
+ out <- file.path(joboutdir, paste0(
41
+ tools::file_path_sans_ext(basename(file)),
42
+ ".transposed.",
43
+ tools::file_ext(file))
44
+ )
45
+ data <- read.table(file, header=TRUE, stringsAsFactors=FALSE, row.names=1, sep="\t", quote="", check.names=FALSE)
46
+ write.table(t(data), file=out, sep="\t", quote=FALSE, row.names=TRUE, col.names=TRUE)
47
+ out
48
+ }
49
+
50
+ if (transpose_geno) snpfile = transpose_file(snpfile)
51
+ if (transpose_expr) expfile = transpose_file(expfile)
52
+ if (transpose_cov) covfile = transpose_file(covfile)
53
+
54
+ snps = SlicedData$new();
55
+ snps$fileDelimiter = "\t"; # the TAB character
56
+ snps$fileOmitCharacters = "NA"; # denote missing values;
57
+ snps$fileSkipRows = 1; # one row of column labels
58
+ snps$fileSkipColumns = 1; # one column of row labels
59
+ snps$fileSliceSize = 10000; # read file in pieces of 2,000 rows
60
+ snps$LoadFile( snpfile );
61
+
62
+ gene = SlicedData$new();
63
+ gene$fileDelimiter = "\t"; # the TAB character
64
+ gene$fileOmitCharacters = "NA"; # denote missing values;
65
+ gene$fileSkipRows = 1; # one row of column labels
66
+ gene$fileSkipColumns = 1; # one column of row labels
67
+ gene$fileSliceSize = 10000; # read file in pieces of 2,000 rows
68
+ gene$LoadFile( expfile );
69
+
70
+ cvrt = SlicedData$new();
71
+ if (!is.null(covfile) && file.exists(covfile)) {
72
+ covmatrix = t(read.table.inopts(covfile, list(cnames=TRUE, rnames=TRUE)))
73
+ cvrt$CreateFromMatrix( as.matrix(covmatrix) )
74
+ }
75
+
76
+ engine_params = list()
77
+ engine_params$snps = snps
78
+ engine_params$gene = gene
79
+ engine_params$cvrt = cvrt
80
+ engine_params$output_file_name = ifelse(trans_enabled, alleqtl, NULL)
81
+ engine_params$pvOutputThreshold = ifelse(trans_enabled, transp, 0)
82
+ engine_params$useModel = model
83
+ engine_params$errorCovariance = numeric()
84
+ engine_params$verbose = TRUE
85
+ engine_params$noFDRsaveMemory = !fdr
86
+
87
+ noq = function(s) {
88
+ gsub('^\"|\"$', "", s)
89
+ }
90
+
91
+ if (cis_enabled) {
92
+ if (endsWith(snppos, ".bed")) {
93
+ snppos_data = read.table.inopts(snppos,
94
+ list(cnames=FALSE, rnames=FALSE))
95
+ snppos_data = snppos_data[, c(4, 1, 2)]
96
+ colnames(snppos_data) = c("snp", "chr", "pos")
97
+ } else if (endsWith(snppos, ".gff") || endsWith(snppos, ".gtf")) {
98
+ snppos_data = read.table.inopts(snppos,
99
+ list(cnames=FALSE, rnames=FALSE));
100
+ snppos_data = snppos_data[, c(9, 1, 4)]
101
+ colnames(snppos_data) = c("snp", "chr", "pos")
102
+ snppos_data$snp = unlist(lapply(snppos_data$snp, function(x) {
103
+ for (s in unlist(strsplit(x, '; ', fixed=T))) {
104
+ if (startsWith(s, "snp_id "))
105
+ return(noq(substring(s, 8)))
106
+ else if (startsWith(s, "rs_id "))
107
+ return(noq(substring(s, 7)))
108
+ else if (startsWith(s, "rs "))
109
+ return(noq(substring(s, 4)))
110
+ }
111
+ }))
112
+ } else if (endsWith(snppos, ".vcf") || endsWith(snppos, ".vcf.gz")) {
113
+ snppos_data = read.table.inopts(snppos,
114
+ list(cnames=FALSE, rnames=FALSE))
115
+ snppos_data = snppos_data[, c(3, 1, 2)]
116
+ colnames(snppos_data) = c("snp", "chr", "pos")
117
+ } else {
118
+ snppos_data = read.table.inopts(snppos, list(cnames=TRUE))
119
+ colnames(snppos_data) = c("snp", "chr", "pos")
120
+ }
121
+
122
+ if (endsWith(genepos, ".bed")) {
123
+ genepos_data = read.table.inopts(genepos,
124
+ list(cnames=FALSE, rnames=FALSE))
125
+ genepos_data = genepos_data[, c(4, 1:3)]
126
+ colnames(genepos_data) = c("geneid", "chr", "s1", "s2")
127
+ } else if (endsWith(genepos, ".gff") || endsWith(genepos, ".gtf")) {
128
+ genepos_data = read.table.inopts(genepos,
129
+ list(cnames=FALSE, rnames=FALSE))
130
+ genepos_data = genepos_data[, c(9, 1, 4, 5)]
131
+ colnames(genepos_data) = c("geneid", "chr", "s1", "s2")
132
+ genepos_data$geneid = noquote(unlist(lapply(genepos_data$geneid, function(x) {
133
+ for (s in unlist(strsplit(x, '; ', fixed=T))) {
134
+ if (startsWith(s, "gene_id "))
135
+ return(noq(substring(s, 9)))
136
+ }
137
+ })))
138
+ } else {
139
+ genepos_data = read.table(genepos, header = TRUE, stringsAsFactors = FALSE);
140
+ colnames(genepos_data) = c("geneid", "chr", "s1", "s2")
141
+ }
142
+
143
+ engine_params$output_file_name.cis = outfile
144
+ engine_params$pvOutputThreshold.cis = pval
145
+ engine_params$cisDist = dist
146
+ engine_params$snpspos = snppos_data
147
+ engine_params$genepos = genepos_data
148
+ do_call(Matrix_eQTL_main, engine_params)
149
+ } else {
150
+ do_call(Matrix_eQTL_engine, engine_params)
151
+ file.create(outfile)
152
+ }
153
+
154
+ if (pval == 0) {
155
+ if (!file.exists(outfile)) file.create(outfile)
156
+ if (!file.exists(alleqtl)) file.create(alleqtl)
157
+ }
@@ -1,6 +1,6 @@
1
1
  [tool.poetry]
2
2
  name = "biopipen"
3
- version = "0.27.3"
3
+ version = "0.27.4"
4
4
  description = "Bioinformatics processes/pipelines that can be run from `pipen run`"
5
5
  authors = ["pwwang <pwwang@pwwang.com>"]
6
6
  license = "MIT"
@@ -19,7 +19,6 @@ pipen-poplog = "^0.1.2"
19
19
  datar = { version = "^0.15.6", extras = ["pandas"] }
20
20
  pipen-board = { version = "^0.15", extras = ["report"] }
21
21
  pipen-runinfo = { version = "^0.6", optional = true }
22
- pyyaml-include = "1.*" # https://github.com/copier-org/copier/issues/1568
23
22
 
24
23
  [tool.poetry.extras]
25
24
  runinfo = ["pipen-runinfo"]
@@ -49,8 +49,7 @@ install_requires = \
49
49
  'pipen-cli-run>=0.13,<0.14',
50
50
  'pipen-filters>=0.12,<0.13',
51
51
  'pipen-poplog>=0.1.2,<0.2.0',
52
- 'pipen-verbose>=0.11,<0.12',
53
- 'pyyaml-include==1.*']
52
+ 'pipen-verbose>=0.11,<0.12']
54
53
 
55
54
  extras_require = \
56
55
  {'runinfo': ['pipen-runinfo>=0.6,<0.7']}
@@ -82,7 +81,7 @@ entry_points = \
82
81
 
83
82
  setup_kwargs = {
84
83
  'name': 'biopipen',
85
- 'version': '0.27.3',
84
+ 'version': '0.27.4',
86
85
  'description': 'Bioinformatics processes/pipelines that can be run from `pipen run`',
87
86
  'long_description': 'None',
88
87
  'author': 'pwwang',
@@ -1 +0,0 @@
1
- __version__ = "0.27.3"
File without changes
File without changes
File without changes
File without changes
File without changes