biomedisa 24.8.8__tar.gz → 24.8.9__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {biomedisa-24.8.8 → biomedisa-24.8.9}/PKG-INFO +7 -23
- {biomedisa-24.8.8 → biomedisa-24.8.9}/README.md +6 -22
- {biomedisa-24.8.8 → biomedisa-24.8.9}/pyproject.toml +1 -1
- {biomedisa-24.8.8 → biomedisa-24.8.9}/src/biomedisa/deeplearning.py +4 -0
- {biomedisa-24.8.8 → biomedisa-24.8.9}/src/biomedisa/features/DataGenerator.py +1 -1
- {biomedisa-24.8.8 → biomedisa-24.8.9}/src/biomedisa/features/crop_helper.py +13 -6
- {biomedisa-24.8.8 → biomedisa-24.8.9}/src/biomedisa/features/keras_helper.py +36 -22
- {biomedisa-24.8.8 → biomedisa-24.8.9}/src/biomedisa.egg-info/PKG-INFO +7 -23
- {biomedisa-24.8.8 → biomedisa-24.8.9}/LICENSE +0 -0
- {biomedisa-24.8.8 → biomedisa-24.8.9}/setup.cfg +0 -0
- {biomedisa-24.8.8 → biomedisa-24.8.9}/src/biomedisa/__init__.py +0 -0
- {biomedisa-24.8.8 → biomedisa-24.8.9}/src/biomedisa/__main__.py +0 -0
- {biomedisa-24.8.8 → biomedisa-24.8.9}/src/biomedisa/features/DataGeneratorCrop.py +0 -0
- {biomedisa-24.8.8 → biomedisa-24.8.9}/src/biomedisa/features/PredictDataGenerator.py +0 -0
- {biomedisa-24.8.8 → biomedisa-24.8.9}/src/biomedisa/features/PredictDataGeneratorCrop.py +0 -0
- {biomedisa-24.8.8 → biomedisa-24.8.9}/src/biomedisa/features/__init__.py +0 -0
- {biomedisa-24.8.8 → biomedisa-24.8.9}/src/biomedisa/features/active_contour.py +0 -0
- {biomedisa-24.8.8 → biomedisa-24.8.9}/src/biomedisa/features/amira_to_np/__init__.py +0 -0
- {biomedisa-24.8.8 → biomedisa-24.8.9}/src/biomedisa/features/amira_to_np/amira_data_stream.py +0 -0
- {biomedisa-24.8.8 → biomedisa-24.8.9}/src/biomedisa/features/amira_to_np/amira_grammar.py +0 -0
- {biomedisa-24.8.8 → biomedisa-24.8.9}/src/biomedisa/features/amira_to_np/amira_header.py +0 -0
- {biomedisa-24.8.8 → biomedisa-24.8.9}/src/biomedisa/features/amira_to_np/amira_helper.py +0 -0
- {biomedisa-24.8.8 → biomedisa-24.8.9}/src/biomedisa/features/assd.py +0 -0
- {biomedisa-24.8.8 → biomedisa-24.8.9}/src/biomedisa/features/biomedisa_helper.py +0 -0
- {biomedisa-24.8.8 → biomedisa-24.8.9}/src/biomedisa/features/create_slices.py +0 -0
- {biomedisa-24.8.8 → biomedisa-24.8.9}/src/biomedisa/features/curvop_numba.py +0 -0
- {biomedisa-24.8.8 → biomedisa-24.8.9}/src/biomedisa/features/django_env.py +0 -0
- {biomedisa-24.8.8 → biomedisa-24.8.9}/src/biomedisa/features/nc_reader.py +0 -0
- {biomedisa-24.8.8 → biomedisa-24.8.9}/src/biomedisa/features/pid.py +0 -0
- {biomedisa-24.8.8 → biomedisa-24.8.9}/src/biomedisa/features/process_image.py +0 -0
- {biomedisa-24.8.8 → biomedisa-24.8.9}/src/biomedisa/features/pycuda_test.py +0 -0
- {biomedisa-24.8.8 → biomedisa-24.8.9}/src/biomedisa/features/random_walk/__init__.py +0 -0
- {biomedisa-24.8.8 → biomedisa-24.8.9}/src/biomedisa/features/random_walk/gpu_kernels.py +0 -0
- {biomedisa-24.8.8 → biomedisa-24.8.9}/src/biomedisa/features/random_walk/pycuda_large.py +0 -0
- {biomedisa-24.8.8 → biomedisa-24.8.9}/src/biomedisa/features/random_walk/pycuda_large_allx.py +0 -0
- {biomedisa-24.8.8 → biomedisa-24.8.9}/src/biomedisa/features/random_walk/pycuda_small.py +0 -0
- {biomedisa-24.8.8 → biomedisa-24.8.9}/src/biomedisa/features/random_walk/pycuda_small_allx.py +0 -0
- {biomedisa-24.8.8 → biomedisa-24.8.9}/src/biomedisa/features/random_walk/pyopencl_large.py +0 -0
- {biomedisa-24.8.8 → biomedisa-24.8.9}/src/biomedisa/features/random_walk/pyopencl_small.py +0 -0
- {biomedisa-24.8.8 → biomedisa-24.8.9}/src/biomedisa/features/random_walk/rw_large.py +0 -0
- {biomedisa-24.8.8 → biomedisa-24.8.9}/src/biomedisa/features/random_walk/rw_small.py +0 -0
- {biomedisa-24.8.8 → biomedisa-24.8.9}/src/biomedisa/features/remove_outlier.py +0 -0
- {biomedisa-24.8.8 → biomedisa-24.8.9}/src/biomedisa/features/split_volume.py +0 -0
- {biomedisa-24.8.8 → biomedisa-24.8.9}/src/biomedisa/interpolation.py +0 -0
- {biomedisa-24.8.8 → biomedisa-24.8.9}/src/biomedisa/mesh.py +0 -0
- {biomedisa-24.8.8 → biomedisa-24.8.9}/src/biomedisa.egg-info/SOURCES.txt +0 -0
- {biomedisa-24.8.8 → biomedisa-24.8.9}/src/biomedisa.egg-info/dependency_links.txt +0 -0
- {biomedisa-24.8.8 → biomedisa-24.8.9}/src/biomedisa.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.2
|
2
2
|
Name: biomedisa
|
3
|
-
Version: 24.8.
|
3
|
+
Version: 24.8.9
|
4
4
|
Summary: Segmentation of 3D volumetric image data
|
5
5
|
Author: Philipp Lösel
|
6
6
|
Author-email: philipp.loesel@anu.edu.au
|
@@ -23,7 +23,6 @@ License-File: LICENSE
|
|
23
23
|
- [Installation (browser based)](#installation-browser-based)
|
24
24
|
- [Download Data](#download-data)
|
25
25
|
- [Revisions](#revisions)
|
26
|
-
- [Quickstart](#quickstart)
|
27
26
|
- [Smart Interpolation](#smart-interpolation)
|
28
27
|
- [Deep Learning](#deep-learning)
|
29
28
|
- [Mesh Generator](#mesh-generator)
|
@@ -37,41 +36,26 @@ License-File: LICENSE
|
|
37
36
|
Biomedisa (https://biomedisa.info) is a free and easy-to-use open-source application for segmenting large 3D volumetric images such as CT and MRI scans, developed at [The Australian National University CTLab](https://ctlab.anu.edu.au/). Biomedisa's smart interpolation of sparsely pre-segmented slices enables accurate semi-automated segmentation by considering the complete underlying image data. Additionally, Biomedisa enables deep learning for fully automated segmentation across similar samples and structures. It is compatible with segmentation tools like Amira/Avizo, ImageJ/Fiji, and 3D Slicer. If you are using Biomedisa or the data for your research please cite: Lösel, P.D. et al. [Introducing Biomedisa as an open-source online platform for biomedical image segmentation.](https://www.nature.com/articles/s41467-020-19303-w) *Nat. Commun.* **11**, 5577 (2020).
|
38
37
|
|
39
38
|
## Hardware Requirements
|
40
|
-
+ One or more NVIDIA GPUs
|
39
|
+
+ One or more NVIDIA GPUs
|
41
40
|
|
42
41
|
## Installation (command-line based)
|
43
42
|
+ [Ubuntu 22/24 + Smart Interpolation](https://github.com/biomedisa/biomedisa/blob/master/README/ubuntu_interpolation_cli.md)
|
44
43
|
+ [Ubuntu 22/24 + Deep Learning](https://github.com/biomedisa/biomedisa/blob/master/README/ubuntu_deeplearning_cli.md)
|
45
44
|
+ [Ubuntu 22/24 + Smart Interpolation + Deep Learning](https://github.com/biomedisa/biomedisa/blob/master/README/ubuntu_cli.md)
|
46
|
-
+ [Windows 10/11 + Smart Interpolation + Deep Learning](https://github.com/biomedisa/biomedisa/blob/master/README/
|
47
|
-
+ [Windows (WSL) + Smart Interpolation + Deep Learning](https://github.com/biomedisa/biomedisa/blob/master/README/windows_wsl.md)
|
45
|
+
+ [Windows 10/11 + Smart Interpolation + Deep Learning](https://github.com/biomedisa/biomedisa/blob/master/README/windows_wsl.md)
|
48
46
|
|
49
47
|
## Installation (3D Slicer extension)
|
50
|
-
+ [Ubuntu 22
|
51
|
-
+ [Windows 10/11
|
48
|
+
+ [Ubuntu 22/24](https://github.com/biomedisa/biomedisa/blob/master/README/ubuntu_slicer.md)
|
49
|
+
+ [Windows 10/11](https://github.com/biomedisa/biomedisa/blob/master/README/windows_slicer.md)
|
52
50
|
|
53
51
|
## Installation (browser based)
|
54
|
-
+ [Ubuntu 22
|
52
|
+
+ [Ubuntu 22/24](https://github.com/biomedisa/biomedisa/blob/master/README/ubuntu_browser.md)
|
55
53
|
|
56
54
|
## Download Data
|
57
55
|
+ Download test data from our [gallery](https://biomedisa.info/gallery/)
|
58
56
|
|
59
57
|
## Revisions
|
60
|
-
|
61
|
-
+ 3D Slicer extension
|
62
|
-
+ Prediction of large data block by block
|
63
|
-
|
64
|
-
24.5.22
|
65
|
-
+ Pip is the preferred installation method
|
66
|
-
+ Commands, module names and imports have been changed to conform to the Pip standard
|
67
|
-
+ For versions <=23.9.1 please check [README](https://github.com/biomedisa/biomedisa/blob/master/README/deprecated/README_2023.09.1.md)
|
68
|
-
|
69
|
-
## Quickstart
|
70
|
-
Install the Biomedisa package from the [Python Package Index](https://pypi.org/project/biomedisa/):
|
71
|
-
```
|
72
|
-
python -m pip install -U biomedisa
|
73
|
-
```
|
74
|
-
For smart interpolation and deep Learning modules, follow the installation instructions above.
|
58
|
+
+ [Revisions](https://github.com/biomedisa/biomedisa/blob/master/README/revisions.md)
|
75
59
|
|
76
60
|
## Smart Interpolation
|
77
61
|
+ [Parameters and Examples](https://github.com/biomedisa/biomedisa/blob/master/README/smart_interpolation.md)
|
@@ -7,7 +7,6 @@
|
|
7
7
|
- [Installation (browser based)](#installation-browser-based)
|
8
8
|
- [Download Data](#download-data)
|
9
9
|
- [Revisions](#revisions)
|
10
|
-
- [Quickstart](#quickstart)
|
11
10
|
- [Smart Interpolation](#smart-interpolation)
|
12
11
|
- [Deep Learning](#deep-learning)
|
13
12
|
- [Mesh Generator](#mesh-generator)
|
@@ -21,41 +20,26 @@
|
|
21
20
|
Biomedisa (https://biomedisa.info) is a free and easy-to-use open-source application for segmenting large 3D volumetric images such as CT and MRI scans, developed at [The Australian National University CTLab](https://ctlab.anu.edu.au/). Biomedisa's smart interpolation of sparsely pre-segmented slices enables accurate semi-automated segmentation by considering the complete underlying image data. Additionally, Biomedisa enables deep learning for fully automated segmentation across similar samples and structures. It is compatible with segmentation tools like Amira/Avizo, ImageJ/Fiji, and 3D Slicer. If you are using Biomedisa or the data for your research please cite: Lösel, P.D. et al. [Introducing Biomedisa as an open-source online platform for biomedical image segmentation.](https://www.nature.com/articles/s41467-020-19303-w) *Nat. Commun.* **11**, 5577 (2020).
|
22
21
|
|
23
22
|
## Hardware Requirements
|
24
|
-
+ One or more NVIDIA GPUs
|
23
|
+
+ One or more NVIDIA GPUs
|
25
24
|
|
26
25
|
## Installation (command-line based)
|
27
26
|
+ [Ubuntu 22/24 + Smart Interpolation](https://github.com/biomedisa/biomedisa/blob/master/README/ubuntu_interpolation_cli.md)
|
28
27
|
+ [Ubuntu 22/24 + Deep Learning](https://github.com/biomedisa/biomedisa/blob/master/README/ubuntu_deeplearning_cli.md)
|
29
28
|
+ [Ubuntu 22/24 + Smart Interpolation + Deep Learning](https://github.com/biomedisa/biomedisa/blob/master/README/ubuntu_cli.md)
|
30
|
-
+ [Windows 10/11 + Smart Interpolation + Deep Learning](https://github.com/biomedisa/biomedisa/blob/master/README/
|
31
|
-
+ [Windows (WSL) + Smart Interpolation + Deep Learning](https://github.com/biomedisa/biomedisa/blob/master/README/windows_wsl.md)
|
29
|
+
+ [Windows 10/11 + Smart Interpolation + Deep Learning](https://github.com/biomedisa/biomedisa/blob/master/README/windows_wsl.md)
|
32
30
|
|
33
31
|
## Installation (3D Slicer extension)
|
34
|
-
+ [Ubuntu 22
|
35
|
-
+ [Windows 10/11
|
32
|
+
+ [Ubuntu 22/24](https://github.com/biomedisa/biomedisa/blob/master/README/ubuntu_slicer.md)
|
33
|
+
+ [Windows 10/11](https://github.com/biomedisa/biomedisa/blob/master/README/windows_slicer.md)
|
36
34
|
|
37
35
|
## Installation (browser based)
|
38
|
-
+ [Ubuntu 22
|
36
|
+
+ [Ubuntu 22/24](https://github.com/biomedisa/biomedisa/blob/master/README/ubuntu_browser.md)
|
39
37
|
|
40
38
|
## Download Data
|
41
39
|
+ Download test data from our [gallery](https://biomedisa.info/gallery/)
|
42
40
|
|
43
41
|
## Revisions
|
44
|
-
|
45
|
-
+ 3D Slicer extension
|
46
|
-
+ Prediction of large data block by block
|
47
|
-
|
48
|
-
24.5.22
|
49
|
-
+ Pip is the preferred installation method
|
50
|
-
+ Commands, module names and imports have been changed to conform to the Pip standard
|
51
|
-
+ For versions <=23.9.1 please check [README](https://github.com/biomedisa/biomedisa/blob/master/README/deprecated/README_2023.09.1.md)
|
52
|
-
|
53
|
-
## Quickstart
|
54
|
-
Install the Biomedisa package from the [Python Package Index](https://pypi.org/project/biomedisa/):
|
55
|
-
```
|
56
|
-
python -m pip install -U biomedisa
|
57
|
-
```
|
58
|
-
For smart interpolation and deep Learning modules, follow the installation instructions above.
|
42
|
+
+ [Revisions](https://github.com/biomedisa/biomedisa/blob/master/README/revisions.md)
|
59
43
|
|
60
44
|
## Smart Interpolation
|
61
45
|
+ [Parameters and Examples](https://github.com/biomedisa/biomedisa/blob/master/README/smart_interpolation.md)
|
@@ -95,6 +95,10 @@ def deep_learning(img_data, label_data=None, val_img_data=None, val_label_data=N
|
|
95
95
|
# normalization
|
96
96
|
bm.normalize = 1 if bm.normalization else 0
|
97
97
|
|
98
|
+
# patch normalization deactivates normalization of entire volume
|
99
|
+
if bm.patch_normalization:
|
100
|
+
bm.normalize = 0
|
101
|
+
|
98
102
|
# use patch normalization instead of normalizing the entire volume
|
99
103
|
if not bm.scaling:
|
100
104
|
bm.normalize = 0
|
@@ -291,7 +291,7 @@ class DataGenerator(tf.keras.utils.Sequence):
|
|
291
291
|
|
292
292
|
# patch normalization
|
293
293
|
if self.patch_normalization:
|
294
|
-
tmp_X = tmp_X.copy()
|
294
|
+
tmp_X = tmp_X.copy().astype(np.float32)
|
295
295
|
for c in range(self.n_channels):
|
296
296
|
tmp_X[:,:,:,c] -= np.mean(tmp_X[:,:,:,c])
|
297
297
|
tmp_X[:,:,:,c] /= max(np.std(tmp_X[:,:,:,c]), 1e-6)
|
@@ -153,19 +153,26 @@ def load_cropping_training_data(normalize, img_list, label_list, x_scale, y_scal
|
|
153
153
|
img = np.append(img_z,img_y,axis=0)
|
154
154
|
img = np.append(img,img_x,axis=0)
|
155
155
|
|
156
|
-
#
|
156
|
+
# scale image data
|
157
157
|
for c in range(channels):
|
158
158
|
img[:,:,:,c] -= np.amin(img[:,:,:,c])
|
159
159
|
img[:,:,:,c] /= np.amax(img[:,:,:,c])
|
160
|
-
|
161
|
-
|
162
|
-
|
163
|
-
|
164
|
-
elif normalize:
|
160
|
+
|
161
|
+
# normalize first validation image
|
162
|
+
if normalize and np.any(normalization_parameters):
|
163
|
+
for c in range(channels):
|
165
164
|
mean, std = np.mean(img[:,:,:,c]), np.std(img[:,:,:,c])
|
166
165
|
img[:,:,:,c] = (img[:,:,:,c] - mean) / std
|
167
166
|
img[:,:,:,c] = img[:,:,:,c] * normalization_parameters[1,c] + normalization_parameters[0,c]
|
168
167
|
|
168
|
+
# get normalization parameters from first image
|
169
|
+
if normalization_parameters is None:
|
170
|
+
normalization_parameters = np.zeros((2,channels))
|
171
|
+
if normalize:
|
172
|
+
for c in range(channels):
|
173
|
+
normalization_parameters[0,c] = np.mean(img[:,:,:,c])
|
174
|
+
normalization_parameters[1,c] = np.std(img[:,:,:,c])
|
175
|
+
|
169
176
|
# loop over list of images
|
170
177
|
if any(img_list) or type(img_in) is list:
|
171
178
|
number_of_images = len(img_names) if any(img_list) else len(img_in)
|
@@ -400,12 +400,6 @@ def load_training_data(bm, img_list, label_list, channels, img_in=None, label_in
|
|
400
400
|
label = label_in
|
401
401
|
label_names = ['label_1']
|
402
402
|
label_dim = label.shape
|
403
|
-
# no-scaling for list of images needs negative values as it encodes padded areas as -1
|
404
|
-
label_dtype = label.dtype
|
405
|
-
if label_dtype==np.uint8:
|
406
|
-
label_dtype = np.int16
|
407
|
-
elif label_dtype in [np.uint16, np.uint32]:
|
408
|
-
label_dtype = np.int32
|
409
403
|
label = set_labels_to_zero(label, bm.only, bm.ignore)
|
410
404
|
if any([bm.x_range, bm.y_range, bm.z_range]):
|
411
405
|
if len(label_names)>1:
|
@@ -461,28 +455,44 @@ def load_training_data(bm, img_list, label_list, channels, img_in=None, label_in
|
|
461
455
|
if any([bm.x_range, bm.y_range, bm.z_range]) or bm.crop_data:
|
462
456
|
img = img[argmin_z:argmax_z,argmin_y:argmax_y,argmin_x:argmax_x].copy()
|
463
457
|
|
464
|
-
#
|
465
|
-
img = img.astype(np.float32)
|
458
|
+
# resize image data
|
466
459
|
if bm.scaling:
|
460
|
+
img = img.astype(np.float32)
|
467
461
|
img = img_resize(img, bm.z_scale, bm.y_scale, bm.x_scale)
|
468
462
|
|
469
|
-
#
|
470
|
-
|
471
|
-
img
|
472
|
-
|
473
|
-
|
474
|
-
|
475
|
-
|
476
|
-
|
477
|
-
|
463
|
+
# scale data to the range from 0 to 1
|
464
|
+
if not bm.patch_normalization:
|
465
|
+
img = img.astype(np.float32)
|
466
|
+
for c in range(channels):
|
467
|
+
img[:,:,:,c] -= np.amin(img[:,:,:,c])
|
468
|
+
img[:,:,:,c] /= np.amax(img[:,:,:,c])
|
469
|
+
|
470
|
+
# normalize first validation image
|
471
|
+
if bm.normalize and np.any(normalization_parameters):
|
472
|
+
img = img.astype(np.float32)
|
473
|
+
for c in range(channels):
|
478
474
|
mean, std = np.mean(img[:,:,:,c]), np.std(img[:,:,:,c])
|
479
475
|
img[:,:,:,c] = (img[:,:,:,c] - mean) / std
|
480
476
|
img[:,:,:,c] = img[:,:,:,c] * normalization_parameters[1,c] + normalization_parameters[0,c]
|
481
477
|
|
478
|
+
# get normalization parameters from first image
|
479
|
+
if normalization_parameters is None:
|
480
|
+
normalization_parameters = np.zeros((2,channels))
|
481
|
+
if bm.normalize:
|
482
|
+
for c in range(channels):
|
483
|
+
normalization_parameters[0,c] = np.mean(img[:,:,:,c])
|
484
|
+
normalization_parameters[1,c] = np.std(img[:,:,:,c])
|
485
|
+
|
482
486
|
# pad data
|
483
487
|
if not bm.scaling:
|
484
488
|
img_data_list = [img]
|
485
489
|
label_data_list = [label]
|
490
|
+
# no-scaling for list of images needs negative values as it encodes padded areas as -1
|
491
|
+
label_dtype = label.dtype
|
492
|
+
if label_dtype==np.uint8:
|
493
|
+
label_dtype = np.int16
|
494
|
+
elif label_dtype in [np.uint16, np.uint32]:
|
495
|
+
label_dtype = np.int32
|
486
496
|
|
487
497
|
# loop over list of images
|
488
498
|
if any(img_list) or type(img_in) is list:
|
@@ -530,13 +540,17 @@ def load_training_data(bm, img_list, label_list, channels, img_in=None, label_in
|
|
530
540
|
raise InputError()
|
531
541
|
if bm.crop_data:
|
532
542
|
a = np.copy(a[argmin_z:argmax_z,argmin_y:argmax_y,argmin_x:argmax_x], order='C')
|
533
|
-
a = a.astype(np.float32)
|
534
543
|
if bm.scaling:
|
544
|
+
a = a.astype(np.float32)
|
535
545
|
a = img_resize(a, bm.z_scale, bm.y_scale, bm.x_scale)
|
536
|
-
|
537
|
-
a
|
538
|
-
|
539
|
-
|
546
|
+
if not bm.patch_normalization:
|
547
|
+
a = a.astype(np.float32)
|
548
|
+
for c in range(channels):
|
549
|
+
a[:,:,:,c] -= np.amin(a[:,:,:,c])
|
550
|
+
a[:,:,:,c] /= np.amax(a[:,:,:,c])
|
551
|
+
if bm.normalize:
|
552
|
+
a = a.astype(np.float32)
|
553
|
+
for c in range(channels):
|
540
554
|
mean, std = np.mean(a[:,:,:,c]), np.std(a[:,:,:,c])
|
541
555
|
a[:,:,:,c] = (a[:,:,:,c] - mean) / std
|
542
556
|
a[:,:,:,c] = a[:,:,:,c] * normalization_parameters[1,c] + normalization_parameters[0,c]
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.2
|
2
2
|
Name: biomedisa
|
3
|
-
Version: 24.8.
|
3
|
+
Version: 24.8.9
|
4
4
|
Summary: Segmentation of 3D volumetric image data
|
5
5
|
Author: Philipp Lösel
|
6
6
|
Author-email: philipp.loesel@anu.edu.au
|
@@ -23,7 +23,6 @@ License-File: LICENSE
|
|
23
23
|
- [Installation (browser based)](#installation-browser-based)
|
24
24
|
- [Download Data](#download-data)
|
25
25
|
- [Revisions](#revisions)
|
26
|
-
- [Quickstart](#quickstart)
|
27
26
|
- [Smart Interpolation](#smart-interpolation)
|
28
27
|
- [Deep Learning](#deep-learning)
|
29
28
|
- [Mesh Generator](#mesh-generator)
|
@@ -37,41 +36,26 @@ License-File: LICENSE
|
|
37
36
|
Biomedisa (https://biomedisa.info) is a free and easy-to-use open-source application for segmenting large 3D volumetric images such as CT and MRI scans, developed at [The Australian National University CTLab](https://ctlab.anu.edu.au/). Biomedisa's smart interpolation of sparsely pre-segmented slices enables accurate semi-automated segmentation by considering the complete underlying image data. Additionally, Biomedisa enables deep learning for fully automated segmentation across similar samples and structures. It is compatible with segmentation tools like Amira/Avizo, ImageJ/Fiji, and 3D Slicer. If you are using Biomedisa or the data for your research please cite: Lösel, P.D. et al. [Introducing Biomedisa as an open-source online platform for biomedical image segmentation.](https://www.nature.com/articles/s41467-020-19303-w) *Nat. Commun.* **11**, 5577 (2020).
|
38
37
|
|
39
38
|
## Hardware Requirements
|
40
|
-
+ One or more NVIDIA GPUs
|
39
|
+
+ One or more NVIDIA GPUs
|
41
40
|
|
42
41
|
## Installation (command-line based)
|
43
42
|
+ [Ubuntu 22/24 + Smart Interpolation](https://github.com/biomedisa/biomedisa/blob/master/README/ubuntu_interpolation_cli.md)
|
44
43
|
+ [Ubuntu 22/24 + Deep Learning](https://github.com/biomedisa/biomedisa/blob/master/README/ubuntu_deeplearning_cli.md)
|
45
44
|
+ [Ubuntu 22/24 + Smart Interpolation + Deep Learning](https://github.com/biomedisa/biomedisa/blob/master/README/ubuntu_cli.md)
|
46
|
-
+ [Windows 10/11 + Smart Interpolation + Deep Learning](https://github.com/biomedisa/biomedisa/blob/master/README/
|
47
|
-
+ [Windows (WSL) + Smart Interpolation + Deep Learning](https://github.com/biomedisa/biomedisa/blob/master/README/windows_wsl.md)
|
45
|
+
+ [Windows 10/11 + Smart Interpolation + Deep Learning](https://github.com/biomedisa/biomedisa/blob/master/README/windows_wsl.md)
|
48
46
|
|
49
47
|
## Installation (3D Slicer extension)
|
50
|
-
+ [Ubuntu 22
|
51
|
-
+ [Windows 10/11
|
48
|
+
+ [Ubuntu 22/24](https://github.com/biomedisa/biomedisa/blob/master/README/ubuntu_slicer.md)
|
49
|
+
+ [Windows 10/11](https://github.com/biomedisa/biomedisa/blob/master/README/windows_slicer.md)
|
52
50
|
|
53
51
|
## Installation (browser based)
|
54
|
-
+ [Ubuntu 22
|
52
|
+
+ [Ubuntu 22/24](https://github.com/biomedisa/biomedisa/blob/master/README/ubuntu_browser.md)
|
55
53
|
|
56
54
|
## Download Data
|
57
55
|
+ Download test data from our [gallery](https://biomedisa.info/gallery/)
|
58
56
|
|
59
57
|
## Revisions
|
60
|
-
|
61
|
-
+ 3D Slicer extension
|
62
|
-
+ Prediction of large data block by block
|
63
|
-
|
64
|
-
24.5.22
|
65
|
-
+ Pip is the preferred installation method
|
66
|
-
+ Commands, module names and imports have been changed to conform to the Pip standard
|
67
|
-
+ For versions <=23.9.1 please check [README](https://github.com/biomedisa/biomedisa/blob/master/README/deprecated/README_2023.09.1.md)
|
68
|
-
|
69
|
-
## Quickstart
|
70
|
-
Install the Biomedisa package from the [Python Package Index](https://pypi.org/project/biomedisa/):
|
71
|
-
```
|
72
|
-
python -m pip install -U biomedisa
|
73
|
-
```
|
74
|
-
For smart interpolation and deep Learning modules, follow the installation instructions above.
|
58
|
+
+ [Revisions](https://github.com/biomedisa/biomedisa/blob/master/README/revisions.md)
|
75
59
|
|
76
60
|
## Smart Interpolation
|
77
61
|
+ [Parameters and Examples](https://github.com/biomedisa/biomedisa/blob/master/README/smart_interpolation.md)
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
{biomedisa-24.8.8 → biomedisa-24.8.9}/src/biomedisa/features/amira_to_np/amira_data_stream.py
RENAMED
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
{biomedisa-24.8.8 → biomedisa-24.8.9}/src/biomedisa/features/random_walk/pycuda_large_allx.py
RENAMED
File without changes
|
File without changes
|
{biomedisa-24.8.8 → biomedisa-24.8.9}/src/biomedisa/features/random_walk/pycuda_small_allx.py
RENAMED
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|