biomedisa 24.7.1__tar.gz → 24.8.1__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (48) hide show
  1. {biomedisa-24.7.1 → biomedisa-24.8.1}/PKG-INFO +9 -8
  2. {biomedisa-24.7.1 → biomedisa-24.8.1}/README.md +8 -7
  3. {biomedisa-24.7.1 → biomedisa-24.8.1}/pyproject.toml +1 -1
  4. {biomedisa-24.7.1 → biomedisa-24.8.1}/src/biomedisa/deeplearning.py +4 -2
  5. {biomedisa-24.7.1 → biomedisa-24.8.1}/src/biomedisa/features/biomedisa_helper.py +20 -11
  6. {biomedisa-24.7.1 → biomedisa-24.8.1}/src/biomedisa/features/crop_helper.py +2 -1
  7. {biomedisa-24.7.1 → biomedisa-24.8.1}/src/biomedisa/features/keras_helper.py +12 -5
  8. {biomedisa-24.7.1 → biomedisa-24.8.1}/src/biomedisa/interpolation.py +1 -0
  9. {biomedisa-24.7.1 → biomedisa-24.8.1}/src/biomedisa.egg-info/PKG-INFO +9 -8
  10. {biomedisa-24.7.1 → biomedisa-24.8.1}/LICENSE +0 -0
  11. {biomedisa-24.7.1 → biomedisa-24.8.1}/setup.cfg +0 -0
  12. {biomedisa-24.7.1 → biomedisa-24.8.1}/src/biomedisa/__init__.py +0 -0
  13. {biomedisa-24.7.1 → biomedisa-24.8.1}/src/biomedisa/__main__.py +0 -0
  14. {biomedisa-24.7.1 → biomedisa-24.8.1}/src/biomedisa/features/DataGenerator.py +0 -0
  15. {biomedisa-24.7.1 → biomedisa-24.8.1}/src/biomedisa/features/DataGeneratorCrop.py +0 -0
  16. {biomedisa-24.7.1 → biomedisa-24.8.1}/src/biomedisa/features/PredictDataGenerator.py +0 -0
  17. {biomedisa-24.7.1 → biomedisa-24.8.1}/src/biomedisa/features/PredictDataGeneratorCrop.py +0 -0
  18. {biomedisa-24.7.1 → biomedisa-24.8.1}/src/biomedisa/features/__init__.py +0 -0
  19. {biomedisa-24.7.1 → biomedisa-24.8.1}/src/biomedisa/features/active_contour.py +0 -0
  20. {biomedisa-24.7.1 → biomedisa-24.8.1}/src/biomedisa/features/amira_to_np/__init__.py +0 -0
  21. {biomedisa-24.7.1 → biomedisa-24.8.1}/src/biomedisa/features/amira_to_np/amira_data_stream.py +0 -0
  22. {biomedisa-24.7.1 → biomedisa-24.8.1}/src/biomedisa/features/amira_to_np/amira_grammar.py +0 -0
  23. {biomedisa-24.7.1 → biomedisa-24.8.1}/src/biomedisa/features/amira_to_np/amira_header.py +0 -0
  24. {biomedisa-24.7.1 → biomedisa-24.8.1}/src/biomedisa/features/amira_to_np/amira_helper.py +0 -0
  25. {biomedisa-24.7.1 → biomedisa-24.8.1}/src/biomedisa/features/assd.py +0 -0
  26. {biomedisa-24.7.1 → biomedisa-24.8.1}/src/biomedisa/features/create_slices.py +0 -0
  27. {biomedisa-24.7.1 → biomedisa-24.8.1}/src/biomedisa/features/curvop_numba.py +0 -0
  28. {biomedisa-24.7.1 → biomedisa-24.8.1}/src/biomedisa/features/django_env.py +0 -0
  29. {biomedisa-24.7.1 → biomedisa-24.8.1}/src/biomedisa/features/nc_reader.py +0 -0
  30. {biomedisa-24.7.1 → biomedisa-24.8.1}/src/biomedisa/features/pid.py +0 -0
  31. {biomedisa-24.7.1 → biomedisa-24.8.1}/src/biomedisa/features/process_image.py +0 -0
  32. {biomedisa-24.7.1 → biomedisa-24.8.1}/src/biomedisa/features/pycuda_test.py +0 -0
  33. {biomedisa-24.7.1 → biomedisa-24.8.1}/src/biomedisa/features/random_walk/__init__.py +0 -0
  34. {biomedisa-24.7.1 → biomedisa-24.8.1}/src/biomedisa/features/random_walk/gpu_kernels.py +0 -0
  35. {biomedisa-24.7.1 → biomedisa-24.8.1}/src/biomedisa/features/random_walk/pycuda_large.py +0 -0
  36. {biomedisa-24.7.1 → biomedisa-24.8.1}/src/biomedisa/features/random_walk/pycuda_large_allx.py +0 -0
  37. {biomedisa-24.7.1 → biomedisa-24.8.1}/src/biomedisa/features/random_walk/pycuda_small.py +0 -0
  38. {biomedisa-24.7.1 → biomedisa-24.8.1}/src/biomedisa/features/random_walk/pycuda_small_allx.py +0 -0
  39. {biomedisa-24.7.1 → biomedisa-24.8.1}/src/biomedisa/features/random_walk/pyopencl_large.py +0 -0
  40. {biomedisa-24.7.1 → biomedisa-24.8.1}/src/biomedisa/features/random_walk/pyopencl_small.py +0 -0
  41. {biomedisa-24.7.1 → biomedisa-24.8.1}/src/biomedisa/features/random_walk/rw_large.py +0 -0
  42. {biomedisa-24.7.1 → biomedisa-24.8.1}/src/biomedisa/features/random_walk/rw_small.py +0 -0
  43. {biomedisa-24.7.1 → biomedisa-24.8.1}/src/biomedisa/features/remove_outlier.py +0 -0
  44. {biomedisa-24.7.1 → biomedisa-24.8.1}/src/biomedisa/features/split_volume.py +0 -0
  45. {biomedisa-24.7.1 → biomedisa-24.8.1}/src/biomedisa/mesh.py +0 -0
  46. {biomedisa-24.7.1 → biomedisa-24.8.1}/src/biomedisa.egg-info/SOURCES.txt +0 -0
  47. {biomedisa-24.7.1 → biomedisa-24.8.1}/src/biomedisa.egg-info/dependency_links.txt +0 -0
  48. {biomedisa-24.7.1 → biomedisa-24.8.1}/src/biomedisa.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: biomedisa
3
- Version: 24.7.1
3
+ Version: 24.8.1
4
4
  Summary: Segmentation of 3D volumetric image data
5
5
  Author: Philipp Lösel
6
6
  Author-email: philipp.loesel@anu.edu.au
@@ -36,17 +36,17 @@ License-File: LICENSE
36
36
  Biomedisa (https://biomedisa.info) is a free and easy-to-use open-source application for segmenting large 3D volumetric images such as CT and MRI scans, developed at [The Australian National University CTLab](https://ctlab.anu.edu.au/). Biomedisa's smart interpolation of sparsely pre-segmented slices enables accurate semi-automated segmentation by considering the complete underlying image data. Additionally, Biomedisa enables deep learning for fully automated segmentation across similar samples and structures. It is compatible with segmentation tools like Amira/Avizo, ImageJ/Fiji and 3D Slicer. If you are using Biomedisa or the data for your research please cite: Lösel, P.D. et al. [Introducing Biomedisa as an open-source online platform for biomedical image segmentation.](https://www.nature.com/articles/s41467-020-19303-w) *Nat. Commun.* **11**, 5577 (2020).
37
37
 
38
38
  ## Hardware Requirements
39
- + One or more NVIDIA GPUs with compute capability 3.0 or higher or an Intel CPU
39
+ + One or more NVIDIA GPUs with compute capability 3.0 or higher.
40
40
 
41
41
  ## Installation (command-line based)
42
- + [Ubuntu 22.04 + CUDA + GPU (recommended)](https://github.com/biomedisa/biomedisa/blob/master/README/ubuntu2204_cuda11.8_gpu_cli.md)
43
- + [Ubuntu 22.04 + OpenCL + CPU (very slow)](https://github.com/biomedisa/biomedisa/blob/master/README/ubuntu2204_opencl_cpu_cli.md)
44
- + [Windows 10 + CUDA + GPU (recommended)](https://github.com/biomedisa/biomedisa/blob/master/README/windows10_cuda_gpu_cli.md)
45
- + [Windows 10 + OpenCL + GPU (easy to install but lacks features like allaxis, smoothing, uncertainty, optimized GPU memory usage)](https://github.com/biomedisa/biomedisa/blob/master/README/windows10_opencl_gpu_cli.md)
46
- + [Windows 10 + OpenCL + CPU (very slow)](https://github.com/biomedisa/biomedisa/blob/master/README/windows10_opencl_cpu_cli.md)
42
+ + [Ubuntu 22.04 + Smart Interpolation](https://github.com/biomedisa/biomedisa/blob/master/README/ubuntu2204_interpolation_cli.md)
43
+ + [Ubuntu 22.04 + Smart Interpolation + Deep Learning](https://github.com/biomedisa/biomedisa/blob/master/README/ubuntu2204_cuda11.8_gpu_cli.md)
44
+ + [Windows 10 + Smart Interpolation + Deep Learning](https://github.com/biomedisa/biomedisa/blob/master/README/windows10_cuda_gpu_cli.md)
45
+ + [Windows (WSL) + Smart Interpolation + Deep Learning](https://github.com/biomedisa/biomedisa/blob/master/README/windows_wsl.md)
47
46
 
48
47
  ## Installation (3D Slicer extension)
49
- + [Ubuntu 22.04 + CUDA + GPU](https://github.com/biomedisa/biomedisa/blob/master/README/ubuntu2204_cuda11.8_gpu_slicer.md)
48
+ + [Ubuntu 22.04 + Smart Interpolation + Deep Learning](https://github.com/biomedisa/biomedisa/blob/master/README/ubuntu2204_cuda11.8_gpu_slicer.md)
49
+ + [Windows 10 + Smart Interpolation](https://github.com/biomedisa/biomedisa/blob/master/README/windows10_cuda_gpu_slicer.md)
50
50
 
51
51
  ## Installation (browser based)
52
52
  + [Ubuntu 22.04](https://github.com/biomedisa/biomedisa/blob/master/README/ubuntu2204_cuda11.8.md)
@@ -58,6 +58,7 @@ Biomedisa (https://biomedisa.info) is a free and easy-to-use open-source applica
58
58
  24.7.1
59
59
  + 3D Slicer extension
60
60
  + Prediction of large data block by block
61
+
61
62
  24.5.22
62
63
  + Pip is the preferred installation method
63
64
  + Commands, module names and imports have been changed to conform to the Pip standard
@@ -20,17 +20,17 @@
20
20
  Biomedisa (https://biomedisa.info) is a free and easy-to-use open-source application for segmenting large 3D volumetric images such as CT and MRI scans, developed at [The Australian National University CTLab](https://ctlab.anu.edu.au/). Biomedisa's smart interpolation of sparsely pre-segmented slices enables accurate semi-automated segmentation by considering the complete underlying image data. Additionally, Biomedisa enables deep learning for fully automated segmentation across similar samples and structures. It is compatible with segmentation tools like Amira/Avizo, ImageJ/Fiji and 3D Slicer. If you are using Biomedisa or the data for your research please cite: Lösel, P.D. et al. [Introducing Biomedisa as an open-source online platform for biomedical image segmentation.](https://www.nature.com/articles/s41467-020-19303-w) *Nat. Commun.* **11**, 5577 (2020).
21
21
 
22
22
  ## Hardware Requirements
23
- + One or more NVIDIA GPUs with compute capability 3.0 or higher or an Intel CPU
23
+ + One or more NVIDIA GPUs with compute capability 3.0 or higher.
24
24
 
25
25
  ## Installation (command-line based)
26
- + [Ubuntu 22.04 + CUDA + GPU (recommended)](https://github.com/biomedisa/biomedisa/blob/master/README/ubuntu2204_cuda11.8_gpu_cli.md)
27
- + [Ubuntu 22.04 + OpenCL + CPU (very slow)](https://github.com/biomedisa/biomedisa/blob/master/README/ubuntu2204_opencl_cpu_cli.md)
28
- + [Windows 10 + CUDA + GPU (recommended)](https://github.com/biomedisa/biomedisa/blob/master/README/windows10_cuda_gpu_cli.md)
29
- + [Windows 10 + OpenCL + GPU (easy to install but lacks features like allaxis, smoothing, uncertainty, optimized GPU memory usage)](https://github.com/biomedisa/biomedisa/blob/master/README/windows10_opencl_gpu_cli.md)
30
- + [Windows 10 + OpenCL + CPU (very slow)](https://github.com/biomedisa/biomedisa/blob/master/README/windows10_opencl_cpu_cli.md)
26
+ + [Ubuntu 22.04 + Smart Interpolation](https://github.com/biomedisa/biomedisa/blob/master/README/ubuntu2204_interpolation_cli.md)
27
+ + [Ubuntu 22.04 + Smart Interpolation + Deep Learning](https://github.com/biomedisa/biomedisa/blob/master/README/ubuntu2204_cuda11.8_gpu_cli.md)
28
+ + [Windows 10 + Smart Interpolation + Deep Learning](https://github.com/biomedisa/biomedisa/blob/master/README/windows10_cuda_gpu_cli.md)
29
+ + [Windows (WSL) + Smart Interpolation + Deep Learning](https://github.com/biomedisa/biomedisa/blob/master/README/windows_wsl.md)
31
30
 
32
31
  ## Installation (3D Slicer extension)
33
- + [Ubuntu 22.04 + CUDA + GPU](https://github.com/biomedisa/biomedisa/blob/master/README/ubuntu2204_cuda11.8_gpu_slicer.md)
32
+ + [Ubuntu 22.04 + Smart Interpolation + Deep Learning](https://github.com/biomedisa/biomedisa/blob/master/README/ubuntu2204_cuda11.8_gpu_slicer.md)
33
+ + [Windows 10 + Smart Interpolation](https://github.com/biomedisa/biomedisa/blob/master/README/windows10_cuda_gpu_slicer.md)
34
34
 
35
35
  ## Installation (browser based)
36
36
  + [Ubuntu 22.04](https://github.com/biomedisa/biomedisa/blob/master/README/ubuntu2204_cuda11.8.md)
@@ -42,6 +42,7 @@ Biomedisa (https://biomedisa.info) is a free and easy-to-use open-source applica
42
42
  24.7.1
43
43
  + 3D Slicer extension
44
44
  + Prediction of large data block by block
45
+
45
46
  24.5.22
46
47
  + Pip is the preferred installation method
47
48
  + Commands, module names and imports have been changed to conform to the Pip standard
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
4
4
 
5
5
  [project]
6
6
  name = "biomedisa"
7
- version = "24.7.1"
7
+ version = "24.8.1"
8
8
  authors = [
9
9
  { name="Philipp Lösel"}, {email="philipp.loesel@anu.edu.au" },
10
10
  ]
@@ -220,7 +220,7 @@ def deep_learning(img_data, label_data=None, val_img_data=None, val_label_data=N
220
220
  normalization_parameters = np.array(meta['normalization'], dtype=float)
221
221
  else:
222
222
  normalization_parameters = np.array([[mu],[sig]])
223
- allLabels = np.array(meta.get('labels'))
223
+ bm.allLabels = np.array(meta.get('labels'))
224
224
  if 'patch_normalization' in meta:
225
225
  bm.patch_normalization = bool(meta['patch_normalization'][()])
226
226
  if 'scaling' in meta:
@@ -293,7 +293,7 @@ def deep_learning(img_data, label_data=None, val_img_data=None, val_label_data=N
293
293
 
294
294
  # make prediction
295
295
  results, bm = predict_semantic_segmentation(bm,
296
- header, img_header, allLabels,
296
+ header, img_header,
297
297
  region_of_interest, extension, img_data,
298
298
  channels, normalization_parameters)
299
299
 
@@ -479,6 +479,8 @@ if __name__ == '__main__':
479
479
  help='Processing queue when using a remote server')
480
480
  parser.add_argument('-hf','--header_file', type=str, metavar='PATH', default=None,
481
481
  help='Location of header file')
482
+ parser.add_argument('-ext','--extension', type=str, default='.tif',
483
+ help='Save data for example as NRRD file using --extension=".nrrd"')
482
484
  bm = parser.parse_args()
483
485
  bm.success = True
484
486
 
@@ -416,25 +416,33 @@ def pre_processing(bm):
416
416
  if bm.labelData is None:
417
417
  return _error_(bm, 'Invalid label data.')
418
418
 
419
+ # dimension errors
419
420
  if len(bm.labelData.shape) != 3:
420
- return _error_(bm, 'Label must be three-dimensional.')
421
-
421
+ return _error_(bm, 'Label data must be three-dimensional.')
422
422
  if bm.data.shape != bm.labelData.shape:
423
- return _error_(bm, 'Image and label must have the same x,y,z-dimensions.')
423
+ return _error_(bm, 'Image and label data must have the same x,y,z-dimensions.')
424
+
425
+ # label data type
426
+ if bm.labelData.dtype in ['float16','float32','float64']:
427
+ if bm.django_env:
428
+ return _error_(bm, 'Label data must be of integer type.')
429
+ print(f'Warning: Potential label loss during conversion from {bm.labelData.dtype} to int32.')
430
+ bm.labelData = bm.labelData.astype(np.int32)
424
431
 
425
432
  # get labels
426
433
  bm.allLabels = np.unique(bm.labelData)
427
434
  index = np.argwhere(bm.allLabels<0)
428
435
  bm.allLabels = np.delete(bm.allLabels, index)
429
436
 
430
- if bm.django_env and np.any(bm.allLabels > 255):
431
- return _error_(bm, 'No labels higher than 255 allowed.')
432
-
437
+ # labels greater than 255
433
438
  if np.any(bm.allLabels > 255):
434
- bm.labelData[bm.labelData > 255] = 0
435
- index = np.argwhere(bm.allLabels > 255)
436
- bm.allLabels = np.delete(bm.allLabels, index)
437
- print('Warning: Only labels <=255 are allowed. Labels higher than 255 will be removed.')
439
+ if bm.django_env:
440
+ return _error_(bm, 'No labels greater than 255 allowed.')
441
+ else:
442
+ bm.labelData[bm.labelData > 255] = 0
443
+ index = np.argwhere(bm.allLabels > 255)
444
+ bm.allLabels = np.delete(bm.allLabels, index)
445
+ print('Warning: Only labels <=255 are allowed. Labels greater than 255 will be removed.')
438
446
 
439
447
  # add background label if not existing
440
448
  if not np.any(bm.allLabels==0):
@@ -486,7 +494,8 @@ def save_data(path_to_final, final, header=None, final_image_type=None, compress
486
494
  np_to_nc(path_to_final, final, header)
487
495
  elif final_image_type in ['.hdr', '.mhd', '.mha', '.nrrd', '.nii', '.nii.gz']:
488
496
  simg = sitk.GetImageFromArray(final)
489
- simg.CopyInformation(header)
497
+ if header is not None:
498
+ simg.CopyInformation(header)
490
499
  sitk.WriteImage(simg, path_to_final, useCompression=compress)
491
500
  elif final_image_type in ['.zip', 'directory', '']:
492
501
  with tempfile.TemporaryDirectory() as temp_dir:
@@ -542,7 +542,8 @@ def load_and_train(normalize,path_to_img,path_to_labels,path_to_model,
542
542
  cropping_weights.append(arr)
543
543
 
544
544
  # configuration data
545
- cropping_config = np.array([channels, x_scale, y_scale, z_scale, normalize, 0, 1])
545
+ cropping_config = np.array([channels, x_scale, y_scale, z_scale, normalize,
546
+ normalization_parameters[0,0], normalization_parameters[1,0]])
546
547
 
547
548
  return cropping_weights, cropping_config, normalization_parameters
548
549
 
@@ -780,7 +780,9 @@ def train_semantic_segmentation(bm,
780
780
  bm.only, bm.ignore, img, label, None, None, header, extension)
781
781
 
782
782
  # configuration data
783
- configuration_data = np.array([bm.channels, bm.x_scale, bm.y_scale, bm.z_scale, bm.normalize, 0, 1])
783
+ configuration_data = np.array([bm.channels,
784
+ bm.x_scale, bm.y_scale, bm.z_scale, bm.normalize,
785
+ normalization_parameters[0,0], normalization_parameters[1,0]])
784
786
 
785
787
  # img shape
786
788
  zsh, ysh, xsh, _ = img.shape
@@ -959,6 +961,10 @@ def load_prediction_data(bm, channels, normalize, normalization_parameters,
959
961
  img_header = None
960
962
  tif = TiffFile(bm.path_to_image)
961
963
  img = imread(bm.path_to_image, key=range(z,min(len(tif.pages),z+bm.z_patch)))
964
+ if img.shape[0] < bm.z_patch:
965
+ rest = bm.z_patch - img.shape[0]
966
+ tmp = imread(bm.path_to_image, key=range(len(tif.pages)-rest,len(tif.pages)))
967
+ img = np.append(img, tmp[::-1], axis=0)
962
968
  else:
963
969
  img, img_header = load_data(bm.path_to_image, 'first_queue')
964
970
 
@@ -1032,7 +1038,7 @@ def append_ghost_areas(bm, img):
1032
1038
  return img, z_rest, y_rest, x_rest
1033
1039
 
1034
1040
  def predict_semantic_segmentation(bm,
1035
- header, img_header, allLabels,
1041
+ header, img_header,
1036
1042
  region_of_interest, extension, img_data,
1037
1043
  channels, normalization_parameters):
1038
1044
 
@@ -1040,7 +1046,8 @@ def predict_semantic_segmentation(bm,
1040
1046
  results = {}
1041
1047
 
1042
1048
  # number of labels
1043
- nb_labels = len(allLabels)
1049
+ nb_labels = len(bm.allLabels)
1050
+ results['allLabels'] = bm.allLabels
1044
1051
 
1045
1052
  # load model
1046
1053
  if bm.dice_loss:
@@ -1222,7 +1229,7 @@ def predict_semantic_segmentation(bm,
1222
1229
  rest = ID % (ysh*xsh)
1223
1230
  l = rest // xsh
1224
1231
  m = rest % xsh
1225
- if i < max_i:
1232
+ if step*bm.batch_size+i < max_i:
1226
1233
  probs[:,l:l+bm.y_patch,m:m+bm.x_patch] += Y[i]
1227
1234
 
1228
1235
  # overlap in z direction
@@ -1280,7 +1287,7 @@ def predict_semantic_segmentation(bm,
1280
1287
  label = np.copy(tmp, order='C')
1281
1288
 
1282
1289
  # get result
1283
- label = get_labels(label, allLabels)
1290
+ label = get_labels(label, bm.allLabels)
1284
1291
  results['regular'] = label
1285
1292
 
1286
1293
  # load header from file
@@ -154,6 +154,7 @@ def smart_interpolation(data, labelData, nbrw=10, sorw=4000, acwe=False, acwe_al
154
154
  bm.data /= np.amax(bm.data)
155
155
  bm.data *= 255.0
156
156
  if bm.labelData.dtype in ['uint32','int64','uint64']:
157
+ print(f'Warning: Potential label loss during conversion from {bm.labelData.dtype} to int32.')
157
158
  bm.labelData = bm.labelData.astype(np.int32)
158
159
 
159
160
  # denoise image data
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: biomedisa
3
- Version: 24.7.1
3
+ Version: 24.8.1
4
4
  Summary: Segmentation of 3D volumetric image data
5
5
  Author: Philipp Lösel
6
6
  Author-email: philipp.loesel@anu.edu.au
@@ -36,17 +36,17 @@ License-File: LICENSE
36
36
  Biomedisa (https://biomedisa.info) is a free and easy-to-use open-source application for segmenting large 3D volumetric images such as CT and MRI scans, developed at [The Australian National University CTLab](https://ctlab.anu.edu.au/). Biomedisa's smart interpolation of sparsely pre-segmented slices enables accurate semi-automated segmentation by considering the complete underlying image data. Additionally, Biomedisa enables deep learning for fully automated segmentation across similar samples and structures. It is compatible with segmentation tools like Amira/Avizo, ImageJ/Fiji and 3D Slicer. If you are using Biomedisa or the data for your research please cite: Lösel, P.D. et al. [Introducing Biomedisa as an open-source online platform for biomedical image segmentation.](https://www.nature.com/articles/s41467-020-19303-w) *Nat. Commun.* **11**, 5577 (2020).
37
37
 
38
38
  ## Hardware Requirements
39
- + One or more NVIDIA GPUs with compute capability 3.0 or higher or an Intel CPU
39
+ + One or more NVIDIA GPUs with compute capability 3.0 or higher.
40
40
 
41
41
  ## Installation (command-line based)
42
- + [Ubuntu 22.04 + CUDA + GPU (recommended)](https://github.com/biomedisa/biomedisa/blob/master/README/ubuntu2204_cuda11.8_gpu_cli.md)
43
- + [Ubuntu 22.04 + OpenCL + CPU (very slow)](https://github.com/biomedisa/biomedisa/blob/master/README/ubuntu2204_opencl_cpu_cli.md)
44
- + [Windows 10 + CUDA + GPU (recommended)](https://github.com/biomedisa/biomedisa/blob/master/README/windows10_cuda_gpu_cli.md)
45
- + [Windows 10 + OpenCL + GPU (easy to install but lacks features like allaxis, smoothing, uncertainty, optimized GPU memory usage)](https://github.com/biomedisa/biomedisa/blob/master/README/windows10_opencl_gpu_cli.md)
46
- + [Windows 10 + OpenCL + CPU (very slow)](https://github.com/biomedisa/biomedisa/blob/master/README/windows10_opencl_cpu_cli.md)
42
+ + [Ubuntu 22.04 + Smart Interpolation](https://github.com/biomedisa/biomedisa/blob/master/README/ubuntu2204_interpolation_cli.md)
43
+ + [Ubuntu 22.04 + Smart Interpolation + Deep Learning](https://github.com/biomedisa/biomedisa/blob/master/README/ubuntu2204_cuda11.8_gpu_cli.md)
44
+ + [Windows 10 + Smart Interpolation + Deep Learning](https://github.com/biomedisa/biomedisa/blob/master/README/windows10_cuda_gpu_cli.md)
45
+ + [Windows (WSL) + Smart Interpolation + Deep Learning](https://github.com/biomedisa/biomedisa/blob/master/README/windows_wsl.md)
47
46
 
48
47
  ## Installation (3D Slicer extension)
49
- + [Ubuntu 22.04 + CUDA + GPU](https://github.com/biomedisa/biomedisa/blob/master/README/ubuntu2204_cuda11.8_gpu_slicer.md)
48
+ + [Ubuntu 22.04 + Smart Interpolation + Deep Learning](https://github.com/biomedisa/biomedisa/blob/master/README/ubuntu2204_cuda11.8_gpu_slicer.md)
49
+ + [Windows 10 + Smart Interpolation](https://github.com/biomedisa/biomedisa/blob/master/README/windows10_cuda_gpu_slicer.md)
50
50
 
51
51
  ## Installation (browser based)
52
52
  + [Ubuntu 22.04](https://github.com/biomedisa/biomedisa/blob/master/README/ubuntu2204_cuda11.8.md)
@@ -58,6 +58,7 @@ Biomedisa (https://biomedisa.info) is a free and easy-to-use open-source applica
58
58
  24.7.1
59
59
  + 3D Slicer extension
60
60
  + Prediction of large data block by block
61
+
61
62
  24.5.22
62
63
  + Pip is the preferred installation method
63
64
  + Commands, module names and imports have been changed to conform to the Pip standard
File without changes
File without changes