bigdl-core-npu 2.6.0b20250114__cp311-cp311-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. bigdl-core-npu/__init__.py +0 -0
  2. bigdl-core-npu/include/common.h +96 -0
  3. bigdl-core-npu/include/npu_llm.h +74 -0
  4. bigdl-core-npu/npu_llm.dll +0 -0
  5. bigdl-core-npu/npu_llm.lib +0 -0
  6. bigdl_core_npu-2.6.0b20250114.dist-info/METADATA +44 -0
  7. bigdl_core_npu-2.6.0b20250114.dist-info/RECORD +234 -0
  8. bigdl_core_npu-2.6.0b20250114.dist-info/WHEEL +5 -0
  9. bigdl_core_npu-2.6.0b20250114.dist-info/top_level.txt +2 -0
  10. intel_npu_acceleration_library/__init__.py +24 -0
  11. intel_npu_acceleration_library/_version.py +6 -0
  12. intel_npu_acceleration_library/backend/__init__.py +37 -0
  13. intel_npu_acceleration_library/backend/base.py +250 -0
  14. intel_npu_acceleration_library/backend/bindings.py +383 -0
  15. intel_npu_acceleration_library/backend/compression.py +24 -0
  16. intel_npu_acceleration_library/backend/convolution.py +58 -0
  17. intel_npu_acceleration_library/backend/factory.py +1161 -0
  18. intel_npu_acceleration_library/backend/linear.py +60 -0
  19. intel_npu_acceleration_library/backend/matmul.py +59 -0
  20. intel_npu_acceleration_library/backend/mlp.py +58 -0
  21. intel_npu_acceleration_library/backend/ops.py +142 -0
  22. intel_npu_acceleration_library/backend/qlinear.py +75 -0
  23. intel_npu_acceleration_library/backend/qmatmul.py +66 -0
  24. intel_npu_acceleration_library/backend/runtime.py +215 -0
  25. intel_npu_acceleration_library/backend/sdpa.py +107 -0
  26. intel_npu_acceleration_library/backend/tensor.py +1120 -0
  27. intel_npu_acceleration_library/backend/utils.py +70 -0
  28. intel_npu_acceleration_library/compiler.py +194 -0
  29. intel_npu_acceleration_library/device.py +230 -0
  30. intel_npu_acceleration_library/dtypes.py +155 -0
  31. intel_npu_acceleration_library/external/openvino/__init__.py +72 -0
  32. intel_npu_acceleration_library/external/openvino/_offline_transformations/__init__.py +21 -0
  33. intel_npu_acceleration_library/external/openvino/_pyopenvino.cp310-win_amd64.pyd +0 -0
  34. intel_npu_acceleration_library/external/openvino/_pyopenvino.cp311-win_amd64.pyd +0 -0
  35. intel_npu_acceleration_library/external/openvino/_pyopenvino.cp312-win_amd64.pyd +0 -0
  36. intel_npu_acceleration_library/external/openvino/_pyopenvino.cp38-win_amd64.pyd +0 -0
  37. intel_npu_acceleration_library/external/openvino/_pyopenvino.cp39-win_amd64.pyd +0 -0
  38. intel_npu_acceleration_library/external/openvino/experimental/__init__.py +14 -0
  39. intel_npu_acceleration_library/external/openvino/frontend/__init__.py +34 -0
  40. intel_npu_acceleration_library/external/openvino/frontend/frontend.py +44 -0
  41. intel_npu_acceleration_library/external/openvino/frontend/jax/__init__.py +15 -0
  42. intel_npu_acceleration_library/external/openvino/frontend/jax/jaxpr_decoder.py +293 -0
  43. intel_npu_acceleration_library/external/openvino/frontend/jax/passes.py +65 -0
  44. intel_npu_acceleration_library/external/openvino/frontend/jax/utils.py +182 -0
  45. intel_npu_acceleration_library/external/openvino/frontend/onnx/__init__.py +15 -0
  46. intel_npu_acceleration_library/external/openvino/frontend/onnx/py_onnx_frontend.cp310-win_amd64.pyd +0 -0
  47. intel_npu_acceleration_library/external/openvino/frontend/onnx/py_onnx_frontend.cp311-win_amd64.pyd +0 -0
  48. intel_npu_acceleration_library/external/openvino/frontend/onnx/py_onnx_frontend.cp312-win_amd64.pyd +0 -0
  49. intel_npu_acceleration_library/external/openvino/frontend/onnx/py_onnx_frontend.cp38-win_amd64.pyd +0 -0
  50. intel_npu_acceleration_library/external/openvino/frontend/onnx/py_onnx_frontend.cp39-win_amd64.pyd +0 -0
  51. intel_npu_acceleration_library/external/openvino/frontend/paddle/__init__.py +15 -0
  52. intel_npu_acceleration_library/external/openvino/frontend/paddle/py_paddle_frontend.cp310-win_amd64.pyd +0 -0
  53. intel_npu_acceleration_library/external/openvino/frontend/paddle/py_paddle_frontend.cp311-win_amd64.pyd +0 -0
  54. intel_npu_acceleration_library/external/openvino/frontend/paddle/py_paddle_frontend.cp312-win_amd64.pyd +0 -0
  55. intel_npu_acceleration_library/external/openvino/frontend/paddle/py_paddle_frontend.cp38-win_amd64.pyd +0 -0
  56. intel_npu_acceleration_library/external/openvino/frontend/paddle/py_paddle_frontend.cp39-win_amd64.pyd +0 -0
  57. intel_npu_acceleration_library/external/openvino/frontend/pytorch/__init__.py +19 -0
  58. intel_npu_acceleration_library/external/openvino/frontend/pytorch/fx_decoder.py +370 -0
  59. intel_npu_acceleration_library/external/openvino/frontend/pytorch/gptq.py +180 -0
  60. intel_npu_acceleration_library/external/openvino/frontend/pytorch/module_extension.py +39 -0
  61. intel_npu_acceleration_library/external/openvino/frontend/pytorch/patch_model.py +118 -0
  62. intel_npu_acceleration_library/external/openvino/frontend/pytorch/py_pytorch_frontend.cp310-win_amd64.pyd +0 -0
  63. intel_npu_acceleration_library/external/openvino/frontend/pytorch/py_pytorch_frontend.cp311-win_amd64.pyd +0 -0
  64. intel_npu_acceleration_library/external/openvino/frontend/pytorch/py_pytorch_frontend.cp312-win_amd64.pyd +0 -0
  65. intel_npu_acceleration_library/external/openvino/frontend/pytorch/py_pytorch_frontend.cp38-win_amd64.pyd +0 -0
  66. intel_npu_acceleration_library/external/openvino/frontend/pytorch/py_pytorch_frontend.cp39-win_amd64.pyd +0 -0
  67. intel_npu_acceleration_library/external/openvino/frontend/pytorch/torchdynamo/backend.py +131 -0
  68. intel_npu_acceleration_library/external/openvino/frontend/pytorch/torchdynamo/backend_utils.py +85 -0
  69. intel_npu_acceleration_library/external/openvino/frontend/pytorch/torchdynamo/compile.py +141 -0
  70. intel_npu_acceleration_library/external/openvino/frontend/pytorch/torchdynamo/decompositions.py +116 -0
  71. intel_npu_acceleration_library/external/openvino/frontend/pytorch/torchdynamo/execute.py +189 -0
  72. intel_npu_acceleration_library/external/openvino/frontend/pytorch/torchdynamo/op_support.py +290 -0
  73. intel_npu_acceleration_library/external/openvino/frontend/pytorch/torchdynamo/partition.py +126 -0
  74. intel_npu_acceleration_library/external/openvino/frontend/pytorch/ts_decoder.py +568 -0
  75. intel_npu_acceleration_library/external/openvino/frontend/pytorch/utils.py +258 -0
  76. intel_npu_acceleration_library/external/openvino/frontend/tensorflow/__init__.py +16 -0
  77. intel_npu_acceleration_library/external/openvino/frontend/tensorflow/graph_iterator.py +116 -0
  78. intel_npu_acceleration_library/external/openvino/frontend/tensorflow/node_decoder.py +219 -0
  79. intel_npu_acceleration_library/external/openvino/frontend/tensorflow/py_tensorflow_frontend.cp310-win_amd64.pyd +0 -0
  80. intel_npu_acceleration_library/external/openvino/frontend/tensorflow/py_tensorflow_frontend.cp311-win_amd64.pyd +0 -0
  81. intel_npu_acceleration_library/external/openvino/frontend/tensorflow/py_tensorflow_frontend.cp312-win_amd64.pyd +0 -0
  82. intel_npu_acceleration_library/external/openvino/frontend/tensorflow/py_tensorflow_frontend.cp38-win_amd64.pyd +0 -0
  83. intel_npu_acceleration_library/external/openvino/frontend/tensorflow/py_tensorflow_frontend.cp39-win_amd64.pyd +0 -0
  84. intel_npu_acceleration_library/external/openvino/frontend/tensorflow/utils.py +481 -0
  85. intel_npu_acceleration_library/external/openvino/helpers/__init__.py +6 -0
  86. intel_npu_acceleration_library/external/openvino/helpers/packing.py +87 -0
  87. intel_npu_acceleration_library/external/openvino/preprocess/README.md +60 -0
  88. intel_npu_acceleration_library/external/openvino/preprocess/__init__.py +28 -0
  89. intel_npu_acceleration_library/external/openvino/preprocess/torchvision/__init__.py +15 -0
  90. intel_npu_acceleration_library/external/openvino/preprocess/torchvision/preprocess_converter.py +47 -0
  91. intel_npu_acceleration_library/external/openvino/preprocess/torchvision/requirements.txt +5 -0
  92. intel_npu_acceleration_library/external/openvino/preprocess/torchvision/torchvision_preprocessing.py +347 -0
  93. intel_npu_acceleration_library/external/openvino/properties/__init__.py +22 -0
  94. intel_npu_acceleration_library/external/openvino/properties/_properties.py +55 -0
  95. intel_npu_acceleration_library/external/openvino/properties/device/__init__.py +14 -0
  96. intel_npu_acceleration_library/external/openvino/properties/hint/__init__.py +15 -0
  97. intel_npu_acceleration_library/external/openvino/properties/intel_auto/__init__.py +12 -0
  98. intel_npu_acceleration_library/external/openvino/properties/intel_cpu/__init__.py +8 -0
  99. intel_npu_acceleration_library/external/openvino/properties/intel_gpu/__init__.py +12 -0
  100. intel_npu_acceleration_library/external/openvino/properties/intel_gpu/hint/__init__.py +11 -0
  101. intel_npu_acceleration_library/external/openvino/properties/log/__init__.py +11 -0
  102. intel_npu_acceleration_library/external/openvino/properties/streams/__init__.py +11 -0
  103. intel_npu_acceleration_library/external/openvino/runtime/__init__.py +85 -0
  104. intel_npu_acceleration_library/external/openvino/runtime/exceptions.py +17 -0
  105. intel_npu_acceleration_library/external/openvino/runtime/ie_api.py +631 -0
  106. intel_npu_acceleration_library/external/openvino/runtime/op/__init__.py +19 -0
  107. intel_npu_acceleration_library/external/openvino/runtime/op/util/__init__.py +22 -0
  108. intel_npu_acceleration_library/external/openvino/runtime/opset1/__init__.py +112 -0
  109. intel_npu_acceleration_library/external/openvino/runtime/opset1/ops.py +3068 -0
  110. intel_npu_acceleration_library/external/openvino/runtime/opset10/__init__.py +179 -0
  111. intel_npu_acceleration_library/external/openvino/runtime/opset10/ops.py +173 -0
  112. intel_npu_acceleration_library/external/openvino/runtime/opset11/__init__.py +179 -0
  113. intel_npu_acceleration_library/external/openvino/runtime/opset11/ops.py +107 -0
  114. intel_npu_acceleration_library/external/openvino/runtime/opset12/__init__.py +180 -0
  115. intel_npu_acceleration_library/external/openvino/runtime/opset12/ops.py +120 -0
  116. intel_npu_acceleration_library/external/openvino/runtime/opset13/__init__.py +188 -0
  117. intel_npu_acceleration_library/external/openvino/runtime/opset13/ops.py +398 -0
  118. intel_npu_acceleration_library/external/openvino/runtime/opset14/__init__.py +190 -0
  119. intel_npu_acceleration_library/external/openvino/runtime/opset14/ops.py +171 -0
  120. intel_npu_acceleration_library/external/openvino/runtime/opset15/__init__.py +17 -0
  121. intel_npu_acceleration_library/external/openvino/runtime/opset15/ops.py +276 -0
  122. intel_npu_acceleration_library/external/openvino/runtime/opset2/__init__.py +118 -0
  123. intel_npu_acceleration_library/external/openvino/runtime/opset2/ops.py +216 -0
  124. intel_npu_acceleration_library/external/openvino/runtime/opset3/__init__.py +134 -0
  125. intel_npu_acceleration_library/external/openvino/runtime/opset3/ops.py +638 -0
  126. intel_npu_acceleration_library/external/openvino/runtime/opset4/__init__.py +145 -0
  127. intel_npu_acceleration_library/external/openvino/runtime/opset4/ops.py +464 -0
  128. intel_npu_acceleration_library/external/openvino/runtime/opset5/__init__.py +152 -0
  129. intel_npu_acceleration_library/external/openvino/runtime/opset5/ops.py +372 -0
  130. intel_npu_acceleration_library/external/openvino/runtime/opset6/__init__.py +154 -0
  131. intel_npu_acceleration_library/external/openvino/runtime/opset6/ops.py +215 -0
  132. intel_npu_acceleration_library/external/openvino/runtime/opset7/__init__.py +158 -0
  133. intel_npu_acceleration_library/external/openvino/runtime/opset7/ops.py +169 -0
  134. intel_npu_acceleration_library/external/openvino/runtime/opset8/__init__.py +169 -0
  135. intel_npu_acceleration_library/external/openvino/runtime/opset8/ops.py +787 -0
  136. intel_npu_acceleration_library/external/openvino/runtime/opset9/__init__.py +175 -0
  137. intel_npu_acceleration_library/external/openvino/runtime/opset9/ops.py +341 -0
  138. intel_npu_acceleration_library/external/openvino/runtime/opset_utils.py +22 -0
  139. intel_npu_acceleration_library/external/openvino/runtime/passes/__init__.py +19 -0
  140. intel_npu_acceleration_library/external/openvino/runtime/passes/graph_rewrite.py +33 -0
  141. intel_npu_acceleration_library/external/openvino/runtime/passes/manager.py +26 -0
  142. intel_npu_acceleration_library/external/openvino/runtime/properties/__init__.py +40 -0
  143. intel_npu_acceleration_library/external/openvino/runtime/properties/hint/__init__.py +25 -0
  144. intel_npu_acceleration_library/external/openvino/runtime/utils/__init__.py +7 -0
  145. intel_npu_acceleration_library/external/openvino/runtime/utils/broadcasting.py +44 -0
  146. intel_npu_acceleration_library/external/openvino/runtime/utils/data_helpers/__init__.py +8 -0
  147. intel_npu_acceleration_library/external/openvino/runtime/utils/data_helpers/data_dispatcher.py +447 -0
  148. intel_npu_acceleration_library/external/openvino/runtime/utils/data_helpers/wrappers.py +148 -0
  149. intel_npu_acceleration_library/external/openvino/runtime/utils/decorators.py +156 -0
  150. intel_npu_acceleration_library/external/openvino/runtime/utils/input_validation.py +133 -0
  151. intel_npu_acceleration_library/external/openvino/runtime/utils/node_factory.py +127 -0
  152. intel_npu_acceleration_library/external/openvino/runtime/utils/reduction.py +25 -0
  153. intel_npu_acceleration_library/external/openvino/runtime/utils/types.py +175 -0
  154. intel_npu_acceleration_library/external/openvino/tools/__init__.py +4 -0
  155. intel_npu_acceleration_library/external/openvino/tools/benchmark/__init__.py +3 -0
  156. intel_npu_acceleration_library/external/openvino/tools/benchmark/benchmark.py +186 -0
  157. intel_npu_acceleration_library/external/openvino/tools/benchmark/main.py +695 -0
  158. intel_npu_acceleration_library/external/openvino/tools/benchmark/parameters.py +199 -0
  159. intel_npu_acceleration_library/external/openvino/tools/benchmark/utils/__init__.py +3 -0
  160. intel_npu_acceleration_library/external/openvino/tools/benchmark/utils/constants.py +26 -0
  161. intel_npu_acceleration_library/external/openvino/tools/benchmark/utils/inputs_filling.py +482 -0
  162. intel_npu_acceleration_library/external/openvino/tools/benchmark/utils/logging.py +8 -0
  163. intel_npu_acceleration_library/external/openvino/tools/benchmark/utils/statistics_report.py +296 -0
  164. intel_npu_acceleration_library/external/openvino/tools/benchmark/utils/utils.py +836 -0
  165. intel_npu_acceleration_library/external/openvino/tools/ovc/__init__.py +20 -0
  166. intel_npu_acceleration_library/external/openvino/tools/ovc/__main__.py +10 -0
  167. intel_npu_acceleration_library/external/openvino/tools/ovc/cli_parser.py +633 -0
  168. intel_npu_acceleration_library/external/openvino/tools/ovc/convert.py +102 -0
  169. intel_npu_acceleration_library/external/openvino/tools/ovc/convert_data_type.py +82 -0
  170. intel_npu_acceleration_library/external/openvino/tools/ovc/convert_impl.py +550 -0
  171. intel_npu_acceleration_library/external/openvino/tools/ovc/environment_setup_utils.py +50 -0
  172. intel_npu_acceleration_library/external/openvino/tools/ovc/error.py +49 -0
  173. intel_npu_acceleration_library/external/openvino/tools/ovc/get_ov_update_message.py +16 -0
  174. intel_npu_acceleration_library/external/openvino/tools/ovc/help.py +45 -0
  175. intel_npu_acceleration_library/external/openvino/tools/ovc/logger.py +91 -0
  176. intel_npu_acceleration_library/external/openvino/tools/ovc/main.py +40 -0
  177. intel_npu_acceleration_library/external/openvino/tools/ovc/moc_frontend/__init__.py +2 -0
  178. intel_npu_acceleration_library/external/openvino/tools/ovc/moc_frontend/analysis.py +46 -0
  179. intel_npu_acceleration_library/external/openvino/tools/ovc/moc_frontend/check_config.py +57 -0
  180. intel_npu_acceleration_library/external/openvino/tools/ovc/moc_frontend/extractor.py +447 -0
  181. intel_npu_acceleration_library/external/openvino/tools/ovc/moc_frontend/jax_frontend_utils.py +19 -0
  182. intel_npu_acceleration_library/external/openvino/tools/ovc/moc_frontend/layout_utils.py +73 -0
  183. intel_npu_acceleration_library/external/openvino/tools/ovc/moc_frontend/moc_emit_ir.py +32 -0
  184. intel_npu_acceleration_library/external/openvino/tools/ovc/moc_frontend/offline_transformations.py +107 -0
  185. intel_npu_acceleration_library/external/openvino/tools/ovc/moc_frontend/paddle_frontend_utils.py +83 -0
  186. intel_npu_acceleration_library/external/openvino/tools/ovc/moc_frontend/pipeline.py +298 -0
  187. intel_npu_acceleration_library/external/openvino/tools/ovc/moc_frontend/preprocessing.py +220 -0
  188. intel_npu_acceleration_library/external/openvino/tools/ovc/moc_frontend/pytorch_frontend_utils.py +214 -0
  189. intel_npu_acceleration_library/external/openvino/tools/ovc/moc_frontend/shape_utils.py +109 -0
  190. intel_npu_acceleration_library/external/openvino/tools/ovc/moc_frontend/type_utils.py +82 -0
  191. intel_npu_acceleration_library/external/openvino/tools/ovc/ovc.py +13 -0
  192. intel_npu_acceleration_library/external/openvino/tools/ovc/telemetry_params.py +6 -0
  193. intel_npu_acceleration_library/external/openvino/tools/ovc/telemetry_stub.py +28 -0
  194. intel_npu_acceleration_library/external/openvino/tools/ovc/telemetry_utils.py +118 -0
  195. intel_npu_acceleration_library/external/openvino/tools/ovc/utils.py +196 -0
  196. intel_npu_acceleration_library/external/openvino/tools/ovc/version.py +80 -0
  197. intel_npu_acceleration_library/external/openvino/torch/__init__.py +5 -0
  198. intel_npu_acceleration_library/external/openvino/utils.py +115 -0
  199. intel_npu_acceleration_library/functional/__init__.py +8 -0
  200. intel_npu_acceleration_library/functional/scaled_dot_product_attention.py +47 -0
  201. intel_npu_acceleration_library/lib/Release/cache.json +113732 -0
  202. intel_npu_acceleration_library/lib/Release/intel_npu_acceleration_library.dll +0 -0
  203. intel_npu_acceleration_library/lib/Release/openvino.dll +0 -0
  204. intel_npu_acceleration_library/lib/Release/openvino_auto_batch_plugin.dll +0 -0
  205. intel_npu_acceleration_library/lib/Release/openvino_auto_plugin.dll +0 -0
  206. intel_npu_acceleration_library/lib/Release/openvino_c.dll +0 -0
  207. intel_npu_acceleration_library/lib/Release/openvino_hetero_plugin.dll +0 -0
  208. intel_npu_acceleration_library/lib/Release/openvino_intel_cpu_plugin.dll +0 -0
  209. intel_npu_acceleration_library/lib/Release/openvino_intel_gpu_plugin.dll +0 -0
  210. intel_npu_acceleration_library/lib/Release/openvino_intel_npu_plugin.dll +0 -0
  211. intel_npu_acceleration_library/lib/Release/openvino_ir_frontend.dll +0 -0
  212. intel_npu_acceleration_library/lib/Release/openvino_onnx_frontend.dll +0 -0
  213. intel_npu_acceleration_library/lib/Release/openvino_paddle_frontend.dll +0 -0
  214. intel_npu_acceleration_library/lib/Release/openvino_pytorch_frontend.dll +0 -0
  215. intel_npu_acceleration_library/lib/Release/openvino_tensorflow_frontend.dll +0 -0
  216. intel_npu_acceleration_library/lib/Release/openvino_tensorflow_lite_frontend.dll +0 -0
  217. intel_npu_acceleration_library/lib/Release/tbb12.dll +0 -0
  218. intel_npu_acceleration_library/lib/Release/tbb12_debug.dll +0 -0
  219. intel_npu_acceleration_library/lib/Release/tbbbind_2_5.dll +0 -0
  220. intel_npu_acceleration_library/lib/Release/tbbbind_2_5_debug.dll +0 -0
  221. intel_npu_acceleration_library/lib/Release/tbbmalloc.dll +0 -0
  222. intel_npu_acceleration_library/lib/Release/tbbmalloc_debug.dll +0 -0
  223. intel_npu_acceleration_library/lib/Release/tbbmalloc_proxy.dll +0 -0
  224. intel_npu_acceleration_library/lib/Release/tbbmalloc_proxy_debug.dll +0 -0
  225. intel_npu_acceleration_library/modelling.py +150 -0
  226. intel_npu_acceleration_library/nn/__init__.py +20 -0
  227. intel_npu_acceleration_library/nn/autograd.py +68 -0
  228. intel_npu_acceleration_library/nn/conv.py +257 -0
  229. intel_npu_acceleration_library/nn/functional.py +1207 -0
  230. intel_npu_acceleration_library/nn/linear.py +162 -0
  231. intel_npu_acceleration_library/nn/llm.py +417 -0
  232. intel_npu_acceleration_library/nn/module.py +393 -0
  233. intel_npu_acceleration_library/optimizations.py +157 -0
  234. intel_npu_acceleration_library/quantization.py +174 -0
@@ -0,0 +1,398 @@
1
+ # -*- coding: utf-8 -*-
2
+ # Copyright (C) 2018-2024 Intel Corporation
3
+ # SPDX-License-Identifier: Apache-2.0
4
+
5
+ """Factory functions for ops added to openvino opset13."""
6
+ from functools import partial
7
+ from typing import Literal, Optional, Union
8
+ import logging
9
+
10
+ import numpy as np
11
+
12
+ log = logging.getLogger(__name__)
13
+
14
+ from openvino.runtime import Node, Shape, Type, Output
15
+ from openvino.runtime.op import Constant, Result
16
+ from openvino.runtime.opset1 import convert_like
17
+ from openvino.runtime.opset_utils import _get_node_factory
18
+ from openvino.runtime.utils.decorators import binary_op, nameable_op, unary_op
19
+ from openvino.runtime.utils.types import (
20
+ NumericData,
21
+ NodeInput,
22
+ NumericType,
23
+ as_nodes,
24
+ as_node,
25
+ )
26
+
27
+ _get_node_factory_opset13 = partial(_get_node_factory, "opset13")
28
+
29
+
30
+ # -------------------------------------------- ops ------------------------------------------------
31
+ @binary_op
32
+ def bitwise_and(
33
+ left_node: NodeInput,
34
+ right_node: NodeInput,
35
+ auto_broadcast: str = "NUMPY",
36
+ name: Optional[str] = None,
37
+ ) -> Node:
38
+ """Return node which performs bitwise AND operation on input nodes element-wise.
39
+
40
+ For boolean input tensors, operator is equivalent to logical_and.
41
+
42
+ :param left_node: Tensor of integer or boolean datatype providing data.
43
+ :param right_node: Tensor of integer or boolean datatype providing data.
44
+ :param auto_broadcast: The type of broadcasting specifies rules used for auto-broadcasting of input tensors. Defaults to “NUMPY”.
45
+ :param name: The optional new name for output node.
46
+ :return: The node performing bitwise AND operation on input nodes corresponding elements.
47
+ """
48
+ return _get_node_factory_opset13().create(
49
+ "BitwiseAnd",
50
+ [left_node, right_node],
51
+ {"auto_broadcast": auto_broadcast.upper()},
52
+ )
53
+
54
+
55
+ @unary_op
56
+ def bitwise_not(
57
+ node: NodeInput,
58
+ name: Optional[str] = None,
59
+ ) -> Node:
60
+ """Return node which performs bitwise NOT operation on input node element-wise.
61
+
62
+ For boolean input tensors, operator is equivalent to logical_not.
63
+
64
+ :param node: Tensor of integer or boolean datatype providing data.
65
+ :param name: The optional new name for output node.
66
+ :return: The node performing bitwise NOT operation on the given tensor.
67
+ """
68
+ return _get_node_factory_opset13().create(
69
+ "BitwiseNot",
70
+ [node],
71
+ )
72
+
73
+
74
+ @binary_op
75
+ def bitwise_or(
76
+ left_node: NodeInput,
77
+ right_node: NodeInput,
78
+ auto_broadcast: str = "NUMPY",
79
+ name: Optional[str] = None,
80
+ ) -> Node:
81
+ """Return node which performs bitwise OR operation on input nodes element-wise.
82
+
83
+ For boolean input tensors, operator is equivalent to logical_or.
84
+
85
+ :param left_node: Tensor of integer or boolean datatype providing data.
86
+ :param right_node: Tensor of integer or boolean datatype providing data.
87
+ :param auto_broadcast: The type of broadcasting specifies rules used for auto-broadcasting of input tensors. Defaults to “NUMPY”.
88
+ :param name: The optional new name for output node.
89
+ :return: The node performing bitwise OR operation on input nodes corresponding elements.
90
+ """
91
+ return _get_node_factory_opset13().create(
92
+ "BitwiseOr",
93
+ [left_node, right_node],
94
+ {"auto_broadcast": auto_broadcast.upper()},
95
+ )
96
+
97
+
98
+ @binary_op
99
+ def bitwise_xor(
100
+ left_node: NodeInput,
101
+ right_node: NodeInput,
102
+ auto_broadcast: str = "NUMPY",
103
+ name: Optional[str] = None,
104
+ ) -> Node:
105
+ """Return node which performs bitwise XOR operation on input nodes element-wise.
106
+
107
+ For boolean input tensors, operator is equivalent to logical_xor.
108
+
109
+ :param left_node: Tensor of integer or boolean datatype providing data.
110
+ :param right_node: Tensor of integer or boolean datatype providing data.
111
+ :param auto_broadcast: The type of broadcasting specifies rules used for auto-broadcasting of input tensors. Defaults to “NUMPY”.
112
+ :param name: The optional new name for output node.
113
+ :return: The node performing bitwise XOR operation on input nodes corresponding elements.
114
+ """
115
+ return _get_node_factory_opset13().create(
116
+ "BitwiseXor",
117
+ [left_node, right_node],
118
+ {"auto_broadcast": auto_broadcast.upper()},
119
+ )
120
+
121
+
122
+ @nameable_op
123
+ def fake_convert(
124
+ data: NodeInput,
125
+ scale: NodeInput,
126
+ shift: Optional[NodeInput] = None,
127
+ destination_type: Literal["f8e4m3", "f8e5m2"] = "f8e4m3",
128
+ name: Optional[str] = None,
129
+ ) -> Node:
130
+ """Return a node which performs FakeConvert.
131
+
132
+ FakeConvert is experimental and may change in the future.
133
+ .. warning:: FakeConvert is experimental and may change in the future.
134
+
135
+ :param data: The node with data tensor with FP16, BF16 or FP32 datatype.
136
+ :param scale: Tensor with a scale factor for the data input value,
137
+ of the same type as the data, and shape Numpy-broadcastable to data.
138
+ :param shift: Optional tensor with value to subtract before and add after conversion of the data input value,
139
+ of the same type as the data, and shape Numpy-broadcastable to data.
140
+ :param destination_type: Type to emulate, string of either "f8e4m3" or "f8e5m2".
141
+ :param name: The optional new name for output node.
142
+
143
+ :return: The new node performing FakeConvert operation.
144
+ """
145
+ nodes = [data, scale]
146
+ if shift is not None:
147
+ nodes.append(shift)
148
+ return _get_node_factory_opset13().create(
149
+ "FakeConvert",
150
+ as_nodes(*nodes, name=name),
151
+ {"destination_type": destination_type},
152
+ )
153
+
154
+
155
+ @nameable_op
156
+ def multinomial(
157
+ probs: NodeInput,
158
+ num_samples: NodeInput,
159
+ convert_type: str,
160
+ with_replacement: bool,
161
+ log_probs: bool,
162
+ global_seed: int = 0,
163
+ op_seed: int = 0,
164
+ name: Optional[str] = None,
165
+ ) -> Node:
166
+ """Return a node which generates a sequence of class indices sampled from the multinomial distribution.
167
+
168
+ :param probs: Tensor with probabilities of floating-point type, and shape [batch_size, class_size].
169
+ :param num_samples: Tensor (scalar or 1D) a single element of type i32 or i64,
170
+ specifying the number of samples to draw from the multinomial distribution.
171
+ :param convert_type: Specifies the output tensor type, possible values: 'i64', 'i32'.
172
+ :param with_replacement: Flag that specifies whether to sample with replacement.
173
+ :param log_probs: Flag that specifies whether *probs* should be treated as unnormalized log probabilities.
174
+ :param global_seed: Specifies global seed value. Required to be a positive integer or 0.
175
+ :param op_seed: Specifies operational seed value. Required to be a positive integer or 0.
176
+ :param name: The optional new name for output node.
177
+
178
+ :return: The new node performing Multinomial operation.
179
+ """
180
+ inputs = as_nodes(probs, num_samples, name=name)
181
+
182
+ if global_seed < 0:
183
+ raise RuntimeError(f"global_seed should be positive or 0. Got: {global_seed}")
184
+
185
+ if op_seed < 0:
186
+ raise RuntimeError(f"op_seed should be positive or 0. Got: {op_seed}")
187
+
188
+ attributes = {
189
+ "convert_type": convert_type,
190
+ "with_replacement": with_replacement,
191
+ "log_probs": log_probs,
192
+ "global_seed": global_seed,
193
+ "op_seed": op_seed,
194
+ }
195
+ return _get_node_factory_opset13().create("Multinomial", inputs, attributes)
196
+
197
+
198
+ @nameable_op
199
+ def nms_rotated(
200
+ boxes: NodeInput,
201
+ scores: NodeInput,
202
+ max_output_boxes_per_class: NodeInput,
203
+ iou_threshold: NodeInput,
204
+ score_threshold: NodeInput,
205
+ sort_result_descending: bool = True,
206
+ output_type: str = "i64",
207
+ clockwise: bool = True,
208
+ name: Optional[str] = None,
209
+ ) -> Node:
210
+ """Return a node which performs NMSRotated.
211
+
212
+ :param boxes: Tensor with box coordinates of floating point type and shape [num_batches, num_boxes, 5],
213
+ where the last dimension is defined as [x_ctr, y_ctr, width, height, angle_radians].
214
+ :param scores: Tensor with box scores of floating point type and shape [num_batches, num_classes, num_boxes].
215
+ :param max_output_boxes_per_class: Tensor (scalar or 1D) of integer type, specifying maximum number of boxes
216
+ to be selected per class.
217
+ :param iou_threshold: Tensor (scalar or 1D) of floating point type, specifying intersection over union threshold
218
+ :param score_threshold: Tensor (scalar or 1D) of floating point type, specifying minimum score to consider box for the processing.
219
+ :param sort_result_descending: Flag that specifies whenever it is necessary to sort selected
220
+ boxes across batches or not.
221
+ :param output_type: Output element type.
222
+ :param clockwise: Flag that specifies direction of the box rotation.
223
+ :return: The new node which performs NMSRotated
224
+ """
225
+ inputs = as_nodes(boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold, name=name)
226
+
227
+ attributes = {
228
+ "sort_result_descending": sort_result_descending,
229
+ "output_type": output_type,
230
+ "clockwise": clockwise,
231
+ }
232
+
233
+ return _get_node_factory_opset13().create("NMSRotated", inputs, attributes)
234
+
235
+
236
+ @nameable_op
237
+ def scaled_dot_product_attention(
238
+ query: NodeInput,
239
+ key: NodeInput,
240
+ value: NodeInput,
241
+ attention_mask: Optional[NodeInput] = None,
242
+ scale: Optional[NodeInput] = None,
243
+ causal: bool = False,
244
+ name: Optional[str] = None,
245
+ ) -> Node:
246
+ """Return a node which implements Scaled Dot Product Attention.
247
+
248
+ :param query: Query tensor of shape [N, ..., L, E] and floating-point datatype.
249
+ :param key: Key tensor of shape [N, ..., S, E] and floating-point datatype.
250
+ :param value: Value tensor of shape [N, ..., S, Ev] and floating-point datatype.
251
+ :param attention_mask: Optional attention mask tensor of shape [N, ..., L, S] or scalar float type zero value.
252
+ Refer to the operation specification for a complete description.
253
+ :param scale: Optional alternative scale, a floating-point type scalar.
254
+ :param causal: If true, then autogenerates causal attention mask instead of using attention_mask input.
255
+ In this case attention_mask input is ignored.
256
+ :param name: The optional new name for output node.
257
+
258
+ :return: The new node performing Scaled Dot Product Attention operation.
259
+ """
260
+ inputs = as_nodes(query, key, value, name=name)
261
+ if attention_mask is not None:
262
+ inputs.append(as_node(attention_mask, name=name))
263
+ elif scale is not None:
264
+ inputs.append(as_node(convert_like(constant(np.array(0, np.int32)), inputs[0]), name=name))
265
+ if scale is not None:
266
+ inputs.append(as_node(scale, name=name))
267
+
268
+ attributes = {
269
+ "causal": causal,
270
+ }
271
+ return _get_node_factory_opset13().create("ScaledDotProductAttention", inputs, attributes)
272
+
273
+
274
+ @nameable_op
275
+ def constant(
276
+ value: Union[NumericData, np.number, bool, np.bool_, list],
277
+ dtype: Union[NumericType, Type] = None,
278
+ name: Optional[str] = None,
279
+ *,
280
+ shared_memory: bool = False,
281
+ ) -> Constant:
282
+ """Create a Constant node from provided value.
283
+
284
+ :param value: One of: array of values or scalar to initialize node with.
285
+ :param dtype: The data type of provided data.
286
+ If dtype does not match, data will be converted.
287
+ Note: disables sharing of the memory when convertion occurs.
288
+ :param name: Optional name for output node.
289
+ :param shared_memory: keyword-only argument.
290
+ If `True`, this Constant's memory is being shared with a host,
291
+ that means the responsibility of keeping host memory is
292
+ on the side of a user. Any action performed on the host
293
+ memory is reflected on this Constant's memory!
294
+ If `False`, data is being copied to this Constant.
295
+ Requires data to be C_CONTIGUOUS if `True`.
296
+ Disabled by default if:
297
+ - value is a scalar.
298
+ - dtype is one of: Type.u1, Type.i4, Type.u4, Type.nf4, Type.bf16.
299
+ - dtype force conversion of data.
300
+ :return: The Constant node initialized with provided data.
301
+ """
302
+
303
+ def display_shared_memory_warning(warning_message: str) -> None:
304
+ if shared_memory:
305
+ log.warning(f"{warning_message}. Memory sharing is disabled by default. Set shared_memory=False to hide this warning.")
306
+
307
+ if isinstance(value, np.ndarray):
308
+ _value, _shared_memory = value, shared_memory
309
+ else:
310
+ _value, _shared_memory = np.array(value), False
311
+ display_shared_memory_warning(f"Converting scalar to corresponding type of {_value.dtype}")
312
+ # Handle type casting, when dtype is not None:
313
+ if dtype:
314
+ # Expect packed data, use different constructor to handle it correctly:
315
+ if dtype in [Type.u1, Type.i4, Type.u4, Type.nf4, Type.f4e2m1]:
316
+ display_shared_memory_warning(f"Constant initialized with packed type of {dtype}")
317
+ return Constant(dtype, Shape(_value.shape), _value.flatten().tolist())
318
+ elif dtype in [Type.bf16, Type.f8e8m0, Type.f8e4m3, Type.f8e5m2]:
319
+ display_shared_memory_warning(f"Constant initialized with OpenVINO custom {dtype}")
320
+ return Constant(dtype, Shape(_value.shape), _value.flatten().tolist())
321
+ # General use-case for all other types:
322
+ else:
323
+ _dtype = dtype.to_dtype() if isinstance(dtype, Type) else dtype
324
+ if _dtype is int:
325
+ display_shared_memory_warning("Converting scalar type of undefined bitwidth to 32-bit integer")
326
+ _value, _shared_memory = _value.astype(np.int32), False
327
+ elif _dtype is float:
328
+ display_shared_memory_warning("Converting scalar type of undefined bitwidth to 32-bit float")
329
+ _value, _shared_memory = _value.astype(np.float32), False
330
+ elif _dtype is bool:
331
+ display_shared_memory_warning("Converting bool type to numpy bool")
332
+ _value, _shared_memory = _value.astype(np.bool_), False
333
+ else:
334
+ if _dtype != _value.dtype:
335
+ display_shared_memory_warning(f"Converting value of {_value.dtype} to {_dtype}")
336
+ _value, _shared_memory = _value.astype(_dtype), False
337
+ # Create Constant itself:
338
+ return Constant(_value, shared_memory=_shared_memory)
339
+
340
+
341
+ @unary_op
342
+ def result(data: Union[Node, Output, NumericData], name: Optional[str] = None) -> Node:
343
+ """Return a node which represents an output of a graph (Model).
344
+
345
+ :param data: The tensor containing the input data
346
+ :return: Result node
347
+ """
348
+ if isinstance(data, Node):
349
+ return Result(data.output(0))
350
+ return Result(data)
351
+
352
+
353
+ @nameable_op
354
+ def fake_quantize(
355
+ data: NodeInput,
356
+ input_low: NodeInput,
357
+ input_high: NodeInput,
358
+ output_low: NodeInput,
359
+ output_high: NodeInput,
360
+ levels: int,
361
+ auto_broadcast: str = "NUMPY",
362
+ name: Optional[str] = None,
363
+ ) -> Node:
364
+ r"""Perform an element-wise linear quantization on input data.
365
+
366
+ :param data: The node with data tensor.
367
+ :param input_low: The node with the minimum for input values.
368
+ :param input_high: The node with the maximum for input values.
369
+ :param output_low: The node with the minimum quantized value.
370
+ :param output_high: The node with the maximum quantized value.
371
+ :param levels: The number of quantization levels. Integer value.
372
+ :param auto_broadcast: The type of broadcasting specifies rules used for
373
+ auto-broadcasting of input tensors.
374
+ :param name: Optional name of the new node.
375
+ :return: New node with quantized value.
376
+
377
+ Input floating point values are quantized into a discrete set of floating point values.
378
+
379
+ .. code-block:: python
380
+
381
+ if x <= input_low:
382
+ output = output_low
383
+ if x > input_high:
384
+ output = output_high
385
+ else:
386
+ output = fake_quantize(output)
387
+
388
+ Fake quantize uses the following logic:
389
+
390
+ \f[ output =
391
+ \dfrac{round( \dfrac{data - input\_low}{(input\_high - input\_low)\cdot (levels-1)})}
392
+ {(levels-1)\cdot (output\_high - output\_low)} + output\_low \f]
393
+ """
394
+ return _get_node_factory_opset13().create(
395
+ "FakeQuantize",
396
+ as_nodes(data, input_low, input_high, output_low, output_high, name=name),
397
+ {"levels": levels, "auto_broadcast": auto_broadcast.upper()},
398
+ )
@@ -0,0 +1,190 @@
1
+ # -*- coding: utf-8 -*-
2
+ # Copyright (C) 2018-2024 Intel Corporation
3
+ # SPDX-License-Identifier: Apache-2.0
4
+
5
+ from openvino.runtime.opset1.ops import absolute
6
+ from openvino.runtime.opset1.ops import absolute as abs
7
+ from openvino.runtime.opset1.ops import acos
8
+ from openvino.runtime.opset4.ops import acosh
9
+ from openvino.runtime.opset8.ops import adaptive_avg_pool
10
+ from openvino.runtime.opset8.ops import adaptive_max_pool
11
+ from openvino.runtime.opset1.ops import add
12
+ from openvino.runtime.opset1.ops import asin
13
+ from openvino.runtime.opset4.ops import asinh
14
+ from openvino.runtime.opset6.ops import assign
15
+ from openvino.runtime.opset1.ops import atan
16
+ from openvino.runtime.opset4.ops import atanh
17
+ from openvino.runtime.opset14.ops import avg_pool
18
+ from openvino.runtime.opset5.ops import batch_norm_inference
19
+ from openvino.runtime.opset2.ops import batch_to_space
20
+ from openvino.runtime.opset1.ops import binary_convolution
21
+ from openvino.runtime.opset13.ops import bitwise_and
22
+ from openvino.runtime.opset13.ops import bitwise_not
23
+ from openvino.runtime.opset13.ops import bitwise_or
24
+ from openvino.runtime.opset13.ops import bitwise_xor
25
+ from openvino.runtime.opset3.ops import broadcast
26
+ from openvino.runtime.opset3.ops import bucketize
27
+ from openvino.runtime.opset1.ops import ceiling
28
+ from openvino.runtime.opset1.ops import ceiling as ceil
29
+ from openvino.runtime.opset1.ops import clamp
30
+ from openvino.runtime.opset1.ops import concat
31
+ from openvino.runtime.opset13.ops import constant
32
+ from openvino.runtime.opset1.ops import convert
33
+ from openvino.runtime.opset1.ops import convert_like
34
+ from openvino.runtime.opset14.ops import convert_promote_types
35
+ from openvino.runtime.opset1.ops import convolution
36
+ from openvino.runtime.opset1.ops import convolution_backprop_data
37
+ from openvino.runtime.opset1.ops import cos
38
+ from openvino.runtime.opset1.ops import cosh
39
+ from openvino.runtime.opset1.ops import ctc_greedy_decoder
40
+ from openvino.runtime.opset6.ops import ctc_greedy_decoder_seq_len
41
+ from openvino.runtime.opset4.ops import ctc_loss
42
+ from openvino.runtime.opset3.ops import cum_sum
43
+ from openvino.runtime.opset3.ops import cum_sum as cumsum
44
+ from openvino.runtime.opset8.ops import deformable_convolution
45
+ from openvino.runtime.opset1.ops import deformable_psroi_pooling
46
+ from openvino.runtime.opset1.ops import depth_to_space
47
+ from openvino.runtime.opset8.ops import detection_output
48
+ from openvino.runtime.opset7.ops import dft
49
+ from openvino.runtime.opset1.ops import divide
50
+ from openvino.runtime.opset7.ops import einsum
51
+ from openvino.runtime.opset1.ops import elu
52
+ from openvino.runtime.opset3.ops import embedding_bag_offsets_sum
53
+ from openvino.runtime.opset3.ops import embedding_bag_packed_sum
54
+ from openvino.runtime.opset3.ops import embedding_segments_sum
55
+ from openvino.runtime.opset3.ops import extract_image_patches
56
+ from openvino.runtime.opset1.ops import equal
57
+ from openvino.runtime.opset1.ops import erf
58
+ from openvino.runtime.opset1.ops import exp
59
+ from openvino.runtime.opset9.ops import eye
60
+ from openvino.runtime.opset13.ops import fake_convert
61
+ from openvino.runtime.opset13.ops import fake_quantize
62
+ from openvino.runtime.opset1.ops import floor
63
+ from openvino.runtime.opset1.ops import floor_mod
64
+ from openvino.runtime.opset8.ops import gather
65
+ from openvino.runtime.opset6.ops import gather_elements
66
+ from openvino.runtime.opset8.ops import gather_nd
67
+ from openvino.runtime.opset1.ops import gather_tree
68
+ from openvino.runtime.opset7.ops import gelu
69
+ from openvino.runtime.opset9.ops import generate_proposals
70
+ from openvino.runtime.opset1.ops import greater
71
+ from openvino.runtime.opset1.ops import greater_equal
72
+ from openvino.runtime.opset9.ops import grid_sample
73
+ from openvino.runtime.opset1.ops import grn
74
+ from openvino.runtime.opset1.ops import group_convolution
75
+ from openvino.runtime.opset1.ops import group_convolution_backprop_data
76
+ from openvino.runtime.opset12.ops import group_normalization
77
+ from openvino.runtime.opset3.ops import gru_cell
78
+ from openvino.runtime.opset5.ops import gru_sequence
79
+ from openvino.runtime.opset1.ops import hard_sigmoid
80
+ from openvino.runtime.opset5.ops import hsigmoid
81
+ from openvino.runtime.opset4.ops import hswish
82
+ from openvino.runtime.opset7.ops import idft
83
+ from openvino.runtime.opset8.ops import if_op
84
+ from openvino.runtime.opset11.ops import interpolate
85
+ from openvino.runtime.opset14.ops import inverse
86
+ from openvino.runtime.opset9.ops import irdft
87
+ from openvino.runtime.opset10.ops import is_finite
88
+ from openvino.runtime.opset10.ops import is_inf
89
+ from openvino.runtime.opset10.ops import is_nan
90
+ from openvino.runtime.opset8.ops import i420_to_bgr
91
+ from openvino.runtime.opset8.ops import i420_to_rgb
92
+ from openvino.runtime.opset1.ops import less
93
+ from openvino.runtime.opset1.ops import less_equal
94
+ from openvino.runtime.opset1.ops import log
95
+ from openvino.runtime.opset1.ops import logical_and
96
+ from openvino.runtime.opset1.ops import logical_not
97
+ from openvino.runtime.opset1.ops import logical_or
98
+ from openvino.runtime.opset1.ops import logical_xor
99
+ from openvino.runtime.opset5.ops import log_softmax
100
+ from openvino.runtime.opset5.ops import loop
101
+ from openvino.runtime.opset1.ops import lrn
102
+ from openvino.runtime.opset4.ops import lstm_cell
103
+ from openvino.runtime.opset5.ops import lstm_sequence
104
+ from openvino.runtime.opset1.ops import matmul
105
+ from openvino.runtime.opset8.ops import matrix_nms
106
+ from openvino.runtime.opset14.ops import max_pool
107
+ from openvino.runtime.opset1.ops import maximum
108
+ from openvino.runtime.opset1.ops import minimum
109
+ from openvino.runtime.opset4.ops import mish
110
+ from openvino.runtime.opset1.ops import mod
111
+ from openvino.runtime.opset9.ops import multiclass_nms
112
+ from openvino.runtime.opset13.ops import multinomial
113
+ from openvino.runtime.opset1.ops import multiply
114
+ from openvino.runtime.opset6.ops import mvn
115
+ from openvino.runtime.opset1.ops import negative
116
+ from openvino.runtime.opset13.ops import nms_rotated
117
+ from openvino.runtime.opset9.ops import non_max_suppression
118
+ from openvino.runtime.opset3.ops import non_zero
119
+ from openvino.runtime.opset1.ops import normalize_l2
120
+ from openvino.runtime.opset1.ops import not_equal
121
+ from openvino.runtime.opset8.ops import nv12_to_bgr
122
+ from openvino.runtime.opset8.ops import nv12_to_rgb
123
+ from openvino.runtime.opset1.ops import one_hot
124
+ from openvino.runtime.opset12.ops import pad
125
+ from openvino.runtime.opset1.ops import parameter
126
+ from openvino.runtime.opset1.ops import power
127
+ from openvino.runtime.opset1.ops import prelu
128
+ from openvino.runtime.opset8.ops import prior_box
129
+ from openvino.runtime.opset1.ops import prior_box_clustered
130
+ from openvino.runtime.opset1.ops import psroi_pooling
131
+ from openvino.runtime.opset4.ops import proposal
132
+ from openvino.runtime.opset4.ops import range
133
+ from openvino.runtime.opset8.ops import random_uniform
134
+ from openvino.runtime.opset9.ops import rdft
135
+ from openvino.runtime.opset6.ops import read_value
136
+ from openvino.runtime.opset4.ops import reduce_l1
137
+ from openvino.runtime.opset4.ops import reduce_l2
138
+ from openvino.runtime.opset1.ops import reduce_logical_and
139
+ from openvino.runtime.opset1.ops import reduce_logical_or
140
+ from openvino.runtime.opset1.ops import reduce_max
141
+ from openvino.runtime.opset1.ops import reduce_mean
142
+ from openvino.runtime.opset1.ops import reduce_min
143
+ from openvino.runtime.opset1.ops import reduce_prod
144
+ from openvino.runtime.opset1.ops import reduce_sum
145
+ from openvino.runtime.opset1.ops import region_yolo
146
+ from openvino.runtime.opset2.ops import reorg_yolo
147
+ from openvino.runtime.opset1.ops import relu
148
+ from openvino.runtime.opset1.ops import reshape
149
+ from openvino.runtime.opset13.ops import result
150
+ from openvino.runtime.opset1.ops import reverse_sequence
151
+ from openvino.runtime.opset3.ops import rnn_cell
152
+ from openvino.runtime.opset5.ops import rnn_sequence
153
+ from openvino.runtime.opset9.ops import roi_align
154
+ from openvino.runtime.opset2.ops import roi_pooling
155
+ from openvino.runtime.opset7.ops import roll
156
+ from openvino.runtime.opset5.ops import round
157
+ from openvino.runtime.opset13.ops import scaled_dot_product_attention
158
+ from openvino.runtime.opset12.ops import scatter_elements_update
159
+ from openvino.runtime.opset4.ops import scatter_nd_update
160
+ from openvino.runtime.opset3.ops import scatter_update
161
+ from openvino.runtime.opset1.ops import select
162
+ from openvino.runtime.opset1.ops import selu
163
+ from openvino.runtime.opset3.ops import shape_of
164
+ from openvino.runtime.opset3.ops import shuffle_channels
165
+ from openvino.runtime.opset1.ops import sigmoid
166
+ from openvino.runtime.opset1.ops import sign
167
+ from openvino.runtime.opset1.ops import sin
168
+ from openvino.runtime.opset1.ops import sinh
169
+ from openvino.runtime.opset8.ops import slice
170
+ from openvino.runtime.opset8.ops import softmax
171
+ from openvino.runtime.opset4.ops import softplus
172
+ from openvino.runtime.opset9.ops import softsign
173
+ from openvino.runtime.opset2.ops import space_to_batch
174
+ from openvino.runtime.opset1.ops import space_to_depth
175
+ from openvino.runtime.opset1.ops import split
176
+ from openvino.runtime.opset1.ops import sqrt
177
+ from openvino.runtime.opset1.ops import squared_difference
178
+ from openvino.runtime.opset1.ops import squeeze
179
+ from openvino.runtime.opset1.ops import strided_slice
180
+ from openvino.runtime.opset1.ops import subtract
181
+ from openvino.runtime.opset4.ops import swish
182
+ from openvino.runtime.opset1.ops import tan
183
+ from openvino.runtime.opset1.ops import tanh
184
+ from openvino.runtime.opset1.ops import tensor_iterator
185
+ from openvino.runtime.opset1.ops import tile
186
+ from openvino.runtime.opset11.ops import topk
187
+ from openvino.runtime.opset1.ops import transpose
188
+ from openvino.runtime.opset10.ops import unique
189
+ from openvino.runtime.opset1.ops import unsqueeze
190
+ from openvino.runtime.opset1.ops import variadic_split