biopipen 0.23.4__tar.gz → 0.23.6__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of biopipen might be problematic. Click here for more details.
- {biopipen-0.23.4 → biopipen-0.23.6}/PKG-INFO +1 -1
- biopipen-0.23.6/biopipen/__init__.py +1 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/core/filters.py +53 -32
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/ns/scrna.py +7 -1
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/ns/scrna_metabolic_landscape.py +4 -1
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/scrna/MarkersFinder.R +4 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/scrna/MetaMarkers.R +6 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/scrna/SeuratClusterStats-stats.R +4 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/scrna/SeuratClustering.R +1 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/scrna/SeuratPreparing.R +13 -3
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/scrna/TopExpressingGenes.R +6 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/scrna_metabolic_landscape/MetabolicFeatures.R +7 -2
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/scrna_metabolic_landscape/MetabolicFeaturesIntraSubset.R +15 -4
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/scrna_metabolic_landscape/MetabolicPathwayActivity.R +1 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/scrna_metabolic_landscape/MetabolicPathwayHeterogeneity.R +14 -10
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/tcr/Immunarch-diversity.R +6 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/utils/gsea.R +49 -3
- {biopipen-0.23.4 → biopipen-0.23.6}/pyproject.toml +1 -1
- {biopipen-0.23.4 → biopipen-0.23.6}/setup.py +1 -1
- biopipen-0.23.4/biopipen/__init__.py +0 -1
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/core/__init__.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/core/config.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/core/config.toml +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/core/defaults.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/core/proc.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/core/testing.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/ns/__init__.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/ns/bam.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/ns/bcftools.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/ns/bed.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/ns/cellranger.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/ns/cnv.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/ns/cnvkit.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/ns/cnvkit_pipeline.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/ns/delim.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/ns/gene.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/ns/gsea.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/ns/misc.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/ns/plot.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/ns/rnaseq.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/ns/tcgamaf.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/ns/tcr.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/ns/vcf.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/ns/web.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/reports/bam/CNAClinic.svelte +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/reports/bam/CNVpytor.svelte +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/reports/bam/ControlFREEC.svelte +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/reports/cellranger/CellRangerCount.svelte +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/reports/cellranger/CellRangerVdj.svelte +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/reports/cnv/AneuploidyScore.svelte +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/reports/cnv/AneuploidyScoreSummary.svelte +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/reports/cnv/TMADScoreSummary.svelte +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/reports/cnvkit/CNVkitDiagram.svelte +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/reports/cnvkit/CNVkitHeatmap.svelte +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/reports/cnvkit/CNVkitScatter.svelte +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/reports/delim/SampleInfo.svelte +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/reports/gsea/FGSEA.svelte +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/reports/gsea/GSEA.svelte +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/reports/scrna/CellsDistribution.svelte +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/reports/scrna/DimPlots.svelte +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/reports/scrna/MarkersFinder.svelte +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/reports/scrna/MetaMarkers.svelte +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/reports/scrna/RadarPlots.svelte +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/reports/scrna/ScFGSEA.svelte +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/reports/scrna/SeuratClusterStats.svelte +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/reports/scrna/SeuratMap2Ref.svelte +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/reports/scrna/SeuratPreparing.svelte +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/reports/scrna/TopExpressingGenes.svelte +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/reports/scrna_metabolic_landscape/MetabolicFeatures.svelte +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/reports/scrna_metabolic_landscape/MetabolicFeaturesIntraSubset.svelte +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/reports/scrna_metabolic_landscape/MetabolicPathwayActivity.svelte +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/reports/scrna_metabolic_landscape/MetabolicPathwayHeterogeneity.svelte +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/reports/tcr/CDR3AAPhyschem.svelte +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/reports/tcr/CloneResidency.svelte +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/reports/tcr/Immunarch.svelte +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/reports/tcr/SampleDiversity.svelte +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/reports/tcr/TCRClusterStats.svelte +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/reports/tcr/TESSA.svelte +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/reports/tcr/VJUsage.svelte +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/reports/utils/gsea.liq +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/reports/utils/misc.liq +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/reports/vcf/TruvariBenchSummary.svelte +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/reports/vcf/TruvariConsistency.svelte +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/bam/BamMerge.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/bam/BamSplitChroms.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/bam/CNAClinic.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/bam/CNVpytor.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/bam/ControlFREEC.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/bcftools/BcftoolsAnnotate.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/bcftools/BcftoolsFilter.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/bcftools/BcftoolsSort.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/bed/Bed2Vcf.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/bed/BedConsensus.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/bed/BedLiftOver.sh +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/bed/BedtoolsMerge.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/cellranger/CellRangerCount.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/cellranger/CellRangerVdj.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/cnv/AneuploidyScore.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/cnv/AneuploidyScoreSummary.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/cnv/TMADScore.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/cnv/TMADScoreSummary.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/cnvkit/CNVkitAccess.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/cnvkit/CNVkitAutobin.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/cnvkit/CNVkitBatch.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/cnvkit/CNVkitCall.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/cnvkit/CNVkitCoverage.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/cnvkit/CNVkitDiagram.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/cnvkit/CNVkitFix.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/cnvkit/CNVkitGuessBaits.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/cnvkit/CNVkitHeatmap.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/cnvkit/CNVkitReference.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/cnvkit/CNVkitScatter.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/cnvkit/CNVkitSegment.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/cnvkit/guess_baits.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/delim/RowsBinder.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/delim/SampleInfo.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/gene/GeneNameConversion.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/gsea/Enrichr.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/gsea/FGSEA.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/gsea/GSEA.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/gsea/PreRank.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/misc/Config2File.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/misc/Str2File.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/plot/Heatmap.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/plot/VennDiagram.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/rnaseq/UnitConversion.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/scrna/CellTypeAnnotation-direct.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/scrna/CellTypeAnnotation-hitype.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/scrna/CellTypeAnnotation-sccatch.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/scrna/CellTypeAnnotation-sctype.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/scrna/CellTypeAnnotation.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/scrna/CellsDistribution.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/scrna/DimPlots.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/scrna/ExprImpution-alra.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/scrna/ExprImpution-rmagic.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/scrna/ExprImpution-scimpute.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/scrna/ExprImpution.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/scrna/ModuleScoreCalculator.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/scrna/RadarPlots.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/scrna/SCImpute.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/scrna/ScFGSEA.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/scrna/SeuratClusterStats-dimplots.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/scrna/SeuratClusterStats-features.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/scrna/SeuratClusterStats-hists.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/scrna/SeuratClusterStats-ngenes.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/scrna/SeuratClusterStats.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/scrna/SeuratFilter.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/scrna/SeuratLoading.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/scrna/SeuratMap2Ref.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/scrna/SeuratMetadataMutater.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/scrna/SeuratSplit.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/scrna/SeuratSubClustering.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/scrna/SeuratSubset.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/scrna/SeuratTo10X.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/scrna/Write10X.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/scrna/sctype.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/tcgamaf/Maf2Vcf.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/tcgamaf/MafAddChr.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/tcgamaf/maf2vcf.pl +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/tcr/Attach2Seurat.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/tcr/CDR3AAPhyschem.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/tcr/CloneResidency.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/tcr/CloneSizeQQPlot.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/tcr/GIANA/GIANA.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/tcr/GIANA/GIANA4.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/tcr/GIANA/Imgt_Human_TRBV.fasta +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/tcr/GIANA/query.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/tcr/Immunarch-basic.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/tcr/Immunarch-clonality.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/tcr/Immunarch-geneusage.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/tcr/Immunarch-kmer.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/tcr/Immunarch-overlap.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/tcr/Immunarch-spectratyping.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/tcr/Immunarch-tracking.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/tcr/Immunarch-vjjunc.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/tcr/Immunarch.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/tcr/Immunarch2VDJtools.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/tcr/ImmunarchFilter.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/tcr/ImmunarchLoading.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/tcr/ImmunarchSplitIdents.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/tcr/SampleDiversity.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/tcr/TCRClusterStats.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/tcr/TCRClustering.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/tcr/TESSA.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/tcr/TESSA_source/Atchley_factors.csv +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/tcr/TESSA_source/BriseisEncoder.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/tcr/TESSA_source/MCMC_control.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/tcr/TESSA_source/TrainedEncoder.h5 +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/tcr/TESSA_source/fixed_b.csv +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/tcr/TESSA_source/initialization.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/tcr/TESSA_source/post_analysis.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/tcr/TESSA_source/real_data.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/tcr/TESSA_source/update.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/tcr/TESSA_source/utility.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/tcr/VJUsage.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/tcr/vdjtools-patch.sh +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/vcf/TruvariBench.sh +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/vcf/TruvariBenchSummary.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/vcf/TruvariConsistency.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/vcf/Vcf2Bed.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/vcf/VcfAnno.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/vcf/VcfDownSample.sh +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/vcf/VcfFilter.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/vcf/VcfFix.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/vcf/VcfFix_utils.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/vcf/VcfIndex.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/vcf/VcfIntersect.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/vcf/VcfLiftOver.sh +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/vcf/VcfSplitSamples.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/web/Download.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/web/DownloadList.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/utils/__init__.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/utils/common_docstrs.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/utils/gene.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/utils/gene.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/utils/io.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/utils/misc.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/utils/misc.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/utils/mutate_helpers.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/utils/plot.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/utils/reference.py +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/utils/rnaseq.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/utils/single_cell.R +0 -0
- {biopipen-0.23.4 → biopipen-0.23.6}/biopipen/utils/vcf.py +0 -0
|
@@ -0,0 +1 @@
|
|
|
1
|
+
__version__ = "0.23.6"
|
|
@@ -326,37 +326,58 @@ def _render_enrichr(
|
|
|
326
326
|
components = []
|
|
327
327
|
|
|
328
328
|
for db in dbs:
|
|
329
|
-
|
|
330
|
-
|
|
331
|
-
|
|
332
|
-
|
|
333
|
-
|
|
334
|
-
|
|
335
|
-
|
|
336
|
-
|
|
337
|
-
|
|
338
|
-
|
|
339
|
-
|
|
340
|
-
|
|
341
|
-
|
|
342
|
-
|
|
343
|
-
|
|
344
|
-
|
|
345
|
-
|
|
346
|
-
|
|
347
|
-
|
|
348
|
-
|
|
349
|
-
|
|
350
|
-
|
|
351
|
-
|
|
352
|
-
|
|
353
|
-
|
|
354
|
-
|
|
355
|
-
|
|
356
|
-
|
|
357
|
-
|
|
358
|
-
|
|
359
|
-
|
|
360
|
-
|
|
329
|
+
enrichr_plot = Path(cont["dir"]).joinpath(f"Enrichr-{db}.png")
|
|
330
|
+
if enrichr_plot.exists():
|
|
331
|
+
components.append(
|
|
332
|
+
{
|
|
333
|
+
"title": db,
|
|
334
|
+
"ui": "tabs",
|
|
335
|
+
"contents": [
|
|
336
|
+
{
|
|
337
|
+
"title": "Plot",
|
|
338
|
+
"ui": "flat",
|
|
339
|
+
"contents": [
|
|
340
|
+
{
|
|
341
|
+
"kind": "image",
|
|
342
|
+
"src": str(
|
|
343
|
+
Path(cont["dir"]).joinpath(f"Enrichr-{db}.png")
|
|
344
|
+
),
|
|
345
|
+
}
|
|
346
|
+
],
|
|
347
|
+
},
|
|
348
|
+
{
|
|
349
|
+
"title": "Table",
|
|
350
|
+
"ui": "flat",
|
|
351
|
+
"contents": [
|
|
352
|
+
{
|
|
353
|
+
"kind": "table",
|
|
354
|
+
"src": str(
|
|
355
|
+
Path(cont["dir"]).joinpath(f"Enrichr-{db}.txt")
|
|
356
|
+
),
|
|
357
|
+
}
|
|
358
|
+
],
|
|
359
|
+
},
|
|
360
|
+
],
|
|
361
|
+
}
|
|
362
|
+
)
|
|
363
|
+
else:
|
|
364
|
+
components.append(
|
|
365
|
+
{
|
|
366
|
+
"title": db,
|
|
367
|
+
"ui": "tabs",
|
|
368
|
+
"contents": [
|
|
369
|
+
{
|
|
370
|
+
"title": "Error",
|
|
371
|
+
"ui": "flat",
|
|
372
|
+
"contents": [
|
|
373
|
+
{
|
|
374
|
+
"kind": "error",
|
|
375
|
+
"content": "No enriched terms found.",
|
|
376
|
+
}
|
|
377
|
+
],
|
|
378
|
+
},
|
|
379
|
+
],
|
|
380
|
+
}
|
|
381
|
+
)
|
|
361
382
|
|
|
362
383
|
return render_ui(components, "accordion", job, level)
|
|
@@ -77,6 +77,7 @@ class SeuratPreparing(Proc):
|
|
|
77
77
|
|
|
78
78
|
/// Note
|
|
79
79
|
When using `SCTransform`, the default Assay will be set to `SCT` in output, rather than `RNA`.
|
|
80
|
+
If you are using `cca` or `rpca` interation, the default assay will be `integrated`.
|
|
80
81
|
///
|
|
81
82
|
|
|
82
83
|
/// Note
|
|
@@ -771,6 +772,10 @@ class ModuleScoreCalculator(Proc):
|
|
|
771
772
|
>>> "Proliferation": {"features": "STMN1,TUBB"}
|
|
772
773
|
>>> }
|
|
773
774
|
|
|
775
|
+
For `CellCycle`, the columns `S.Score`, `G2M.Score` and `Phase` will
|
|
776
|
+
be added to the metadata. `S.Score` and `G2M.Score` are the cell cycle
|
|
777
|
+
scores for each cell, and `Phase` is the cell cycle phase for each cell.
|
|
778
|
+
|
|
774
779
|
You can also add Diffusion Components (DC) to the modules
|
|
775
780
|
>>> {"DC": {"features": 2, "kind": "diffmap"}}
|
|
776
781
|
will perform diffusion map as a reduction and add the first 2
|
|
@@ -1460,7 +1465,8 @@ class ScFGSEA(Proc):
|
|
|
1460
1465
|
each: The column name in metadata to separate the cells into different subsets to do the analysis.
|
|
1461
1466
|
section: The section name for the report. Worked only when `each` is not specified. Otherwise, the section name will be constructed from `each` and its value.
|
|
1462
1467
|
This allows different cases to be put into the same section in the report.
|
|
1463
|
-
gmtfile: The pathways in GMT format, with the gene names/ids in the same format as the seurat object
|
|
1468
|
+
gmtfile: The pathways in GMT format, with the gene names/ids in the same format as the seurat object.
|
|
1469
|
+
One could also use a URL to a GMT file. For example, from <https://download.baderlab.org/EM_Genesets/current_release/Human/symbol/Pathways/>.
|
|
1464
1470
|
method (choice): The method to do the preranking.
|
|
1465
1471
|
- signal_to_noise: Signal to noise.
|
|
1466
1472
|
The larger the differences of the means (scaled by the standard deviations);
|
|
@@ -402,7 +402,10 @@ class ScrnaMetabolicLandscape(ProcGroup):
|
|
|
402
402
|
If False, the values will be left as is.
|
|
403
403
|
gmtfile: The GMT file with the metabolic pathways. The gene names should
|
|
404
404
|
match the gene names in the gene list in RNAData or
|
|
405
|
-
the Seurat object
|
|
405
|
+
the Seurat object.
|
|
406
|
+
You can also provide a URL to the GMT file.
|
|
407
|
+
For example, from
|
|
408
|
+
<https://download.baderlab.org/EM_Genesets/current_release/Human/symbol/>.
|
|
406
409
|
grouping: defines the basic groups to investigate the metabolic activity
|
|
407
410
|
Typically the clusters.
|
|
408
411
|
grouping_prefix: Working as a prefix to group names
|
|
@@ -306,6 +306,10 @@ do_enrich <- function(info, markers, sig, volgenes) {
|
|
|
306
306
|
col.names = TRUE,
|
|
307
307
|
quote = FALSE
|
|
308
308
|
)
|
|
309
|
+
if (nrow(enriched[[db]]) == 0) {
|
|
310
|
+
log_warn(" No enrichment found for case: {info$casename} - {db}")
|
|
311
|
+
next
|
|
312
|
+
}
|
|
309
313
|
png(
|
|
310
314
|
file.path(info$casedir, paste0("Enrichr-", db, ".png")),
|
|
311
315
|
res = 100, height = 1000, width = 1000
|
|
@@ -183,6 +183,12 @@ do_enrich <- function(info, markers, sig) {
|
|
|
183
183
|
col.names = TRUE,
|
|
184
184
|
quote = FALSE
|
|
185
185
|
)
|
|
186
|
+
|
|
187
|
+
if (nrow(enriched[[db]]) == 0) {
|
|
188
|
+
log_info(paste0(" No enriched terms for ", db))
|
|
189
|
+
next
|
|
190
|
+
}
|
|
191
|
+
|
|
186
192
|
png(
|
|
187
193
|
file.path(info$casedir, paste0("Enrichr-", db, ".png")),
|
|
188
194
|
res = 100, height = 600, width = 800
|
|
@@ -69,6 +69,10 @@ do_one_stats = function(name) {
|
|
|
69
69
|
select(all_of(select_cols)) %>%
|
|
70
70
|
group_by(!!!syms(select_cols)) %>%
|
|
71
71
|
summarise(.n = n(), .groups = "drop")
|
|
72
|
+
|
|
73
|
+
if (isTRUE(case$frac) || isTRUE(case$frac_ofall)) {
|
|
74
|
+
plot_df <- plot_df %>% mutate(.frac = .n / sum(.n))
|
|
75
|
+
}
|
|
72
76
|
}
|
|
73
77
|
|
|
74
78
|
write.table(plot_df, tablefile, sep="\t", quote=FALSE, row.names=FALSE)
|
|
@@ -101,7 +101,6 @@ load_sample = function(sample) {
|
|
|
101
101
|
# filter the cells that don't have any gene expressions
|
|
102
102
|
cell_exprs = colSums(obj@assays$RNA)
|
|
103
103
|
obj = subset(obj, cells = names(cell_exprs[cell_exprs > 0]))
|
|
104
|
-
# obj = SCTransform(object=obj, return.only.var.genes=FALSE, verbose=FALSE)
|
|
105
104
|
obj = RenameCells(obj, add.cell.id = sample)
|
|
106
105
|
# Attach meta data
|
|
107
106
|
for (mname in names(mdata)) {
|
|
@@ -110,9 +109,15 @@ load_sample = function(sample) {
|
|
|
110
109
|
if (is.factor(mdt)) { mdt = levels(mdt)[mdt] }
|
|
111
110
|
obj[[mname]] = mdt
|
|
112
111
|
}
|
|
113
|
-
# obj_list[[sample]] = obj
|
|
114
112
|
|
|
115
|
-
|
|
113
|
+
if (isTRUE(envs$use_sct)) {
|
|
114
|
+
# so that we have data and scale.data layers on RNA assay
|
|
115
|
+
# useful for visualization in case some genes are not in
|
|
116
|
+
# the SCT assay
|
|
117
|
+
obj = NormalizeData(obj, verbose = FALSE)
|
|
118
|
+
obj = FindVariableFeatures(obj, verbose = FALSE)
|
|
119
|
+
obj = ScaleData(obj, verbose = FALSE)
|
|
120
|
+
}
|
|
116
121
|
obj
|
|
117
122
|
}
|
|
118
123
|
|
|
@@ -329,6 +334,11 @@ if (!envs$no_integration) {
|
|
|
329
334
|
IntegrateLayersArgs <- envs$IntegrateLayers
|
|
330
335
|
IntegrateLayersArgs$object <- sobj
|
|
331
336
|
method <- IntegrateLayersArgs$method
|
|
337
|
+
if (!is.null(IntegrateLayersArgs$reference) && is.character(IntegrateLayersArgs$reference)) {
|
|
338
|
+
log_info(" Using reference samples: {paste(IntegrateLayersArgs$reference, collapse = ', ')}")
|
|
339
|
+
IntegrateLayersArgs$reference <- match(IntegrateLayersArgs$reference, samples)
|
|
340
|
+
log_info(" Transferred to indices: {paste(IntegrateLayersArgs$reference, collapse = ', ')}")
|
|
341
|
+
}
|
|
332
342
|
if (method %in% c("CCA", "cca")) { method <- "CCAIntegration" } else
|
|
333
343
|
if (method %in% c("RPCA", "rpca")) { method <- "RPCAIntegration" } else
|
|
334
344
|
if (method %in% c("Harmony", "harmony")) { method <- "HarmonyIntegration" } else
|
|
@@ -177,6 +177,12 @@ do_enrich <- function(expr, odir) {
|
|
|
177
177
|
col.names = TRUE,
|
|
178
178
|
quote = FALSE
|
|
179
179
|
)
|
|
180
|
+
|
|
181
|
+
if (nrow(enriched[[db]]) == 0) {
|
|
182
|
+
log_info(paste0(" No enriched terms for ", db))
|
|
183
|
+
next
|
|
184
|
+
}
|
|
185
|
+
|
|
180
186
|
png(
|
|
181
187
|
file.path(odir, paste0("Enrichr-", db, ".png")),
|
|
182
188
|
res = 100, height = 1000, width = 1000
|
{biopipen-0.23.4 → biopipen-0.23.6}/biopipen/scripts/scrna_metabolic_landscape/MetabolicFeatures.R
RENAMED
|
@@ -36,6 +36,7 @@ gmt_pathways <- function(gmt_file) {
|
|
|
36
36
|
pathways
|
|
37
37
|
}
|
|
38
38
|
|
|
39
|
+
gmtfile <- localizeGmtfile(gmtfile)
|
|
39
40
|
pathways <- gmt_pathways(gmtfile)
|
|
40
41
|
metabolics <- unique(as.vector(unname(unlist(pathways))))
|
|
41
42
|
sobj <- readRDS(sobjfile)
|
|
@@ -78,7 +79,8 @@ do_one_group <- function(obj, features, group, outputdir, h1) {
|
|
|
78
79
|
)
|
|
79
80
|
}
|
|
80
81
|
|
|
81
|
-
|
|
82
|
+
# Can't add report directly, mclapply can't modify global variables.
|
|
83
|
+
report = list(
|
|
82
84
|
list(kind = "fgsea", dir = odir),
|
|
83
85
|
h1 = ifelse(is.null(h1), groupname, h1),
|
|
84
86
|
h2 = ifelse(is.null(h1), "#", groupname)
|
|
@@ -88,7 +90,7 @@ do_one_group <- function(obj, features, group, outputdir, h1) {
|
|
|
88
90
|
log_warn(paste("Unable to run for", group))
|
|
89
91
|
log_warn(e$message)
|
|
90
92
|
|
|
91
|
-
|
|
93
|
+
report = list(
|
|
92
94
|
list(
|
|
93
95
|
kind = "error",
|
|
94
96
|
content = paste0("Error running GSEA for ", group, ": ", e$message)
|
|
@@ -98,6 +100,7 @@ do_one_group <- function(obj, features, group, outputdir, h1) {
|
|
|
98
100
|
)
|
|
99
101
|
})
|
|
100
102
|
|
|
103
|
+
report
|
|
101
104
|
}
|
|
102
105
|
|
|
103
106
|
do_one_subset <- function(s, subset_col, subset_prefix) {
|
|
@@ -126,6 +129,8 @@ do_one_subset <- function(s, subset_col, subset_prefix) {
|
|
|
126
129
|
if (any(unlist(lapply(x, class)) == "try-error")) {
|
|
127
130
|
stop("mclapply error")
|
|
128
131
|
}
|
|
132
|
+
|
|
133
|
+
for (r in x) { do.call(add_report, r) }
|
|
129
134
|
}
|
|
130
135
|
|
|
131
136
|
do_one_subset_col <- function(subset_col, subset_prefix) {
|
|
@@ -38,11 +38,11 @@ gmt_pathways <- function(gmt_file) {
|
|
|
38
38
|
pathways
|
|
39
39
|
}
|
|
40
40
|
|
|
41
|
+
gmtfile <- localizeGmtfile(gmtfile)
|
|
41
42
|
pathways <- gmt_pathways(gmtfile)
|
|
42
43
|
metabolics <- unique(as.vector(unname(unlist(pathways))))
|
|
43
44
|
sobj <- readRDS(sobjfile)
|
|
44
45
|
|
|
45
|
-
|
|
46
46
|
do_one_comparison <- function(
|
|
47
47
|
obj,
|
|
48
48
|
compname,
|
|
@@ -111,7 +111,7 @@ do_one_comparison <- function(
|
|
|
111
111
|
envs = list(nproc = 1)
|
|
112
112
|
)
|
|
113
113
|
|
|
114
|
-
|
|
114
|
+
report = list(
|
|
115
115
|
list(kind = "fgsea", dir = odir),
|
|
116
116
|
h1 = groupname,
|
|
117
117
|
h2 = compname
|
|
@@ -123,7 +123,11 @@ do_one_comparison <- function(
|
|
|
123
123
|
gmtfile,
|
|
124
124
|
odir
|
|
125
125
|
)
|
|
126
|
+
|
|
127
|
+
report = list()
|
|
126
128
|
}
|
|
129
|
+
|
|
130
|
+
report
|
|
127
131
|
}
|
|
128
132
|
|
|
129
133
|
do_one_group <- function(group) {
|
|
@@ -138,12 +142,13 @@ do_one_group <- function(group) {
|
|
|
138
142
|
groupdir = file.path(outdir, slugify(groupname, tolower = FALSE))
|
|
139
143
|
dir.create(groupdir, showWarnings = FALSE)
|
|
140
144
|
|
|
145
|
+
report = list()
|
|
141
146
|
for (i in seq_along(subsetting_comparison)) {
|
|
142
147
|
sci = subsetting_comparison[[i]]
|
|
143
148
|
if (is.null(sci) || length(sci) == 0) {
|
|
144
149
|
next
|
|
145
150
|
}
|
|
146
|
-
|
|
151
|
+
rs = lapply(
|
|
147
152
|
names(sci),
|
|
148
153
|
function(compname) {
|
|
149
154
|
do_one_comparison(
|
|
@@ -159,17 +164,23 @@ do_one_group <- function(group) {
|
|
|
159
164
|
)
|
|
160
165
|
}
|
|
161
166
|
)
|
|
167
|
+
if (length(rs) > 0) {
|
|
168
|
+
report = c(report, rs)
|
|
169
|
+
}
|
|
162
170
|
}
|
|
171
|
+
report
|
|
163
172
|
}
|
|
164
173
|
|
|
165
174
|
groups = sort(as.character(unique(sobj@meta.data[[grouping]])))
|
|
166
175
|
if (ncores == 1) {
|
|
167
|
-
lapply(groups, do_one_group)
|
|
176
|
+
x = lapply(groups, do_one_group)
|
|
168
177
|
} else {
|
|
169
178
|
x = mclapply(groups, do_one_group, mc.cores = ncores)
|
|
170
179
|
if (any(unlist(lapply(x, class)) == "try-error")) {
|
|
171
180
|
stop("mclapply error")
|
|
172
181
|
}
|
|
173
182
|
}
|
|
183
|
+
report = unlist(x, recursive = FALSE)
|
|
184
|
+
for (r in report) { do.call(add_report, r) }
|
|
174
185
|
|
|
175
186
|
save_report(joboutdir)
|
|
@@ -41,6 +41,7 @@ gmt_pathways <- function(gmt_file) {
|
|
|
41
41
|
pathways
|
|
42
42
|
}
|
|
43
43
|
|
|
44
|
+
gmtfile <- localizeGmtfile(gmtfile)
|
|
44
45
|
pathways <- gmt_pathways(gmtfile)
|
|
45
46
|
metabolics <- unique(as.vector(unname(unlist(pathways))))
|
|
46
47
|
sobj <- readRDS(sobjfile)
|
|
@@ -216,7 +217,7 @@ do_one_subset <- function(s, subset_col, subset_prefix) {
|
|
|
216
217
|
|
|
217
218
|
ggsave(file.path(subset_dir, "PC_variance_plot.pdf"), p, device = "pdf", useDingbats = FALSE)
|
|
218
219
|
|
|
219
|
-
|
|
220
|
+
list(
|
|
220
221
|
list(kind = "descr", content = "Metabolic pathways enriched in genes with highest contribution to the metabolic heterogeneities"),
|
|
221
222
|
list(kind = "image", src = bubblefile),
|
|
222
223
|
h1 = ifelse(is.null(s), "Metabolic pathway heterogeneity", paste0(subset_prefix, s))
|
|
@@ -226,17 +227,20 @@ do_one_subset <- function(s, subset_col, subset_prefix) {
|
|
|
226
227
|
do_one_subset_col <- function(subset_col, subset_prefix) {
|
|
227
228
|
log_info(paste0("- Handling subset column: ", subset_col, " ..."))
|
|
228
229
|
if (is.null(subset_col)) {
|
|
229
|
-
do_one_subset(NULL, subset_col = NULL, subset_prefix = NULL)
|
|
230
|
-
|
|
231
|
-
subsets <- na.omit(unique(sobj@meta.data[[subset_col]]))
|
|
232
|
-
|
|
233
|
-
if (ncores == 1) {
|
|
234
|
-
lapply(subsets, do_one_subset, subset_col = subset_col, subset_prefix = subset_prefix)
|
|
230
|
+
x <- do_one_subset(NULL, subset_col = NULL, subset_prefix = NULL)
|
|
231
|
+
do.call(add_report, x)
|
|
235
232
|
} else {
|
|
236
|
-
|
|
237
|
-
|
|
238
|
-
|
|
233
|
+
subsets <- na.omit(unique(sobj@meta.data[[subset_col]]))
|
|
234
|
+
|
|
235
|
+
if (ncores == 1) {
|
|
236
|
+
x = lapply(subsets, do_one_subset, subset_col = subset_col, subset_prefix = subset_prefix)
|
|
237
|
+
} else {
|
|
238
|
+
x <- mclapply(subsets, do_one_subset, subset_col = subset_col, subset_prefix = subset_prefix, mc.cores = ncores)
|
|
239
|
+
if (any(unlist(lapply(x, class)) == "try-error")) {
|
|
240
|
+
stop(paste0("\nmclapply error:", x))
|
|
241
|
+
}
|
|
239
242
|
}
|
|
243
|
+
for (r in x) { do.call(add_report, r) }
|
|
240
244
|
}
|
|
241
245
|
}
|
|
242
246
|
|
|
@@ -647,6 +647,12 @@ run_div_case = function(casename) {
|
|
|
647
647
|
# Filter
|
|
648
648
|
if (!is.null(case$subset)) {
|
|
649
649
|
d = immdata_from_expanded(filter_expanded_immdata(exdata, case$subset))
|
|
650
|
+
if (nrow(d$meta) == 0) {
|
|
651
|
+
stop(paste0(
|
|
652
|
+
"No samples/cells left after filtering. ",
|
|
653
|
+
"Do you have the correct `subset` for case: ",
|
|
654
|
+
casename, "?"))
|
|
655
|
+
}
|
|
650
656
|
} else {
|
|
651
657
|
d = immdata
|
|
652
658
|
}
|
|
@@ -1,8 +1,48 @@
|
|
|
1
1
|
library(ggplot2)
|
|
2
2
|
library(dplyr)
|
|
3
3
|
library(tibble)
|
|
4
|
+
library(slugify)
|
|
4
5
|
|
|
5
|
-
|
|
6
|
+
|
|
7
|
+
localizeGmtfile <- function(gmturl, cachedir = tempdir()) {
|
|
8
|
+
# Download the GMT file and save it to cachedir
|
|
9
|
+
# Return the path to the GMT file
|
|
10
|
+
if (!startsWith(gmturl, "http") && !startsWith(gmturl, "ftp")) {
|
|
11
|
+
return(gmturl)
|
|
12
|
+
}
|
|
13
|
+
gmtfile = file.path(cachedir, basename(gmturl))
|
|
14
|
+
if (!file.exists(gmtfile)) {
|
|
15
|
+
download.file(gmturl, gmtfile)
|
|
16
|
+
items <- read.delim(gmtfile, header = FALSE, stringsAsFactors = FALSE, sep = "\t")
|
|
17
|
+
if (ncol(items) < 3) {
|
|
18
|
+
stop(paste0("Invalid GMT file: ", gmtfile, ", from ", gmturl))
|
|
19
|
+
}
|
|
20
|
+
if (nrow(items) == 0) {
|
|
21
|
+
stop(paste0("Empty GMT file: ", gmtfile, ", from ", gmturl))
|
|
22
|
+
}
|
|
23
|
+
if (nchar(items$V2[1]) < nchar(items$V1[1]) && nchar(items$V2[1]) > 0) {
|
|
24
|
+
warning(paste0(
|
|
25
|
+
"The second column is shorter, switching the first and second columns in GMT file ",
|
|
26
|
+
gmtfile,
|
|
27
|
+
" from ",
|
|
28
|
+
gmturl
|
|
29
|
+
))
|
|
30
|
+
items <- items[, c(2, 1, 3:ncol(items))]
|
|
31
|
+
write.table(
|
|
32
|
+
items,
|
|
33
|
+
gmtfile,
|
|
34
|
+
row.names = F,
|
|
35
|
+
col.names = F,
|
|
36
|
+
sep = "\t",
|
|
37
|
+
quote = F
|
|
38
|
+
)
|
|
39
|
+
}
|
|
40
|
+
}
|
|
41
|
+
return(gmtfile)
|
|
42
|
+
}
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
prerank <- function(
|
|
6
46
|
exprdata,
|
|
7
47
|
pos,
|
|
8
48
|
neg,
|
|
@@ -63,6 +103,11 @@ runEnrichr = function(
|
|
|
63
103
|
outfig = file.path(outdir, paste0("Enrichr_", db, ".png"))
|
|
64
104
|
write.table(enr, outtable, row.names=T, col.names=F, sep="\t", quote=F)
|
|
65
105
|
|
|
106
|
+
if (nrow(enr) == 0) {
|
|
107
|
+
print(paste0("No enriched terms for ", db))
|
|
108
|
+
next
|
|
109
|
+
}
|
|
110
|
+
|
|
66
111
|
png(outfig, res=100, height=1000, width=1400)
|
|
67
112
|
print(
|
|
68
113
|
plotEnrich(
|
|
@@ -95,6 +140,7 @@ runFGSEA = function(
|
|
|
95
140
|
ranks = unlist(ranks)
|
|
96
141
|
}
|
|
97
142
|
|
|
143
|
+
gmtfile = localizeGmtfile(gmtfile)
|
|
98
144
|
envs$pathways = gmtPathways(gmtfile)
|
|
99
145
|
envs$stats = ranks
|
|
100
146
|
gsea_res = do.call(fgsea::fgsea, envs)
|
|
@@ -130,7 +176,7 @@ runFGSEA = function(
|
|
|
130
176
|
dev.off()
|
|
131
177
|
|
|
132
178
|
for (pathway in topPathways) {
|
|
133
|
-
enrfig = file.path(outdir, paste0("fgsea_",
|
|
179
|
+
enrfig = file.path(outdir, paste0("fgsea_", slugify(pathway), ".png"))
|
|
134
180
|
png(enrfig, res=100, width=1000, height=800)
|
|
135
181
|
print(plotEnrichment(
|
|
136
182
|
envs$pathways[[pathway]],
|
|
@@ -186,7 +232,7 @@ runGSEA = function(
|
|
|
186
232
|
|
|
187
233
|
envs$input.ds = gctfile
|
|
188
234
|
envs$input.cls = clsfile
|
|
189
|
-
envs$gs.db = gmtfile
|
|
235
|
+
envs$gs.db = localizeGmtfile(gmtfile)
|
|
190
236
|
envs$output.directory = outdir
|
|
191
237
|
|
|
192
238
|
do.call(GSEA, envs)
|
|
@@ -1 +0,0 @@
|
|
|
1
|
-
__version__ = "0.23.4"
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|