bigdl-core-npu 2.6.0b20250114__cp311-cp311-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- bigdl-core-npu/__init__.py +0 -0
- bigdl-core-npu/include/common.h +96 -0
- bigdl-core-npu/include/npu_llm.h +74 -0
- bigdl-core-npu/npu_llm.dll +0 -0
- bigdl-core-npu/npu_llm.lib +0 -0
- bigdl_core_npu-2.6.0b20250114.dist-info/METADATA +44 -0
- bigdl_core_npu-2.6.0b20250114.dist-info/RECORD +234 -0
- bigdl_core_npu-2.6.0b20250114.dist-info/WHEEL +5 -0
- bigdl_core_npu-2.6.0b20250114.dist-info/top_level.txt +2 -0
- intel_npu_acceleration_library/__init__.py +24 -0
- intel_npu_acceleration_library/_version.py +6 -0
- intel_npu_acceleration_library/backend/__init__.py +37 -0
- intel_npu_acceleration_library/backend/base.py +250 -0
- intel_npu_acceleration_library/backend/bindings.py +383 -0
- intel_npu_acceleration_library/backend/compression.py +24 -0
- intel_npu_acceleration_library/backend/convolution.py +58 -0
- intel_npu_acceleration_library/backend/factory.py +1161 -0
- intel_npu_acceleration_library/backend/linear.py +60 -0
- intel_npu_acceleration_library/backend/matmul.py +59 -0
- intel_npu_acceleration_library/backend/mlp.py +58 -0
- intel_npu_acceleration_library/backend/ops.py +142 -0
- intel_npu_acceleration_library/backend/qlinear.py +75 -0
- intel_npu_acceleration_library/backend/qmatmul.py +66 -0
- intel_npu_acceleration_library/backend/runtime.py +215 -0
- intel_npu_acceleration_library/backend/sdpa.py +107 -0
- intel_npu_acceleration_library/backend/tensor.py +1120 -0
- intel_npu_acceleration_library/backend/utils.py +70 -0
- intel_npu_acceleration_library/compiler.py +194 -0
- intel_npu_acceleration_library/device.py +230 -0
- intel_npu_acceleration_library/dtypes.py +155 -0
- intel_npu_acceleration_library/external/openvino/__init__.py +72 -0
- intel_npu_acceleration_library/external/openvino/_offline_transformations/__init__.py +21 -0
- intel_npu_acceleration_library/external/openvino/_pyopenvino.cp310-win_amd64.pyd +0 -0
- intel_npu_acceleration_library/external/openvino/_pyopenvino.cp311-win_amd64.pyd +0 -0
- intel_npu_acceleration_library/external/openvino/_pyopenvino.cp312-win_amd64.pyd +0 -0
- intel_npu_acceleration_library/external/openvino/_pyopenvino.cp38-win_amd64.pyd +0 -0
- intel_npu_acceleration_library/external/openvino/_pyopenvino.cp39-win_amd64.pyd +0 -0
- intel_npu_acceleration_library/external/openvino/experimental/__init__.py +14 -0
- intel_npu_acceleration_library/external/openvino/frontend/__init__.py +34 -0
- intel_npu_acceleration_library/external/openvino/frontend/frontend.py +44 -0
- intel_npu_acceleration_library/external/openvino/frontend/jax/__init__.py +15 -0
- intel_npu_acceleration_library/external/openvino/frontend/jax/jaxpr_decoder.py +293 -0
- intel_npu_acceleration_library/external/openvino/frontend/jax/passes.py +65 -0
- intel_npu_acceleration_library/external/openvino/frontend/jax/utils.py +182 -0
- intel_npu_acceleration_library/external/openvino/frontend/onnx/__init__.py +15 -0
- intel_npu_acceleration_library/external/openvino/frontend/onnx/py_onnx_frontend.cp310-win_amd64.pyd +0 -0
- intel_npu_acceleration_library/external/openvino/frontend/onnx/py_onnx_frontend.cp311-win_amd64.pyd +0 -0
- intel_npu_acceleration_library/external/openvino/frontend/onnx/py_onnx_frontend.cp312-win_amd64.pyd +0 -0
- intel_npu_acceleration_library/external/openvino/frontend/onnx/py_onnx_frontend.cp38-win_amd64.pyd +0 -0
- intel_npu_acceleration_library/external/openvino/frontend/onnx/py_onnx_frontend.cp39-win_amd64.pyd +0 -0
- intel_npu_acceleration_library/external/openvino/frontend/paddle/__init__.py +15 -0
- intel_npu_acceleration_library/external/openvino/frontend/paddle/py_paddle_frontend.cp310-win_amd64.pyd +0 -0
- intel_npu_acceleration_library/external/openvino/frontend/paddle/py_paddle_frontend.cp311-win_amd64.pyd +0 -0
- intel_npu_acceleration_library/external/openvino/frontend/paddle/py_paddle_frontend.cp312-win_amd64.pyd +0 -0
- intel_npu_acceleration_library/external/openvino/frontend/paddle/py_paddle_frontend.cp38-win_amd64.pyd +0 -0
- intel_npu_acceleration_library/external/openvino/frontend/paddle/py_paddle_frontend.cp39-win_amd64.pyd +0 -0
- intel_npu_acceleration_library/external/openvino/frontend/pytorch/__init__.py +19 -0
- intel_npu_acceleration_library/external/openvino/frontend/pytorch/fx_decoder.py +370 -0
- intel_npu_acceleration_library/external/openvino/frontend/pytorch/gptq.py +180 -0
- intel_npu_acceleration_library/external/openvino/frontend/pytorch/module_extension.py +39 -0
- intel_npu_acceleration_library/external/openvino/frontend/pytorch/patch_model.py +118 -0
- intel_npu_acceleration_library/external/openvino/frontend/pytorch/py_pytorch_frontend.cp310-win_amd64.pyd +0 -0
- intel_npu_acceleration_library/external/openvino/frontend/pytorch/py_pytorch_frontend.cp311-win_amd64.pyd +0 -0
- intel_npu_acceleration_library/external/openvino/frontend/pytorch/py_pytorch_frontend.cp312-win_amd64.pyd +0 -0
- intel_npu_acceleration_library/external/openvino/frontend/pytorch/py_pytorch_frontend.cp38-win_amd64.pyd +0 -0
- intel_npu_acceleration_library/external/openvino/frontend/pytorch/py_pytorch_frontend.cp39-win_amd64.pyd +0 -0
- intel_npu_acceleration_library/external/openvino/frontend/pytorch/torchdynamo/backend.py +131 -0
- intel_npu_acceleration_library/external/openvino/frontend/pytorch/torchdynamo/backend_utils.py +85 -0
- intel_npu_acceleration_library/external/openvino/frontend/pytorch/torchdynamo/compile.py +141 -0
- intel_npu_acceleration_library/external/openvino/frontend/pytorch/torchdynamo/decompositions.py +116 -0
- intel_npu_acceleration_library/external/openvino/frontend/pytorch/torchdynamo/execute.py +189 -0
- intel_npu_acceleration_library/external/openvino/frontend/pytorch/torchdynamo/op_support.py +290 -0
- intel_npu_acceleration_library/external/openvino/frontend/pytorch/torchdynamo/partition.py +126 -0
- intel_npu_acceleration_library/external/openvino/frontend/pytorch/ts_decoder.py +568 -0
- intel_npu_acceleration_library/external/openvino/frontend/pytorch/utils.py +258 -0
- intel_npu_acceleration_library/external/openvino/frontend/tensorflow/__init__.py +16 -0
- intel_npu_acceleration_library/external/openvino/frontend/tensorflow/graph_iterator.py +116 -0
- intel_npu_acceleration_library/external/openvino/frontend/tensorflow/node_decoder.py +219 -0
- intel_npu_acceleration_library/external/openvino/frontend/tensorflow/py_tensorflow_frontend.cp310-win_amd64.pyd +0 -0
- intel_npu_acceleration_library/external/openvino/frontend/tensorflow/py_tensorflow_frontend.cp311-win_amd64.pyd +0 -0
- intel_npu_acceleration_library/external/openvino/frontend/tensorflow/py_tensorflow_frontend.cp312-win_amd64.pyd +0 -0
- intel_npu_acceleration_library/external/openvino/frontend/tensorflow/py_tensorflow_frontend.cp38-win_amd64.pyd +0 -0
- intel_npu_acceleration_library/external/openvino/frontend/tensorflow/py_tensorflow_frontend.cp39-win_amd64.pyd +0 -0
- intel_npu_acceleration_library/external/openvino/frontend/tensorflow/utils.py +481 -0
- intel_npu_acceleration_library/external/openvino/helpers/__init__.py +6 -0
- intel_npu_acceleration_library/external/openvino/helpers/packing.py +87 -0
- intel_npu_acceleration_library/external/openvino/preprocess/README.md +60 -0
- intel_npu_acceleration_library/external/openvino/preprocess/__init__.py +28 -0
- intel_npu_acceleration_library/external/openvino/preprocess/torchvision/__init__.py +15 -0
- intel_npu_acceleration_library/external/openvino/preprocess/torchvision/preprocess_converter.py +47 -0
- intel_npu_acceleration_library/external/openvino/preprocess/torchvision/requirements.txt +5 -0
- intel_npu_acceleration_library/external/openvino/preprocess/torchvision/torchvision_preprocessing.py +347 -0
- intel_npu_acceleration_library/external/openvino/properties/__init__.py +22 -0
- intel_npu_acceleration_library/external/openvino/properties/_properties.py +55 -0
- intel_npu_acceleration_library/external/openvino/properties/device/__init__.py +14 -0
- intel_npu_acceleration_library/external/openvino/properties/hint/__init__.py +15 -0
- intel_npu_acceleration_library/external/openvino/properties/intel_auto/__init__.py +12 -0
- intel_npu_acceleration_library/external/openvino/properties/intel_cpu/__init__.py +8 -0
- intel_npu_acceleration_library/external/openvino/properties/intel_gpu/__init__.py +12 -0
- intel_npu_acceleration_library/external/openvino/properties/intel_gpu/hint/__init__.py +11 -0
- intel_npu_acceleration_library/external/openvino/properties/log/__init__.py +11 -0
- intel_npu_acceleration_library/external/openvino/properties/streams/__init__.py +11 -0
- intel_npu_acceleration_library/external/openvino/runtime/__init__.py +85 -0
- intel_npu_acceleration_library/external/openvino/runtime/exceptions.py +17 -0
- intel_npu_acceleration_library/external/openvino/runtime/ie_api.py +631 -0
- intel_npu_acceleration_library/external/openvino/runtime/op/__init__.py +19 -0
- intel_npu_acceleration_library/external/openvino/runtime/op/util/__init__.py +22 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset1/__init__.py +112 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset1/ops.py +3068 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset10/__init__.py +179 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset10/ops.py +173 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset11/__init__.py +179 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset11/ops.py +107 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset12/__init__.py +180 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset12/ops.py +120 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset13/__init__.py +188 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset13/ops.py +398 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset14/__init__.py +190 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset14/ops.py +171 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset15/__init__.py +17 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset15/ops.py +276 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset2/__init__.py +118 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset2/ops.py +216 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset3/__init__.py +134 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset3/ops.py +638 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset4/__init__.py +145 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset4/ops.py +464 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset5/__init__.py +152 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset5/ops.py +372 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset6/__init__.py +154 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset6/ops.py +215 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset7/__init__.py +158 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset7/ops.py +169 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset8/__init__.py +169 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset8/ops.py +787 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset9/__init__.py +175 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset9/ops.py +341 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset_utils.py +22 -0
- intel_npu_acceleration_library/external/openvino/runtime/passes/__init__.py +19 -0
- intel_npu_acceleration_library/external/openvino/runtime/passes/graph_rewrite.py +33 -0
- intel_npu_acceleration_library/external/openvino/runtime/passes/manager.py +26 -0
- intel_npu_acceleration_library/external/openvino/runtime/properties/__init__.py +40 -0
- intel_npu_acceleration_library/external/openvino/runtime/properties/hint/__init__.py +25 -0
- intel_npu_acceleration_library/external/openvino/runtime/utils/__init__.py +7 -0
- intel_npu_acceleration_library/external/openvino/runtime/utils/broadcasting.py +44 -0
- intel_npu_acceleration_library/external/openvino/runtime/utils/data_helpers/__init__.py +8 -0
- intel_npu_acceleration_library/external/openvino/runtime/utils/data_helpers/data_dispatcher.py +447 -0
- intel_npu_acceleration_library/external/openvino/runtime/utils/data_helpers/wrappers.py +148 -0
- intel_npu_acceleration_library/external/openvino/runtime/utils/decorators.py +156 -0
- intel_npu_acceleration_library/external/openvino/runtime/utils/input_validation.py +133 -0
- intel_npu_acceleration_library/external/openvino/runtime/utils/node_factory.py +127 -0
- intel_npu_acceleration_library/external/openvino/runtime/utils/reduction.py +25 -0
- intel_npu_acceleration_library/external/openvino/runtime/utils/types.py +175 -0
- intel_npu_acceleration_library/external/openvino/tools/__init__.py +4 -0
- intel_npu_acceleration_library/external/openvino/tools/benchmark/__init__.py +3 -0
- intel_npu_acceleration_library/external/openvino/tools/benchmark/benchmark.py +186 -0
- intel_npu_acceleration_library/external/openvino/tools/benchmark/main.py +695 -0
- intel_npu_acceleration_library/external/openvino/tools/benchmark/parameters.py +199 -0
- intel_npu_acceleration_library/external/openvino/tools/benchmark/utils/__init__.py +3 -0
- intel_npu_acceleration_library/external/openvino/tools/benchmark/utils/constants.py +26 -0
- intel_npu_acceleration_library/external/openvino/tools/benchmark/utils/inputs_filling.py +482 -0
- intel_npu_acceleration_library/external/openvino/tools/benchmark/utils/logging.py +8 -0
- intel_npu_acceleration_library/external/openvino/tools/benchmark/utils/statistics_report.py +296 -0
- intel_npu_acceleration_library/external/openvino/tools/benchmark/utils/utils.py +836 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/__init__.py +20 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/__main__.py +10 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/cli_parser.py +633 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/convert.py +102 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/convert_data_type.py +82 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/convert_impl.py +550 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/environment_setup_utils.py +50 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/error.py +49 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/get_ov_update_message.py +16 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/help.py +45 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/logger.py +91 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/main.py +40 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/moc_frontend/__init__.py +2 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/moc_frontend/analysis.py +46 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/moc_frontend/check_config.py +57 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/moc_frontend/extractor.py +447 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/moc_frontend/jax_frontend_utils.py +19 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/moc_frontend/layout_utils.py +73 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/moc_frontend/moc_emit_ir.py +32 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/moc_frontend/offline_transformations.py +107 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/moc_frontend/paddle_frontend_utils.py +83 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/moc_frontend/pipeline.py +298 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/moc_frontend/preprocessing.py +220 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/moc_frontend/pytorch_frontend_utils.py +214 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/moc_frontend/shape_utils.py +109 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/moc_frontend/type_utils.py +82 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/ovc.py +13 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/telemetry_params.py +6 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/telemetry_stub.py +28 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/telemetry_utils.py +118 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/utils.py +196 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/version.py +80 -0
- intel_npu_acceleration_library/external/openvino/torch/__init__.py +5 -0
- intel_npu_acceleration_library/external/openvino/utils.py +115 -0
- intel_npu_acceleration_library/functional/__init__.py +8 -0
- intel_npu_acceleration_library/functional/scaled_dot_product_attention.py +47 -0
- intel_npu_acceleration_library/lib/Release/cache.json +113732 -0
- intel_npu_acceleration_library/lib/Release/intel_npu_acceleration_library.dll +0 -0
- intel_npu_acceleration_library/lib/Release/openvino.dll +0 -0
- intel_npu_acceleration_library/lib/Release/openvino_auto_batch_plugin.dll +0 -0
- intel_npu_acceleration_library/lib/Release/openvino_auto_plugin.dll +0 -0
- intel_npu_acceleration_library/lib/Release/openvino_c.dll +0 -0
- intel_npu_acceleration_library/lib/Release/openvino_hetero_plugin.dll +0 -0
- intel_npu_acceleration_library/lib/Release/openvino_intel_cpu_plugin.dll +0 -0
- intel_npu_acceleration_library/lib/Release/openvino_intel_gpu_plugin.dll +0 -0
- intel_npu_acceleration_library/lib/Release/openvino_intel_npu_plugin.dll +0 -0
- intel_npu_acceleration_library/lib/Release/openvino_ir_frontend.dll +0 -0
- intel_npu_acceleration_library/lib/Release/openvino_onnx_frontend.dll +0 -0
- intel_npu_acceleration_library/lib/Release/openvino_paddle_frontend.dll +0 -0
- intel_npu_acceleration_library/lib/Release/openvino_pytorch_frontend.dll +0 -0
- intel_npu_acceleration_library/lib/Release/openvino_tensorflow_frontend.dll +0 -0
- intel_npu_acceleration_library/lib/Release/openvino_tensorflow_lite_frontend.dll +0 -0
- intel_npu_acceleration_library/lib/Release/tbb12.dll +0 -0
- intel_npu_acceleration_library/lib/Release/tbb12_debug.dll +0 -0
- intel_npu_acceleration_library/lib/Release/tbbbind_2_5.dll +0 -0
- intel_npu_acceleration_library/lib/Release/tbbbind_2_5_debug.dll +0 -0
- intel_npu_acceleration_library/lib/Release/tbbmalloc.dll +0 -0
- intel_npu_acceleration_library/lib/Release/tbbmalloc_debug.dll +0 -0
- intel_npu_acceleration_library/lib/Release/tbbmalloc_proxy.dll +0 -0
- intel_npu_acceleration_library/lib/Release/tbbmalloc_proxy_debug.dll +0 -0
- intel_npu_acceleration_library/modelling.py +150 -0
- intel_npu_acceleration_library/nn/__init__.py +20 -0
- intel_npu_acceleration_library/nn/autograd.py +68 -0
- intel_npu_acceleration_library/nn/conv.py +257 -0
- intel_npu_acceleration_library/nn/functional.py +1207 -0
- intel_npu_acceleration_library/nn/linear.py +162 -0
- intel_npu_acceleration_library/nn/llm.py +417 -0
- intel_npu_acceleration_library/nn/module.py +393 -0
- intel_npu_acceleration_library/optimizations.py +157 -0
- intel_npu_acceleration_library/quantization.py +174 -0
@@ -0,0 +1,398 @@
|
|
1
|
+
# -*- coding: utf-8 -*-
|
2
|
+
# Copyright (C) 2018-2024 Intel Corporation
|
3
|
+
# SPDX-License-Identifier: Apache-2.0
|
4
|
+
|
5
|
+
"""Factory functions for ops added to openvino opset13."""
|
6
|
+
from functools import partial
|
7
|
+
from typing import Literal, Optional, Union
|
8
|
+
import logging
|
9
|
+
|
10
|
+
import numpy as np
|
11
|
+
|
12
|
+
log = logging.getLogger(__name__)
|
13
|
+
|
14
|
+
from openvino.runtime import Node, Shape, Type, Output
|
15
|
+
from openvino.runtime.op import Constant, Result
|
16
|
+
from openvino.runtime.opset1 import convert_like
|
17
|
+
from openvino.runtime.opset_utils import _get_node_factory
|
18
|
+
from openvino.runtime.utils.decorators import binary_op, nameable_op, unary_op
|
19
|
+
from openvino.runtime.utils.types import (
|
20
|
+
NumericData,
|
21
|
+
NodeInput,
|
22
|
+
NumericType,
|
23
|
+
as_nodes,
|
24
|
+
as_node,
|
25
|
+
)
|
26
|
+
|
27
|
+
_get_node_factory_opset13 = partial(_get_node_factory, "opset13")
|
28
|
+
|
29
|
+
|
30
|
+
# -------------------------------------------- ops ------------------------------------------------
|
31
|
+
@binary_op
|
32
|
+
def bitwise_and(
|
33
|
+
left_node: NodeInput,
|
34
|
+
right_node: NodeInput,
|
35
|
+
auto_broadcast: str = "NUMPY",
|
36
|
+
name: Optional[str] = None,
|
37
|
+
) -> Node:
|
38
|
+
"""Return node which performs bitwise AND operation on input nodes element-wise.
|
39
|
+
|
40
|
+
For boolean input tensors, operator is equivalent to logical_and.
|
41
|
+
|
42
|
+
:param left_node: Tensor of integer or boolean datatype providing data.
|
43
|
+
:param right_node: Tensor of integer or boolean datatype providing data.
|
44
|
+
:param auto_broadcast: The type of broadcasting specifies rules used for auto-broadcasting of input tensors. Defaults to “NUMPY”.
|
45
|
+
:param name: The optional new name for output node.
|
46
|
+
:return: The node performing bitwise AND operation on input nodes corresponding elements.
|
47
|
+
"""
|
48
|
+
return _get_node_factory_opset13().create(
|
49
|
+
"BitwiseAnd",
|
50
|
+
[left_node, right_node],
|
51
|
+
{"auto_broadcast": auto_broadcast.upper()},
|
52
|
+
)
|
53
|
+
|
54
|
+
|
55
|
+
@unary_op
|
56
|
+
def bitwise_not(
|
57
|
+
node: NodeInput,
|
58
|
+
name: Optional[str] = None,
|
59
|
+
) -> Node:
|
60
|
+
"""Return node which performs bitwise NOT operation on input node element-wise.
|
61
|
+
|
62
|
+
For boolean input tensors, operator is equivalent to logical_not.
|
63
|
+
|
64
|
+
:param node: Tensor of integer or boolean datatype providing data.
|
65
|
+
:param name: The optional new name for output node.
|
66
|
+
:return: The node performing bitwise NOT operation on the given tensor.
|
67
|
+
"""
|
68
|
+
return _get_node_factory_opset13().create(
|
69
|
+
"BitwiseNot",
|
70
|
+
[node],
|
71
|
+
)
|
72
|
+
|
73
|
+
|
74
|
+
@binary_op
|
75
|
+
def bitwise_or(
|
76
|
+
left_node: NodeInput,
|
77
|
+
right_node: NodeInput,
|
78
|
+
auto_broadcast: str = "NUMPY",
|
79
|
+
name: Optional[str] = None,
|
80
|
+
) -> Node:
|
81
|
+
"""Return node which performs bitwise OR operation on input nodes element-wise.
|
82
|
+
|
83
|
+
For boolean input tensors, operator is equivalent to logical_or.
|
84
|
+
|
85
|
+
:param left_node: Tensor of integer or boolean datatype providing data.
|
86
|
+
:param right_node: Tensor of integer or boolean datatype providing data.
|
87
|
+
:param auto_broadcast: The type of broadcasting specifies rules used for auto-broadcasting of input tensors. Defaults to “NUMPY”.
|
88
|
+
:param name: The optional new name for output node.
|
89
|
+
:return: The node performing bitwise OR operation on input nodes corresponding elements.
|
90
|
+
"""
|
91
|
+
return _get_node_factory_opset13().create(
|
92
|
+
"BitwiseOr",
|
93
|
+
[left_node, right_node],
|
94
|
+
{"auto_broadcast": auto_broadcast.upper()},
|
95
|
+
)
|
96
|
+
|
97
|
+
|
98
|
+
@binary_op
|
99
|
+
def bitwise_xor(
|
100
|
+
left_node: NodeInput,
|
101
|
+
right_node: NodeInput,
|
102
|
+
auto_broadcast: str = "NUMPY",
|
103
|
+
name: Optional[str] = None,
|
104
|
+
) -> Node:
|
105
|
+
"""Return node which performs bitwise XOR operation on input nodes element-wise.
|
106
|
+
|
107
|
+
For boolean input tensors, operator is equivalent to logical_xor.
|
108
|
+
|
109
|
+
:param left_node: Tensor of integer or boolean datatype providing data.
|
110
|
+
:param right_node: Tensor of integer or boolean datatype providing data.
|
111
|
+
:param auto_broadcast: The type of broadcasting specifies rules used for auto-broadcasting of input tensors. Defaults to “NUMPY”.
|
112
|
+
:param name: The optional new name for output node.
|
113
|
+
:return: The node performing bitwise XOR operation on input nodes corresponding elements.
|
114
|
+
"""
|
115
|
+
return _get_node_factory_opset13().create(
|
116
|
+
"BitwiseXor",
|
117
|
+
[left_node, right_node],
|
118
|
+
{"auto_broadcast": auto_broadcast.upper()},
|
119
|
+
)
|
120
|
+
|
121
|
+
|
122
|
+
@nameable_op
|
123
|
+
def fake_convert(
|
124
|
+
data: NodeInput,
|
125
|
+
scale: NodeInput,
|
126
|
+
shift: Optional[NodeInput] = None,
|
127
|
+
destination_type: Literal["f8e4m3", "f8e5m2"] = "f8e4m3",
|
128
|
+
name: Optional[str] = None,
|
129
|
+
) -> Node:
|
130
|
+
"""Return a node which performs FakeConvert.
|
131
|
+
|
132
|
+
FakeConvert is experimental and may change in the future.
|
133
|
+
.. warning:: FakeConvert is experimental and may change in the future.
|
134
|
+
|
135
|
+
:param data: The node with data tensor with FP16, BF16 or FP32 datatype.
|
136
|
+
:param scale: Tensor with a scale factor for the data input value,
|
137
|
+
of the same type as the data, and shape Numpy-broadcastable to data.
|
138
|
+
:param shift: Optional tensor with value to subtract before and add after conversion of the data input value,
|
139
|
+
of the same type as the data, and shape Numpy-broadcastable to data.
|
140
|
+
:param destination_type: Type to emulate, string of either "f8e4m3" or "f8e5m2".
|
141
|
+
:param name: The optional new name for output node.
|
142
|
+
|
143
|
+
:return: The new node performing FakeConvert operation.
|
144
|
+
"""
|
145
|
+
nodes = [data, scale]
|
146
|
+
if shift is not None:
|
147
|
+
nodes.append(shift)
|
148
|
+
return _get_node_factory_opset13().create(
|
149
|
+
"FakeConvert",
|
150
|
+
as_nodes(*nodes, name=name),
|
151
|
+
{"destination_type": destination_type},
|
152
|
+
)
|
153
|
+
|
154
|
+
|
155
|
+
@nameable_op
|
156
|
+
def multinomial(
|
157
|
+
probs: NodeInput,
|
158
|
+
num_samples: NodeInput,
|
159
|
+
convert_type: str,
|
160
|
+
with_replacement: bool,
|
161
|
+
log_probs: bool,
|
162
|
+
global_seed: int = 0,
|
163
|
+
op_seed: int = 0,
|
164
|
+
name: Optional[str] = None,
|
165
|
+
) -> Node:
|
166
|
+
"""Return a node which generates a sequence of class indices sampled from the multinomial distribution.
|
167
|
+
|
168
|
+
:param probs: Tensor with probabilities of floating-point type, and shape [batch_size, class_size].
|
169
|
+
:param num_samples: Tensor (scalar or 1D) a single element of type i32 or i64,
|
170
|
+
specifying the number of samples to draw from the multinomial distribution.
|
171
|
+
:param convert_type: Specifies the output tensor type, possible values: 'i64', 'i32'.
|
172
|
+
:param with_replacement: Flag that specifies whether to sample with replacement.
|
173
|
+
:param log_probs: Flag that specifies whether *probs* should be treated as unnormalized log probabilities.
|
174
|
+
:param global_seed: Specifies global seed value. Required to be a positive integer or 0.
|
175
|
+
:param op_seed: Specifies operational seed value. Required to be a positive integer or 0.
|
176
|
+
:param name: The optional new name for output node.
|
177
|
+
|
178
|
+
:return: The new node performing Multinomial operation.
|
179
|
+
"""
|
180
|
+
inputs = as_nodes(probs, num_samples, name=name)
|
181
|
+
|
182
|
+
if global_seed < 0:
|
183
|
+
raise RuntimeError(f"global_seed should be positive or 0. Got: {global_seed}")
|
184
|
+
|
185
|
+
if op_seed < 0:
|
186
|
+
raise RuntimeError(f"op_seed should be positive or 0. Got: {op_seed}")
|
187
|
+
|
188
|
+
attributes = {
|
189
|
+
"convert_type": convert_type,
|
190
|
+
"with_replacement": with_replacement,
|
191
|
+
"log_probs": log_probs,
|
192
|
+
"global_seed": global_seed,
|
193
|
+
"op_seed": op_seed,
|
194
|
+
}
|
195
|
+
return _get_node_factory_opset13().create("Multinomial", inputs, attributes)
|
196
|
+
|
197
|
+
|
198
|
+
@nameable_op
|
199
|
+
def nms_rotated(
|
200
|
+
boxes: NodeInput,
|
201
|
+
scores: NodeInput,
|
202
|
+
max_output_boxes_per_class: NodeInput,
|
203
|
+
iou_threshold: NodeInput,
|
204
|
+
score_threshold: NodeInput,
|
205
|
+
sort_result_descending: bool = True,
|
206
|
+
output_type: str = "i64",
|
207
|
+
clockwise: bool = True,
|
208
|
+
name: Optional[str] = None,
|
209
|
+
) -> Node:
|
210
|
+
"""Return a node which performs NMSRotated.
|
211
|
+
|
212
|
+
:param boxes: Tensor with box coordinates of floating point type and shape [num_batches, num_boxes, 5],
|
213
|
+
where the last dimension is defined as [x_ctr, y_ctr, width, height, angle_radians].
|
214
|
+
:param scores: Tensor with box scores of floating point type and shape [num_batches, num_classes, num_boxes].
|
215
|
+
:param max_output_boxes_per_class: Tensor (scalar or 1D) of integer type, specifying maximum number of boxes
|
216
|
+
to be selected per class.
|
217
|
+
:param iou_threshold: Tensor (scalar or 1D) of floating point type, specifying intersection over union threshold
|
218
|
+
:param score_threshold: Tensor (scalar or 1D) of floating point type, specifying minimum score to consider box for the processing.
|
219
|
+
:param sort_result_descending: Flag that specifies whenever it is necessary to sort selected
|
220
|
+
boxes across batches or not.
|
221
|
+
:param output_type: Output element type.
|
222
|
+
:param clockwise: Flag that specifies direction of the box rotation.
|
223
|
+
:return: The new node which performs NMSRotated
|
224
|
+
"""
|
225
|
+
inputs = as_nodes(boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold, name=name)
|
226
|
+
|
227
|
+
attributes = {
|
228
|
+
"sort_result_descending": sort_result_descending,
|
229
|
+
"output_type": output_type,
|
230
|
+
"clockwise": clockwise,
|
231
|
+
}
|
232
|
+
|
233
|
+
return _get_node_factory_opset13().create("NMSRotated", inputs, attributes)
|
234
|
+
|
235
|
+
|
236
|
+
@nameable_op
|
237
|
+
def scaled_dot_product_attention(
|
238
|
+
query: NodeInput,
|
239
|
+
key: NodeInput,
|
240
|
+
value: NodeInput,
|
241
|
+
attention_mask: Optional[NodeInput] = None,
|
242
|
+
scale: Optional[NodeInput] = None,
|
243
|
+
causal: bool = False,
|
244
|
+
name: Optional[str] = None,
|
245
|
+
) -> Node:
|
246
|
+
"""Return a node which implements Scaled Dot Product Attention.
|
247
|
+
|
248
|
+
:param query: Query tensor of shape [N, ..., L, E] and floating-point datatype.
|
249
|
+
:param key: Key tensor of shape [N, ..., S, E] and floating-point datatype.
|
250
|
+
:param value: Value tensor of shape [N, ..., S, Ev] and floating-point datatype.
|
251
|
+
:param attention_mask: Optional attention mask tensor of shape [N, ..., L, S] or scalar float type zero value.
|
252
|
+
Refer to the operation specification for a complete description.
|
253
|
+
:param scale: Optional alternative scale, a floating-point type scalar.
|
254
|
+
:param causal: If true, then autogenerates causal attention mask instead of using attention_mask input.
|
255
|
+
In this case attention_mask input is ignored.
|
256
|
+
:param name: The optional new name for output node.
|
257
|
+
|
258
|
+
:return: The new node performing Scaled Dot Product Attention operation.
|
259
|
+
"""
|
260
|
+
inputs = as_nodes(query, key, value, name=name)
|
261
|
+
if attention_mask is not None:
|
262
|
+
inputs.append(as_node(attention_mask, name=name))
|
263
|
+
elif scale is not None:
|
264
|
+
inputs.append(as_node(convert_like(constant(np.array(0, np.int32)), inputs[0]), name=name))
|
265
|
+
if scale is not None:
|
266
|
+
inputs.append(as_node(scale, name=name))
|
267
|
+
|
268
|
+
attributes = {
|
269
|
+
"causal": causal,
|
270
|
+
}
|
271
|
+
return _get_node_factory_opset13().create("ScaledDotProductAttention", inputs, attributes)
|
272
|
+
|
273
|
+
|
274
|
+
@nameable_op
|
275
|
+
def constant(
|
276
|
+
value: Union[NumericData, np.number, bool, np.bool_, list],
|
277
|
+
dtype: Union[NumericType, Type] = None,
|
278
|
+
name: Optional[str] = None,
|
279
|
+
*,
|
280
|
+
shared_memory: bool = False,
|
281
|
+
) -> Constant:
|
282
|
+
"""Create a Constant node from provided value.
|
283
|
+
|
284
|
+
:param value: One of: array of values or scalar to initialize node with.
|
285
|
+
:param dtype: The data type of provided data.
|
286
|
+
If dtype does not match, data will be converted.
|
287
|
+
Note: disables sharing of the memory when convertion occurs.
|
288
|
+
:param name: Optional name for output node.
|
289
|
+
:param shared_memory: keyword-only argument.
|
290
|
+
If `True`, this Constant's memory is being shared with a host,
|
291
|
+
that means the responsibility of keeping host memory is
|
292
|
+
on the side of a user. Any action performed on the host
|
293
|
+
memory is reflected on this Constant's memory!
|
294
|
+
If `False`, data is being copied to this Constant.
|
295
|
+
Requires data to be C_CONTIGUOUS if `True`.
|
296
|
+
Disabled by default if:
|
297
|
+
- value is a scalar.
|
298
|
+
- dtype is one of: Type.u1, Type.i4, Type.u4, Type.nf4, Type.bf16.
|
299
|
+
- dtype force conversion of data.
|
300
|
+
:return: The Constant node initialized with provided data.
|
301
|
+
"""
|
302
|
+
|
303
|
+
def display_shared_memory_warning(warning_message: str) -> None:
|
304
|
+
if shared_memory:
|
305
|
+
log.warning(f"{warning_message}. Memory sharing is disabled by default. Set shared_memory=False to hide this warning.")
|
306
|
+
|
307
|
+
if isinstance(value, np.ndarray):
|
308
|
+
_value, _shared_memory = value, shared_memory
|
309
|
+
else:
|
310
|
+
_value, _shared_memory = np.array(value), False
|
311
|
+
display_shared_memory_warning(f"Converting scalar to corresponding type of {_value.dtype}")
|
312
|
+
# Handle type casting, when dtype is not None:
|
313
|
+
if dtype:
|
314
|
+
# Expect packed data, use different constructor to handle it correctly:
|
315
|
+
if dtype in [Type.u1, Type.i4, Type.u4, Type.nf4, Type.f4e2m1]:
|
316
|
+
display_shared_memory_warning(f"Constant initialized with packed type of {dtype}")
|
317
|
+
return Constant(dtype, Shape(_value.shape), _value.flatten().tolist())
|
318
|
+
elif dtype in [Type.bf16, Type.f8e8m0, Type.f8e4m3, Type.f8e5m2]:
|
319
|
+
display_shared_memory_warning(f"Constant initialized with OpenVINO custom {dtype}")
|
320
|
+
return Constant(dtype, Shape(_value.shape), _value.flatten().tolist())
|
321
|
+
# General use-case for all other types:
|
322
|
+
else:
|
323
|
+
_dtype = dtype.to_dtype() if isinstance(dtype, Type) else dtype
|
324
|
+
if _dtype is int:
|
325
|
+
display_shared_memory_warning("Converting scalar type of undefined bitwidth to 32-bit integer")
|
326
|
+
_value, _shared_memory = _value.astype(np.int32), False
|
327
|
+
elif _dtype is float:
|
328
|
+
display_shared_memory_warning("Converting scalar type of undefined bitwidth to 32-bit float")
|
329
|
+
_value, _shared_memory = _value.astype(np.float32), False
|
330
|
+
elif _dtype is bool:
|
331
|
+
display_shared_memory_warning("Converting bool type to numpy bool")
|
332
|
+
_value, _shared_memory = _value.astype(np.bool_), False
|
333
|
+
else:
|
334
|
+
if _dtype != _value.dtype:
|
335
|
+
display_shared_memory_warning(f"Converting value of {_value.dtype} to {_dtype}")
|
336
|
+
_value, _shared_memory = _value.astype(_dtype), False
|
337
|
+
# Create Constant itself:
|
338
|
+
return Constant(_value, shared_memory=_shared_memory)
|
339
|
+
|
340
|
+
|
341
|
+
@unary_op
|
342
|
+
def result(data: Union[Node, Output, NumericData], name: Optional[str] = None) -> Node:
|
343
|
+
"""Return a node which represents an output of a graph (Model).
|
344
|
+
|
345
|
+
:param data: The tensor containing the input data
|
346
|
+
:return: Result node
|
347
|
+
"""
|
348
|
+
if isinstance(data, Node):
|
349
|
+
return Result(data.output(0))
|
350
|
+
return Result(data)
|
351
|
+
|
352
|
+
|
353
|
+
@nameable_op
|
354
|
+
def fake_quantize(
|
355
|
+
data: NodeInput,
|
356
|
+
input_low: NodeInput,
|
357
|
+
input_high: NodeInput,
|
358
|
+
output_low: NodeInput,
|
359
|
+
output_high: NodeInput,
|
360
|
+
levels: int,
|
361
|
+
auto_broadcast: str = "NUMPY",
|
362
|
+
name: Optional[str] = None,
|
363
|
+
) -> Node:
|
364
|
+
r"""Perform an element-wise linear quantization on input data.
|
365
|
+
|
366
|
+
:param data: The node with data tensor.
|
367
|
+
:param input_low: The node with the minimum for input values.
|
368
|
+
:param input_high: The node with the maximum for input values.
|
369
|
+
:param output_low: The node with the minimum quantized value.
|
370
|
+
:param output_high: The node with the maximum quantized value.
|
371
|
+
:param levels: The number of quantization levels. Integer value.
|
372
|
+
:param auto_broadcast: The type of broadcasting specifies rules used for
|
373
|
+
auto-broadcasting of input tensors.
|
374
|
+
:param name: Optional name of the new node.
|
375
|
+
:return: New node with quantized value.
|
376
|
+
|
377
|
+
Input floating point values are quantized into a discrete set of floating point values.
|
378
|
+
|
379
|
+
.. code-block:: python
|
380
|
+
|
381
|
+
if x <= input_low:
|
382
|
+
output = output_low
|
383
|
+
if x > input_high:
|
384
|
+
output = output_high
|
385
|
+
else:
|
386
|
+
output = fake_quantize(output)
|
387
|
+
|
388
|
+
Fake quantize uses the following logic:
|
389
|
+
|
390
|
+
\f[ output =
|
391
|
+
\dfrac{round( \dfrac{data - input\_low}{(input\_high - input\_low)\cdot (levels-1)})}
|
392
|
+
{(levels-1)\cdot (output\_high - output\_low)} + output\_low \f]
|
393
|
+
"""
|
394
|
+
return _get_node_factory_opset13().create(
|
395
|
+
"FakeQuantize",
|
396
|
+
as_nodes(data, input_low, input_high, output_low, output_high, name=name),
|
397
|
+
{"levels": levels, "auto_broadcast": auto_broadcast.upper()},
|
398
|
+
)
|
@@ -0,0 +1,190 @@
|
|
1
|
+
# -*- coding: utf-8 -*-
|
2
|
+
# Copyright (C) 2018-2024 Intel Corporation
|
3
|
+
# SPDX-License-Identifier: Apache-2.0
|
4
|
+
|
5
|
+
from openvino.runtime.opset1.ops import absolute
|
6
|
+
from openvino.runtime.opset1.ops import absolute as abs
|
7
|
+
from openvino.runtime.opset1.ops import acos
|
8
|
+
from openvino.runtime.opset4.ops import acosh
|
9
|
+
from openvino.runtime.opset8.ops import adaptive_avg_pool
|
10
|
+
from openvino.runtime.opset8.ops import adaptive_max_pool
|
11
|
+
from openvino.runtime.opset1.ops import add
|
12
|
+
from openvino.runtime.opset1.ops import asin
|
13
|
+
from openvino.runtime.opset4.ops import asinh
|
14
|
+
from openvino.runtime.opset6.ops import assign
|
15
|
+
from openvino.runtime.opset1.ops import atan
|
16
|
+
from openvino.runtime.opset4.ops import atanh
|
17
|
+
from openvino.runtime.opset14.ops import avg_pool
|
18
|
+
from openvino.runtime.opset5.ops import batch_norm_inference
|
19
|
+
from openvino.runtime.opset2.ops import batch_to_space
|
20
|
+
from openvino.runtime.opset1.ops import binary_convolution
|
21
|
+
from openvino.runtime.opset13.ops import bitwise_and
|
22
|
+
from openvino.runtime.opset13.ops import bitwise_not
|
23
|
+
from openvino.runtime.opset13.ops import bitwise_or
|
24
|
+
from openvino.runtime.opset13.ops import bitwise_xor
|
25
|
+
from openvino.runtime.opset3.ops import broadcast
|
26
|
+
from openvino.runtime.opset3.ops import bucketize
|
27
|
+
from openvino.runtime.opset1.ops import ceiling
|
28
|
+
from openvino.runtime.opset1.ops import ceiling as ceil
|
29
|
+
from openvino.runtime.opset1.ops import clamp
|
30
|
+
from openvino.runtime.opset1.ops import concat
|
31
|
+
from openvino.runtime.opset13.ops import constant
|
32
|
+
from openvino.runtime.opset1.ops import convert
|
33
|
+
from openvino.runtime.opset1.ops import convert_like
|
34
|
+
from openvino.runtime.opset14.ops import convert_promote_types
|
35
|
+
from openvino.runtime.opset1.ops import convolution
|
36
|
+
from openvino.runtime.opset1.ops import convolution_backprop_data
|
37
|
+
from openvino.runtime.opset1.ops import cos
|
38
|
+
from openvino.runtime.opset1.ops import cosh
|
39
|
+
from openvino.runtime.opset1.ops import ctc_greedy_decoder
|
40
|
+
from openvino.runtime.opset6.ops import ctc_greedy_decoder_seq_len
|
41
|
+
from openvino.runtime.opset4.ops import ctc_loss
|
42
|
+
from openvino.runtime.opset3.ops import cum_sum
|
43
|
+
from openvino.runtime.opset3.ops import cum_sum as cumsum
|
44
|
+
from openvino.runtime.opset8.ops import deformable_convolution
|
45
|
+
from openvino.runtime.opset1.ops import deformable_psroi_pooling
|
46
|
+
from openvino.runtime.opset1.ops import depth_to_space
|
47
|
+
from openvino.runtime.opset8.ops import detection_output
|
48
|
+
from openvino.runtime.opset7.ops import dft
|
49
|
+
from openvino.runtime.opset1.ops import divide
|
50
|
+
from openvino.runtime.opset7.ops import einsum
|
51
|
+
from openvino.runtime.opset1.ops import elu
|
52
|
+
from openvino.runtime.opset3.ops import embedding_bag_offsets_sum
|
53
|
+
from openvino.runtime.opset3.ops import embedding_bag_packed_sum
|
54
|
+
from openvino.runtime.opset3.ops import embedding_segments_sum
|
55
|
+
from openvino.runtime.opset3.ops import extract_image_patches
|
56
|
+
from openvino.runtime.opset1.ops import equal
|
57
|
+
from openvino.runtime.opset1.ops import erf
|
58
|
+
from openvino.runtime.opset1.ops import exp
|
59
|
+
from openvino.runtime.opset9.ops import eye
|
60
|
+
from openvino.runtime.opset13.ops import fake_convert
|
61
|
+
from openvino.runtime.opset13.ops import fake_quantize
|
62
|
+
from openvino.runtime.opset1.ops import floor
|
63
|
+
from openvino.runtime.opset1.ops import floor_mod
|
64
|
+
from openvino.runtime.opset8.ops import gather
|
65
|
+
from openvino.runtime.opset6.ops import gather_elements
|
66
|
+
from openvino.runtime.opset8.ops import gather_nd
|
67
|
+
from openvino.runtime.opset1.ops import gather_tree
|
68
|
+
from openvino.runtime.opset7.ops import gelu
|
69
|
+
from openvino.runtime.opset9.ops import generate_proposals
|
70
|
+
from openvino.runtime.opset1.ops import greater
|
71
|
+
from openvino.runtime.opset1.ops import greater_equal
|
72
|
+
from openvino.runtime.opset9.ops import grid_sample
|
73
|
+
from openvino.runtime.opset1.ops import grn
|
74
|
+
from openvino.runtime.opset1.ops import group_convolution
|
75
|
+
from openvino.runtime.opset1.ops import group_convolution_backprop_data
|
76
|
+
from openvino.runtime.opset12.ops import group_normalization
|
77
|
+
from openvino.runtime.opset3.ops import gru_cell
|
78
|
+
from openvino.runtime.opset5.ops import gru_sequence
|
79
|
+
from openvino.runtime.opset1.ops import hard_sigmoid
|
80
|
+
from openvino.runtime.opset5.ops import hsigmoid
|
81
|
+
from openvino.runtime.opset4.ops import hswish
|
82
|
+
from openvino.runtime.opset7.ops import idft
|
83
|
+
from openvino.runtime.opset8.ops import if_op
|
84
|
+
from openvino.runtime.opset11.ops import interpolate
|
85
|
+
from openvino.runtime.opset14.ops import inverse
|
86
|
+
from openvino.runtime.opset9.ops import irdft
|
87
|
+
from openvino.runtime.opset10.ops import is_finite
|
88
|
+
from openvino.runtime.opset10.ops import is_inf
|
89
|
+
from openvino.runtime.opset10.ops import is_nan
|
90
|
+
from openvino.runtime.opset8.ops import i420_to_bgr
|
91
|
+
from openvino.runtime.opset8.ops import i420_to_rgb
|
92
|
+
from openvino.runtime.opset1.ops import less
|
93
|
+
from openvino.runtime.opset1.ops import less_equal
|
94
|
+
from openvino.runtime.opset1.ops import log
|
95
|
+
from openvino.runtime.opset1.ops import logical_and
|
96
|
+
from openvino.runtime.opset1.ops import logical_not
|
97
|
+
from openvino.runtime.opset1.ops import logical_or
|
98
|
+
from openvino.runtime.opset1.ops import logical_xor
|
99
|
+
from openvino.runtime.opset5.ops import log_softmax
|
100
|
+
from openvino.runtime.opset5.ops import loop
|
101
|
+
from openvino.runtime.opset1.ops import lrn
|
102
|
+
from openvino.runtime.opset4.ops import lstm_cell
|
103
|
+
from openvino.runtime.opset5.ops import lstm_sequence
|
104
|
+
from openvino.runtime.opset1.ops import matmul
|
105
|
+
from openvino.runtime.opset8.ops import matrix_nms
|
106
|
+
from openvino.runtime.opset14.ops import max_pool
|
107
|
+
from openvino.runtime.opset1.ops import maximum
|
108
|
+
from openvino.runtime.opset1.ops import minimum
|
109
|
+
from openvino.runtime.opset4.ops import mish
|
110
|
+
from openvino.runtime.opset1.ops import mod
|
111
|
+
from openvino.runtime.opset9.ops import multiclass_nms
|
112
|
+
from openvino.runtime.opset13.ops import multinomial
|
113
|
+
from openvino.runtime.opset1.ops import multiply
|
114
|
+
from openvino.runtime.opset6.ops import mvn
|
115
|
+
from openvino.runtime.opset1.ops import negative
|
116
|
+
from openvino.runtime.opset13.ops import nms_rotated
|
117
|
+
from openvino.runtime.opset9.ops import non_max_suppression
|
118
|
+
from openvino.runtime.opset3.ops import non_zero
|
119
|
+
from openvino.runtime.opset1.ops import normalize_l2
|
120
|
+
from openvino.runtime.opset1.ops import not_equal
|
121
|
+
from openvino.runtime.opset8.ops import nv12_to_bgr
|
122
|
+
from openvino.runtime.opset8.ops import nv12_to_rgb
|
123
|
+
from openvino.runtime.opset1.ops import one_hot
|
124
|
+
from openvino.runtime.opset12.ops import pad
|
125
|
+
from openvino.runtime.opset1.ops import parameter
|
126
|
+
from openvino.runtime.opset1.ops import power
|
127
|
+
from openvino.runtime.opset1.ops import prelu
|
128
|
+
from openvino.runtime.opset8.ops import prior_box
|
129
|
+
from openvino.runtime.opset1.ops import prior_box_clustered
|
130
|
+
from openvino.runtime.opset1.ops import psroi_pooling
|
131
|
+
from openvino.runtime.opset4.ops import proposal
|
132
|
+
from openvino.runtime.opset4.ops import range
|
133
|
+
from openvino.runtime.opset8.ops import random_uniform
|
134
|
+
from openvino.runtime.opset9.ops import rdft
|
135
|
+
from openvino.runtime.opset6.ops import read_value
|
136
|
+
from openvino.runtime.opset4.ops import reduce_l1
|
137
|
+
from openvino.runtime.opset4.ops import reduce_l2
|
138
|
+
from openvino.runtime.opset1.ops import reduce_logical_and
|
139
|
+
from openvino.runtime.opset1.ops import reduce_logical_or
|
140
|
+
from openvino.runtime.opset1.ops import reduce_max
|
141
|
+
from openvino.runtime.opset1.ops import reduce_mean
|
142
|
+
from openvino.runtime.opset1.ops import reduce_min
|
143
|
+
from openvino.runtime.opset1.ops import reduce_prod
|
144
|
+
from openvino.runtime.opset1.ops import reduce_sum
|
145
|
+
from openvino.runtime.opset1.ops import region_yolo
|
146
|
+
from openvino.runtime.opset2.ops import reorg_yolo
|
147
|
+
from openvino.runtime.opset1.ops import relu
|
148
|
+
from openvino.runtime.opset1.ops import reshape
|
149
|
+
from openvino.runtime.opset13.ops import result
|
150
|
+
from openvino.runtime.opset1.ops import reverse_sequence
|
151
|
+
from openvino.runtime.opset3.ops import rnn_cell
|
152
|
+
from openvino.runtime.opset5.ops import rnn_sequence
|
153
|
+
from openvino.runtime.opset9.ops import roi_align
|
154
|
+
from openvino.runtime.opset2.ops import roi_pooling
|
155
|
+
from openvino.runtime.opset7.ops import roll
|
156
|
+
from openvino.runtime.opset5.ops import round
|
157
|
+
from openvino.runtime.opset13.ops import scaled_dot_product_attention
|
158
|
+
from openvino.runtime.opset12.ops import scatter_elements_update
|
159
|
+
from openvino.runtime.opset4.ops import scatter_nd_update
|
160
|
+
from openvino.runtime.opset3.ops import scatter_update
|
161
|
+
from openvino.runtime.opset1.ops import select
|
162
|
+
from openvino.runtime.opset1.ops import selu
|
163
|
+
from openvino.runtime.opset3.ops import shape_of
|
164
|
+
from openvino.runtime.opset3.ops import shuffle_channels
|
165
|
+
from openvino.runtime.opset1.ops import sigmoid
|
166
|
+
from openvino.runtime.opset1.ops import sign
|
167
|
+
from openvino.runtime.opset1.ops import sin
|
168
|
+
from openvino.runtime.opset1.ops import sinh
|
169
|
+
from openvino.runtime.opset8.ops import slice
|
170
|
+
from openvino.runtime.opset8.ops import softmax
|
171
|
+
from openvino.runtime.opset4.ops import softplus
|
172
|
+
from openvino.runtime.opset9.ops import softsign
|
173
|
+
from openvino.runtime.opset2.ops import space_to_batch
|
174
|
+
from openvino.runtime.opset1.ops import space_to_depth
|
175
|
+
from openvino.runtime.opset1.ops import split
|
176
|
+
from openvino.runtime.opset1.ops import sqrt
|
177
|
+
from openvino.runtime.opset1.ops import squared_difference
|
178
|
+
from openvino.runtime.opset1.ops import squeeze
|
179
|
+
from openvino.runtime.opset1.ops import strided_slice
|
180
|
+
from openvino.runtime.opset1.ops import subtract
|
181
|
+
from openvino.runtime.opset4.ops import swish
|
182
|
+
from openvino.runtime.opset1.ops import tan
|
183
|
+
from openvino.runtime.opset1.ops import tanh
|
184
|
+
from openvino.runtime.opset1.ops import tensor_iterator
|
185
|
+
from openvino.runtime.opset1.ops import tile
|
186
|
+
from openvino.runtime.opset11.ops import topk
|
187
|
+
from openvino.runtime.opset1.ops import transpose
|
188
|
+
from openvino.runtime.opset10.ops import unique
|
189
|
+
from openvino.runtime.opset1.ops import unsqueeze
|
190
|
+
from openvino.runtime.opset1.ops import variadic_split
|