bigdl-core-npu 2.6.0b20250114__cp311-cp311-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- bigdl-core-npu/__init__.py +0 -0
- bigdl-core-npu/include/common.h +96 -0
- bigdl-core-npu/include/npu_llm.h +74 -0
- bigdl-core-npu/npu_llm.dll +0 -0
- bigdl-core-npu/npu_llm.lib +0 -0
- bigdl_core_npu-2.6.0b20250114.dist-info/METADATA +44 -0
- bigdl_core_npu-2.6.0b20250114.dist-info/RECORD +234 -0
- bigdl_core_npu-2.6.0b20250114.dist-info/WHEEL +5 -0
- bigdl_core_npu-2.6.0b20250114.dist-info/top_level.txt +2 -0
- intel_npu_acceleration_library/__init__.py +24 -0
- intel_npu_acceleration_library/_version.py +6 -0
- intel_npu_acceleration_library/backend/__init__.py +37 -0
- intel_npu_acceleration_library/backend/base.py +250 -0
- intel_npu_acceleration_library/backend/bindings.py +383 -0
- intel_npu_acceleration_library/backend/compression.py +24 -0
- intel_npu_acceleration_library/backend/convolution.py +58 -0
- intel_npu_acceleration_library/backend/factory.py +1161 -0
- intel_npu_acceleration_library/backend/linear.py +60 -0
- intel_npu_acceleration_library/backend/matmul.py +59 -0
- intel_npu_acceleration_library/backend/mlp.py +58 -0
- intel_npu_acceleration_library/backend/ops.py +142 -0
- intel_npu_acceleration_library/backend/qlinear.py +75 -0
- intel_npu_acceleration_library/backend/qmatmul.py +66 -0
- intel_npu_acceleration_library/backend/runtime.py +215 -0
- intel_npu_acceleration_library/backend/sdpa.py +107 -0
- intel_npu_acceleration_library/backend/tensor.py +1120 -0
- intel_npu_acceleration_library/backend/utils.py +70 -0
- intel_npu_acceleration_library/compiler.py +194 -0
- intel_npu_acceleration_library/device.py +230 -0
- intel_npu_acceleration_library/dtypes.py +155 -0
- intel_npu_acceleration_library/external/openvino/__init__.py +72 -0
- intel_npu_acceleration_library/external/openvino/_offline_transformations/__init__.py +21 -0
- intel_npu_acceleration_library/external/openvino/_pyopenvino.cp310-win_amd64.pyd +0 -0
- intel_npu_acceleration_library/external/openvino/_pyopenvino.cp311-win_amd64.pyd +0 -0
- intel_npu_acceleration_library/external/openvino/_pyopenvino.cp312-win_amd64.pyd +0 -0
- intel_npu_acceleration_library/external/openvino/_pyopenvino.cp38-win_amd64.pyd +0 -0
- intel_npu_acceleration_library/external/openvino/_pyopenvino.cp39-win_amd64.pyd +0 -0
- intel_npu_acceleration_library/external/openvino/experimental/__init__.py +14 -0
- intel_npu_acceleration_library/external/openvino/frontend/__init__.py +34 -0
- intel_npu_acceleration_library/external/openvino/frontend/frontend.py +44 -0
- intel_npu_acceleration_library/external/openvino/frontend/jax/__init__.py +15 -0
- intel_npu_acceleration_library/external/openvino/frontend/jax/jaxpr_decoder.py +293 -0
- intel_npu_acceleration_library/external/openvino/frontend/jax/passes.py +65 -0
- intel_npu_acceleration_library/external/openvino/frontend/jax/utils.py +182 -0
- intel_npu_acceleration_library/external/openvino/frontend/onnx/__init__.py +15 -0
- intel_npu_acceleration_library/external/openvino/frontend/onnx/py_onnx_frontend.cp310-win_amd64.pyd +0 -0
- intel_npu_acceleration_library/external/openvino/frontend/onnx/py_onnx_frontend.cp311-win_amd64.pyd +0 -0
- intel_npu_acceleration_library/external/openvino/frontend/onnx/py_onnx_frontend.cp312-win_amd64.pyd +0 -0
- intel_npu_acceleration_library/external/openvino/frontend/onnx/py_onnx_frontend.cp38-win_amd64.pyd +0 -0
- intel_npu_acceleration_library/external/openvino/frontend/onnx/py_onnx_frontend.cp39-win_amd64.pyd +0 -0
- intel_npu_acceleration_library/external/openvino/frontend/paddle/__init__.py +15 -0
- intel_npu_acceleration_library/external/openvino/frontend/paddle/py_paddle_frontend.cp310-win_amd64.pyd +0 -0
- intel_npu_acceleration_library/external/openvino/frontend/paddle/py_paddle_frontend.cp311-win_amd64.pyd +0 -0
- intel_npu_acceleration_library/external/openvino/frontend/paddle/py_paddle_frontend.cp312-win_amd64.pyd +0 -0
- intel_npu_acceleration_library/external/openvino/frontend/paddle/py_paddle_frontend.cp38-win_amd64.pyd +0 -0
- intel_npu_acceleration_library/external/openvino/frontend/paddle/py_paddle_frontend.cp39-win_amd64.pyd +0 -0
- intel_npu_acceleration_library/external/openvino/frontend/pytorch/__init__.py +19 -0
- intel_npu_acceleration_library/external/openvino/frontend/pytorch/fx_decoder.py +370 -0
- intel_npu_acceleration_library/external/openvino/frontend/pytorch/gptq.py +180 -0
- intel_npu_acceleration_library/external/openvino/frontend/pytorch/module_extension.py +39 -0
- intel_npu_acceleration_library/external/openvino/frontend/pytorch/patch_model.py +118 -0
- intel_npu_acceleration_library/external/openvino/frontend/pytorch/py_pytorch_frontend.cp310-win_amd64.pyd +0 -0
- intel_npu_acceleration_library/external/openvino/frontend/pytorch/py_pytorch_frontend.cp311-win_amd64.pyd +0 -0
- intel_npu_acceleration_library/external/openvino/frontend/pytorch/py_pytorch_frontend.cp312-win_amd64.pyd +0 -0
- intel_npu_acceleration_library/external/openvino/frontend/pytorch/py_pytorch_frontend.cp38-win_amd64.pyd +0 -0
- intel_npu_acceleration_library/external/openvino/frontend/pytorch/py_pytorch_frontend.cp39-win_amd64.pyd +0 -0
- intel_npu_acceleration_library/external/openvino/frontend/pytorch/torchdynamo/backend.py +131 -0
- intel_npu_acceleration_library/external/openvino/frontend/pytorch/torchdynamo/backend_utils.py +85 -0
- intel_npu_acceleration_library/external/openvino/frontend/pytorch/torchdynamo/compile.py +141 -0
- intel_npu_acceleration_library/external/openvino/frontend/pytorch/torchdynamo/decompositions.py +116 -0
- intel_npu_acceleration_library/external/openvino/frontend/pytorch/torchdynamo/execute.py +189 -0
- intel_npu_acceleration_library/external/openvino/frontend/pytorch/torchdynamo/op_support.py +290 -0
- intel_npu_acceleration_library/external/openvino/frontend/pytorch/torchdynamo/partition.py +126 -0
- intel_npu_acceleration_library/external/openvino/frontend/pytorch/ts_decoder.py +568 -0
- intel_npu_acceleration_library/external/openvino/frontend/pytorch/utils.py +258 -0
- intel_npu_acceleration_library/external/openvino/frontend/tensorflow/__init__.py +16 -0
- intel_npu_acceleration_library/external/openvino/frontend/tensorflow/graph_iterator.py +116 -0
- intel_npu_acceleration_library/external/openvino/frontend/tensorflow/node_decoder.py +219 -0
- intel_npu_acceleration_library/external/openvino/frontend/tensorflow/py_tensorflow_frontend.cp310-win_amd64.pyd +0 -0
- intel_npu_acceleration_library/external/openvino/frontend/tensorflow/py_tensorflow_frontend.cp311-win_amd64.pyd +0 -0
- intel_npu_acceleration_library/external/openvino/frontend/tensorflow/py_tensorflow_frontend.cp312-win_amd64.pyd +0 -0
- intel_npu_acceleration_library/external/openvino/frontend/tensorflow/py_tensorflow_frontend.cp38-win_amd64.pyd +0 -0
- intel_npu_acceleration_library/external/openvino/frontend/tensorflow/py_tensorflow_frontend.cp39-win_amd64.pyd +0 -0
- intel_npu_acceleration_library/external/openvino/frontend/tensorflow/utils.py +481 -0
- intel_npu_acceleration_library/external/openvino/helpers/__init__.py +6 -0
- intel_npu_acceleration_library/external/openvino/helpers/packing.py +87 -0
- intel_npu_acceleration_library/external/openvino/preprocess/README.md +60 -0
- intel_npu_acceleration_library/external/openvino/preprocess/__init__.py +28 -0
- intel_npu_acceleration_library/external/openvino/preprocess/torchvision/__init__.py +15 -0
- intel_npu_acceleration_library/external/openvino/preprocess/torchvision/preprocess_converter.py +47 -0
- intel_npu_acceleration_library/external/openvino/preprocess/torchvision/requirements.txt +5 -0
- intel_npu_acceleration_library/external/openvino/preprocess/torchvision/torchvision_preprocessing.py +347 -0
- intel_npu_acceleration_library/external/openvino/properties/__init__.py +22 -0
- intel_npu_acceleration_library/external/openvino/properties/_properties.py +55 -0
- intel_npu_acceleration_library/external/openvino/properties/device/__init__.py +14 -0
- intel_npu_acceleration_library/external/openvino/properties/hint/__init__.py +15 -0
- intel_npu_acceleration_library/external/openvino/properties/intel_auto/__init__.py +12 -0
- intel_npu_acceleration_library/external/openvino/properties/intel_cpu/__init__.py +8 -0
- intel_npu_acceleration_library/external/openvino/properties/intel_gpu/__init__.py +12 -0
- intel_npu_acceleration_library/external/openvino/properties/intel_gpu/hint/__init__.py +11 -0
- intel_npu_acceleration_library/external/openvino/properties/log/__init__.py +11 -0
- intel_npu_acceleration_library/external/openvino/properties/streams/__init__.py +11 -0
- intel_npu_acceleration_library/external/openvino/runtime/__init__.py +85 -0
- intel_npu_acceleration_library/external/openvino/runtime/exceptions.py +17 -0
- intel_npu_acceleration_library/external/openvino/runtime/ie_api.py +631 -0
- intel_npu_acceleration_library/external/openvino/runtime/op/__init__.py +19 -0
- intel_npu_acceleration_library/external/openvino/runtime/op/util/__init__.py +22 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset1/__init__.py +112 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset1/ops.py +3068 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset10/__init__.py +179 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset10/ops.py +173 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset11/__init__.py +179 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset11/ops.py +107 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset12/__init__.py +180 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset12/ops.py +120 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset13/__init__.py +188 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset13/ops.py +398 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset14/__init__.py +190 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset14/ops.py +171 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset15/__init__.py +17 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset15/ops.py +276 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset2/__init__.py +118 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset2/ops.py +216 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset3/__init__.py +134 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset3/ops.py +638 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset4/__init__.py +145 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset4/ops.py +464 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset5/__init__.py +152 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset5/ops.py +372 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset6/__init__.py +154 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset6/ops.py +215 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset7/__init__.py +158 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset7/ops.py +169 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset8/__init__.py +169 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset8/ops.py +787 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset9/__init__.py +175 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset9/ops.py +341 -0
- intel_npu_acceleration_library/external/openvino/runtime/opset_utils.py +22 -0
- intel_npu_acceleration_library/external/openvino/runtime/passes/__init__.py +19 -0
- intel_npu_acceleration_library/external/openvino/runtime/passes/graph_rewrite.py +33 -0
- intel_npu_acceleration_library/external/openvino/runtime/passes/manager.py +26 -0
- intel_npu_acceleration_library/external/openvino/runtime/properties/__init__.py +40 -0
- intel_npu_acceleration_library/external/openvino/runtime/properties/hint/__init__.py +25 -0
- intel_npu_acceleration_library/external/openvino/runtime/utils/__init__.py +7 -0
- intel_npu_acceleration_library/external/openvino/runtime/utils/broadcasting.py +44 -0
- intel_npu_acceleration_library/external/openvino/runtime/utils/data_helpers/__init__.py +8 -0
- intel_npu_acceleration_library/external/openvino/runtime/utils/data_helpers/data_dispatcher.py +447 -0
- intel_npu_acceleration_library/external/openvino/runtime/utils/data_helpers/wrappers.py +148 -0
- intel_npu_acceleration_library/external/openvino/runtime/utils/decorators.py +156 -0
- intel_npu_acceleration_library/external/openvino/runtime/utils/input_validation.py +133 -0
- intel_npu_acceleration_library/external/openvino/runtime/utils/node_factory.py +127 -0
- intel_npu_acceleration_library/external/openvino/runtime/utils/reduction.py +25 -0
- intel_npu_acceleration_library/external/openvino/runtime/utils/types.py +175 -0
- intel_npu_acceleration_library/external/openvino/tools/__init__.py +4 -0
- intel_npu_acceleration_library/external/openvino/tools/benchmark/__init__.py +3 -0
- intel_npu_acceleration_library/external/openvino/tools/benchmark/benchmark.py +186 -0
- intel_npu_acceleration_library/external/openvino/tools/benchmark/main.py +695 -0
- intel_npu_acceleration_library/external/openvino/tools/benchmark/parameters.py +199 -0
- intel_npu_acceleration_library/external/openvino/tools/benchmark/utils/__init__.py +3 -0
- intel_npu_acceleration_library/external/openvino/tools/benchmark/utils/constants.py +26 -0
- intel_npu_acceleration_library/external/openvino/tools/benchmark/utils/inputs_filling.py +482 -0
- intel_npu_acceleration_library/external/openvino/tools/benchmark/utils/logging.py +8 -0
- intel_npu_acceleration_library/external/openvino/tools/benchmark/utils/statistics_report.py +296 -0
- intel_npu_acceleration_library/external/openvino/tools/benchmark/utils/utils.py +836 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/__init__.py +20 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/__main__.py +10 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/cli_parser.py +633 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/convert.py +102 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/convert_data_type.py +82 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/convert_impl.py +550 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/environment_setup_utils.py +50 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/error.py +49 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/get_ov_update_message.py +16 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/help.py +45 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/logger.py +91 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/main.py +40 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/moc_frontend/__init__.py +2 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/moc_frontend/analysis.py +46 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/moc_frontend/check_config.py +57 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/moc_frontend/extractor.py +447 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/moc_frontend/jax_frontend_utils.py +19 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/moc_frontend/layout_utils.py +73 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/moc_frontend/moc_emit_ir.py +32 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/moc_frontend/offline_transformations.py +107 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/moc_frontend/paddle_frontend_utils.py +83 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/moc_frontend/pipeline.py +298 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/moc_frontend/preprocessing.py +220 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/moc_frontend/pytorch_frontend_utils.py +214 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/moc_frontend/shape_utils.py +109 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/moc_frontend/type_utils.py +82 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/ovc.py +13 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/telemetry_params.py +6 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/telemetry_stub.py +28 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/telemetry_utils.py +118 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/utils.py +196 -0
- intel_npu_acceleration_library/external/openvino/tools/ovc/version.py +80 -0
- intel_npu_acceleration_library/external/openvino/torch/__init__.py +5 -0
- intel_npu_acceleration_library/external/openvino/utils.py +115 -0
- intel_npu_acceleration_library/functional/__init__.py +8 -0
- intel_npu_acceleration_library/functional/scaled_dot_product_attention.py +47 -0
- intel_npu_acceleration_library/lib/Release/cache.json +113732 -0
- intel_npu_acceleration_library/lib/Release/intel_npu_acceleration_library.dll +0 -0
- intel_npu_acceleration_library/lib/Release/openvino.dll +0 -0
- intel_npu_acceleration_library/lib/Release/openvino_auto_batch_plugin.dll +0 -0
- intel_npu_acceleration_library/lib/Release/openvino_auto_plugin.dll +0 -0
- intel_npu_acceleration_library/lib/Release/openvino_c.dll +0 -0
- intel_npu_acceleration_library/lib/Release/openvino_hetero_plugin.dll +0 -0
- intel_npu_acceleration_library/lib/Release/openvino_intel_cpu_plugin.dll +0 -0
- intel_npu_acceleration_library/lib/Release/openvino_intel_gpu_plugin.dll +0 -0
- intel_npu_acceleration_library/lib/Release/openvino_intel_npu_plugin.dll +0 -0
- intel_npu_acceleration_library/lib/Release/openvino_ir_frontend.dll +0 -0
- intel_npu_acceleration_library/lib/Release/openvino_onnx_frontend.dll +0 -0
- intel_npu_acceleration_library/lib/Release/openvino_paddle_frontend.dll +0 -0
- intel_npu_acceleration_library/lib/Release/openvino_pytorch_frontend.dll +0 -0
- intel_npu_acceleration_library/lib/Release/openvino_tensorflow_frontend.dll +0 -0
- intel_npu_acceleration_library/lib/Release/openvino_tensorflow_lite_frontend.dll +0 -0
- intel_npu_acceleration_library/lib/Release/tbb12.dll +0 -0
- intel_npu_acceleration_library/lib/Release/tbb12_debug.dll +0 -0
- intel_npu_acceleration_library/lib/Release/tbbbind_2_5.dll +0 -0
- intel_npu_acceleration_library/lib/Release/tbbbind_2_5_debug.dll +0 -0
- intel_npu_acceleration_library/lib/Release/tbbmalloc.dll +0 -0
- intel_npu_acceleration_library/lib/Release/tbbmalloc_debug.dll +0 -0
- intel_npu_acceleration_library/lib/Release/tbbmalloc_proxy.dll +0 -0
- intel_npu_acceleration_library/lib/Release/tbbmalloc_proxy_debug.dll +0 -0
- intel_npu_acceleration_library/modelling.py +150 -0
- intel_npu_acceleration_library/nn/__init__.py +20 -0
- intel_npu_acceleration_library/nn/autograd.py +68 -0
- intel_npu_acceleration_library/nn/conv.py +257 -0
- intel_npu_acceleration_library/nn/functional.py +1207 -0
- intel_npu_acceleration_library/nn/linear.py +162 -0
- intel_npu_acceleration_library/nn/llm.py +417 -0
- intel_npu_acceleration_library/nn/module.py +393 -0
- intel_npu_acceleration_library/optimizations.py +157 -0
- intel_npu_acceleration_library/quantization.py +174 -0
@@ -0,0 +1,481 @@
|
|
1
|
+
# Copyright (C) 2018-2024 Intel Corporation
|
2
|
+
# SPDX-License-Identifier: Apache-2.0
|
3
|
+
|
4
|
+
# flake8: noqa
|
5
|
+
# mypy: ignore-errors
|
6
|
+
|
7
|
+
|
8
|
+
import logging as log
|
9
|
+
import numpy as np
|
10
|
+
import sys
|
11
|
+
from openvino.runtime import PartialShape, Dimension, Type
|
12
|
+
from packaging.version import parse, Version
|
13
|
+
from typing import List, Dict, Union
|
14
|
+
|
15
|
+
|
16
|
+
# TODO: reuse this method in ovc and remove duplication
|
17
|
+
def get_static_shape(shape: [PartialShape, list, tuple], dynamic_value=None):
|
18
|
+
# Current function returns list with static dimensions with following logic.
|
19
|
+
# For dynamic dimensions return lower boundaries if they are set, otherwise
|
20
|
+
# return upper boundaries if they are set. If dimension is fully dynamic then raise error.
|
21
|
+
shape_list = []
|
22
|
+
for idx, dim in enumerate(shape):
|
23
|
+
if isinstance(dim, int):
|
24
|
+
if dim == -1:
|
25
|
+
shape_list.append(dynamic_value)
|
26
|
+
continue
|
27
|
+
shape_list.append(dim)
|
28
|
+
elif isinstance(dim, np.int64):
|
29
|
+
if dim == np.int64(-1):
|
30
|
+
shape_list.append(dynamic_value)
|
31
|
+
continue
|
32
|
+
shape_list.append(dim)
|
33
|
+
elif isinstance(dim, tuple):
|
34
|
+
# tuple where (min_length, max_length), the format which uses MO cli parser
|
35
|
+
assert len(dim) == 2, "Unknown dimension type {}".format(dim)
|
36
|
+
if dim[0] > 0:
|
37
|
+
shape_list.append(dim[0])
|
38
|
+
elif dim[1] < np.iinfo(np.int64).max:
|
39
|
+
shape_list.append(dim[1])
|
40
|
+
else:
|
41
|
+
shape_list.append(dynamic_value)
|
42
|
+
continue
|
43
|
+
elif isinstance(dim, Dimension):
|
44
|
+
if dim.is_static or dim.get_min_length() > 0:
|
45
|
+
shape_list.append(dim.get_min_length())
|
46
|
+
elif dim.get_max_length() != -1:
|
47
|
+
shape_list.append(dim.get_max_length())
|
48
|
+
else:
|
49
|
+
shape_list.append(dynamic_value)
|
50
|
+
continue
|
51
|
+
else:
|
52
|
+
raise Exception("Unknown dimension type {}".format(dim))
|
53
|
+
|
54
|
+
return tuple(shape_list)
|
55
|
+
|
56
|
+
|
57
|
+
def get_imported_module_version(imported_module):
|
58
|
+
"""
|
59
|
+
Get imported module version
|
60
|
+
:return: version(str) or raise AttributeError exception
|
61
|
+
"""
|
62
|
+
version_attrs = ("__version__", "VERSION", "version")
|
63
|
+
installed_version = None
|
64
|
+
for attr in version_attrs:
|
65
|
+
installed_version = getattr(imported_module, attr, None)
|
66
|
+
if isinstance(installed_version, str):
|
67
|
+
return installed_version
|
68
|
+
else:
|
69
|
+
installed_version = None
|
70
|
+
|
71
|
+
if installed_version is None:
|
72
|
+
raise AttributeError("{} module doesn't have version attribute".format(imported_module))
|
73
|
+
else:
|
74
|
+
return installed_version
|
75
|
+
|
76
|
+
|
77
|
+
# TODO: reuse this method in ovc and remove duplication
|
78
|
+
def get_environment_setup(framework):
|
79
|
+
"""
|
80
|
+
Get environment setup such as Python version, TensorFlow version
|
81
|
+
:param framework: framework name
|
82
|
+
:return: a dictionary of environment variables
|
83
|
+
"""
|
84
|
+
env_setup = dict()
|
85
|
+
python_version = "{}.{}.{}".format(sys.version_info.major,
|
86
|
+
sys.version_info.minor,
|
87
|
+
sys.version_info.micro)
|
88
|
+
env_setup['python_version'] = python_version
|
89
|
+
try:
|
90
|
+
if framework == 'tf':
|
91
|
+
exec("import tensorflow")
|
92
|
+
env_setup['tensorflow'] = get_imported_module_version(sys.modules["tensorflow"])
|
93
|
+
exec("del tensorflow")
|
94
|
+
except (AttributeError, ImportError):
|
95
|
+
pass
|
96
|
+
env_setup['sys_platform'] = sys.platform
|
97
|
+
return env_setup
|
98
|
+
|
99
|
+
|
100
|
+
def trace_tf_model_if_needed(input_model, placeholder_shapes, placeholder_data_types, example_input):
|
101
|
+
import tensorflow as tf
|
102
|
+
if not isinstance(input_model,
|
103
|
+
(tf.keras.layers.Layer, tf.Module, tf.keras.Model, tf.types.experimental.GenericFunction)):
|
104
|
+
return input_model
|
105
|
+
return trace_tf_model(input_model, placeholder_shapes, placeholder_data_types, example_input)
|
106
|
+
|
107
|
+
|
108
|
+
def partial_shape_to_list(partial_shape: PartialShape):
|
109
|
+
if partial_shape.rank.is_dynamic:
|
110
|
+
return None
|
111
|
+
res_list = []
|
112
|
+
for dim in partial_shape:
|
113
|
+
if dim.is_static:
|
114
|
+
res_list.append(dim.get_length())
|
115
|
+
else:
|
116
|
+
res_list.append(None)
|
117
|
+
return res_list
|
118
|
+
|
119
|
+
|
120
|
+
def get_input_spec_from_model(model, input_shapes=None):
|
121
|
+
import tensorflow as tf
|
122
|
+
if hasattr(model, "_build_input_shape") and model._build_input_shape is not None:
|
123
|
+
if isinstance(model._build_input_shape, list):
|
124
|
+
input_spec = [[tf.TensorSpec(shape) for shape in model._build_input_shape]]
|
125
|
+
else:
|
126
|
+
input_spec = [tf.TensorSpec(model._build_input_shape)]
|
127
|
+
elif input_shapes and isinstance(input_shapes, list) and len(input_shapes) > 0:
|
128
|
+
input_spec = []
|
129
|
+
for input_shape in input_shapes:
|
130
|
+
if isinstance(input_shape, PartialShape):
|
131
|
+
input_spec.append(tf.TensorSpec(partial_shape_to_list(input_shape)))
|
132
|
+
else:
|
133
|
+
input_spec.append(tf.TensorSpec(None))
|
134
|
+
else:
|
135
|
+
input_spec = [tf.TensorSpec(None)]
|
136
|
+
return input_spec
|
137
|
+
|
138
|
+
|
139
|
+
def get_concrete_func(tf_function, example_input, input_needs_packing, error_message, use_example_input=True):
|
140
|
+
"""
|
141
|
+
Runs tracing of TF function and returns a concrete function.
|
142
|
+
|
143
|
+
:param tf_function: TF function that needs to be traced.
|
144
|
+
:param example_input: Example of function input.
|
145
|
+
:param input_needs_packing: determines if input needs to be packed in a list before passing to TF function.
|
146
|
+
It is used when original function was wrapped in outer TF function, which changes function signature.
|
147
|
+
In this case wrapper TF function always expects list of inputs which are unpacked inside subfunction.
|
148
|
+
So list/tuple are treated as multiple inputs of original model.
|
149
|
+
Non list/tuple are treated as single input, and it needs packing to a list,
|
150
|
+
as wrapper function always expect list of inputs.
|
151
|
+
:param error_message: Error message which should be shown in case of tracing error.
|
152
|
+
:param use_example_input: Determines if example_input should be used.
|
153
|
+
|
154
|
+
:returns: Object of type tf.types.experimental.ConcreteFunction.
|
155
|
+
"""
|
156
|
+
if input_needs_packing and not isinstance(example_input, (list, tuple)):
|
157
|
+
example_input = [example_input]
|
158
|
+
try:
|
159
|
+
if use_example_input:
|
160
|
+
if not input_needs_packing and isinstance(example_input, (list, tuple)):
|
161
|
+
concrete_func = tf_function.get_concrete_function(*example_input)
|
162
|
+
else:
|
163
|
+
concrete_func = tf_function.get_concrete_function(example_input)
|
164
|
+
|
165
|
+
else:
|
166
|
+
concrete_func = tf_function.get_concrete_function()
|
167
|
+
except Exception as e:
|
168
|
+
raise Exception(error_message.format(e))
|
169
|
+
return concrete_func
|
170
|
+
|
171
|
+
|
172
|
+
def get_signature_from_input(keras_model):
|
173
|
+
if not hasattr(keras_model, 'input') or getattr(keras_model, 'input') is None:
|
174
|
+
return None
|
175
|
+
return getattr(keras_model, 'input')
|
176
|
+
|
177
|
+
|
178
|
+
def get_signature_from_input_signature(keras_model):
|
179
|
+
if not hasattr(keras_model, 'input_signature') or getattr(keras_model, 'input_signature') is None:
|
180
|
+
return None
|
181
|
+
return getattr(keras_model, 'input_signature')
|
182
|
+
|
183
|
+
|
184
|
+
def create_generic_function_from_keras_model(keras_model):
|
185
|
+
import tensorflow as tf
|
186
|
+
assert isinstance(keras_model, (tf.keras.Model, tf.Module)), \
|
187
|
+
"[TensorFlow Frontend] internal error: the input model must be of tf.keras.Model or tf.Module model type"
|
188
|
+
|
189
|
+
keras_input_signature = get_signature_from_input(keras_model)
|
190
|
+
if keras_input_signature is None:
|
191
|
+
keras_input_signature = get_signature_from_input_signature(keras_model)
|
192
|
+
if keras_input_signature is None:
|
193
|
+
return None
|
194
|
+
tf_input_signature = None
|
195
|
+
wrapper_function = None
|
196
|
+
if isinstance(keras_input_signature, dict):
|
197
|
+
tf_input_signature = []
|
198
|
+
for tensor_name, tensor_spec in keras_input_signature.items():
|
199
|
+
tf_input_signature.append(tf.TensorSpec(shape=tensor_spec.shape,
|
200
|
+
dtype=tensor_spec.dtype,
|
201
|
+
name=tensor_name))
|
202
|
+
elif isinstance(keras_input_signature, list):
|
203
|
+
tf_input_signature = []
|
204
|
+
for tensor_spec in keras_input_signature:
|
205
|
+
tf_input_signature.append(tf.TensorSpec(shape=tensor_spec.shape,
|
206
|
+
dtype=tensor_spec.dtype,
|
207
|
+
name=tensor_spec.name))
|
208
|
+
else:
|
209
|
+
try:
|
210
|
+
# single KerasTensor case
|
211
|
+
tf_input_signature = []
|
212
|
+
tf_input_signature.append(tf.TensorSpec(shape=keras_input_signature.shape,
|
213
|
+
dtype=keras_input_signature.dtype,
|
214
|
+
name=keras_input_signature.name))
|
215
|
+
except:
|
216
|
+
tf_input_signature = None
|
217
|
+
if tf_input_signature is not None:
|
218
|
+
@tf.function(input_signature=tf_input_signature)
|
219
|
+
def wrapper_function_dict(*args):
|
220
|
+
if isinstance(keras_input_signature, list):
|
221
|
+
outputs = keras_model(args)
|
222
|
+
else:
|
223
|
+
input_dict = {}
|
224
|
+
for ind, tensor_spec in enumerate(tf_input_signature):
|
225
|
+
input_dict[tensor_spec.name] = args[ind]
|
226
|
+
outputs = keras_model(input_dict)
|
227
|
+
# need to wrap the output into dictionary
|
228
|
+
# it helps to preserve original keras tensor names
|
229
|
+
post_outputs = {}
|
230
|
+
if isinstance(outputs, dict):
|
231
|
+
for output_name, output_value in outputs.items():
|
232
|
+
post_outputs[output_name] = output_value
|
233
|
+
else:
|
234
|
+
try:
|
235
|
+
if isinstance(outputs, list) and isinstance(keras_model.outputs, list) and \
|
236
|
+
len(outputs) == len(keras_model.outputs):
|
237
|
+
for output_value, output_tensor in zip(outputs, keras_model.outputs):
|
238
|
+
post_outputs[output_tensor.name] = output_value
|
239
|
+
else:
|
240
|
+
post_outputs[keras_model.output.name] = outputs
|
241
|
+
except:
|
242
|
+
post_outputs = outputs
|
243
|
+
return post_outputs
|
244
|
+
|
245
|
+
wrapper_function = wrapper_function_dict
|
246
|
+
return wrapper_function
|
247
|
+
|
248
|
+
|
249
|
+
def trace_tf_model(model, input_shapes, input_types, example_input):
|
250
|
+
import tensorflow as tf
|
251
|
+
if isinstance(model.__call__, tf.types.experimental.GenericFunction):
|
252
|
+
tf_function = model.__call__
|
253
|
+
input_needs_packing = False
|
254
|
+
elif isinstance(model, tf.types.experimental.GenericFunction):
|
255
|
+
tf_function = model
|
256
|
+
input_needs_packing = False
|
257
|
+
elif isinstance(model, (tf.keras.Model, tf.Module)):
|
258
|
+
tf_function = create_generic_function_from_keras_model(model)
|
259
|
+
if tf_function is not None:
|
260
|
+
input_needs_packing = False
|
261
|
+
else:
|
262
|
+
# Wrap model to tf.Function.
|
263
|
+
# In this case we loose input/output tensor names.
|
264
|
+
@tf.function
|
265
|
+
def tf_function(args):
|
266
|
+
return model(*args)
|
267
|
+
|
268
|
+
input_needs_packing = True
|
269
|
+
else:
|
270
|
+
# Wrap model to tf.Function.
|
271
|
+
# In this case we loose input/output tensor names.
|
272
|
+
@tf.function
|
273
|
+
def tf_function(args):
|
274
|
+
return model(*args)
|
275
|
+
|
276
|
+
input_needs_packing = True
|
277
|
+
|
278
|
+
def are_shapes_defined(shape: Union[List, Dict]):
|
279
|
+
if shape is None:
|
280
|
+
return False
|
281
|
+
assert hasattr(shape, '__len__')
|
282
|
+
if len(shape) == 0:
|
283
|
+
return False
|
284
|
+
|
285
|
+
if isinstance(shape, list):
|
286
|
+
return np.all([shape is not None for shape in input_shapes])
|
287
|
+
elif isinstance(shape, dict):
|
288
|
+
return np.all([shape is not None for name, shape in input_shapes.items()])
|
289
|
+
|
290
|
+
if example_input is not None:
|
291
|
+
concrete_func = get_concrete_func(tf_function, example_input, input_needs_packing,
|
292
|
+
"Could not trace the TF model with the following error: {}")
|
293
|
+
else:
|
294
|
+
if isinstance(tf_function, tf.types.experimental.GenericFunction) and \
|
295
|
+
tf_function.input_signature is not None:
|
296
|
+
concrete_func = get_concrete_func(tf_function, None, input_needs_packing,
|
297
|
+
"Could not trace the TF model with the following error: {}",
|
298
|
+
use_example_input=False)
|
299
|
+
else:
|
300
|
+
input_spec = get_input_spec_from_model(model, input_shapes)
|
301
|
+
concrete_func = get_concrete_func(tf_function, input_spec, input_needs_packing,
|
302
|
+
"Could not trace the TF model with the following error: {}.\n"
|
303
|
+
"Please provide 'example_input'.")
|
304
|
+
|
305
|
+
return concrete_func
|
306
|
+
|
307
|
+
|
308
|
+
def type_supported_by_tf_fe(input_model):
|
309
|
+
import tensorflow as tf
|
310
|
+
# Types that require tracing
|
311
|
+
if isinstance(input_model,
|
312
|
+
(tf.keras.layers.Layer, tf.Module, tf.keras.Model, tf.types.experimental.GenericFunction)):
|
313
|
+
return True
|
314
|
+
# Types that do not require tracing
|
315
|
+
if isinstance(input_model, (tf.Graph, tf.types.experimental.ConcreteFunction)):
|
316
|
+
return True
|
317
|
+
# GraphIterator
|
318
|
+
elif model_is_graph_iterator(input_model):
|
319
|
+
return True
|
320
|
+
return False
|
321
|
+
|
322
|
+
|
323
|
+
def is_variable(func_input, captures):
|
324
|
+
import tensorflow as tf
|
325
|
+
if func_input.dtype == tf.resource:
|
326
|
+
return True
|
327
|
+
for capture in captures:
|
328
|
+
if id(func_input) == id(capture[1]):
|
329
|
+
return True
|
330
|
+
return False
|
331
|
+
|
332
|
+
|
333
|
+
def create_tf_graph_iterator(input_model, placeholder_shapes, placeholder_data_types, example_input, share_weights):
|
334
|
+
input_model = trace_tf_model_if_needed(input_model, placeholder_shapes, placeholder_data_types, example_input)
|
335
|
+
|
336
|
+
import tensorflow as tf
|
337
|
+
from openvino.frontend.tensorflow.graph_iterator import GraphIteratorTFGraph
|
338
|
+
if model_is_graph_iterator(input_model):
|
339
|
+
return input_model
|
340
|
+
if isinstance(input_model, tf.Graph):
|
341
|
+
return GraphIteratorTFGraph(input_model, share_weights)
|
342
|
+
elif isinstance(input_model, tf.types.experimental.ConcreteFunction):
|
343
|
+
# create a map for inputs to map internal tensor name to external one
|
344
|
+
# collect all internal tensor names in a given order
|
345
|
+
input_names_map = None
|
346
|
+
if hasattr(input_model, 'inputs') and hasattr(input_model, 'structured_input_signature'):
|
347
|
+
internal_tensor_names = []
|
348
|
+
for func_input in input_model.inputs:
|
349
|
+
if is_variable(func_input, input_model.graph.captures):
|
350
|
+
continue
|
351
|
+
internal_tensor_names.append(func_input.name)
|
352
|
+
if len(input_model.structured_input_signature) > 0 and \
|
353
|
+
len(internal_tensor_names) == len(input_model.structured_input_signature[0]):
|
354
|
+
for internal_name, tensor_spec in zip(internal_tensor_names, input_model.structured_input_signature[0]):
|
355
|
+
input_names_map = input_names_map or {}
|
356
|
+
if not isinstance(tensor_spec, tf.TensorSpec):
|
357
|
+
input_names_map = None
|
358
|
+
break
|
359
|
+
input_names_map[internal_name] = tensor_spec.name
|
360
|
+
elif len(input_model.structured_input_signature) > 1 and \
|
361
|
+
len(internal_tensor_names) == len(input_model.structured_input_signature[1]):
|
362
|
+
external_tensor_names = sorted(input_model.structured_input_signature[1].keys())
|
363
|
+
for internal_name, external_name in zip(internal_tensor_names, external_tensor_names):
|
364
|
+
input_names_map = input_names_map or {}
|
365
|
+
input_names_map[internal_name] = external_name
|
366
|
+
|
367
|
+
output_names_map = None
|
368
|
+
if hasattr(input_model, 'outputs') and hasattr(input_model, 'structured_outputs') and \
|
369
|
+
isinstance(input_model.structured_outputs, dict):
|
370
|
+
external_names = sorted(list(input_model.structured_outputs.keys()))
|
371
|
+
internal_names = [tensor.name for tensor in input_model.outputs]
|
372
|
+
if len(external_names) == len(internal_names):
|
373
|
+
for external_name, internal_name in zip(external_names, internal_names):
|
374
|
+
output_names_map = output_names_map or {}
|
375
|
+
output_names_map[internal_name] = external_name
|
376
|
+
else:
|
377
|
+
for external_name, internal_tensor in input_model.structured_outputs.items():
|
378
|
+
internal_tf_tensor = None
|
379
|
+
if isinstance(internal_tensor, tf.Tensor):
|
380
|
+
internal_tf_tensor = internal_tensor
|
381
|
+
if isinstance(internal_tensor, list) and len(internal_tensor) > 0 and \
|
382
|
+
isinstance(internal_tensor[0], tf.Tensor):
|
383
|
+
internal_tf_tensor = internal_tensor[0]
|
384
|
+
if internal_tf_tensor is None:
|
385
|
+
output_names_map = None
|
386
|
+
break
|
387
|
+
output_names_map = output_names_map or {}
|
388
|
+
output_names_map[internal_tf_tensor.name] = external_name
|
389
|
+
return GraphIteratorTFGraph(input_model.graph, share_weights, False, input_names_map, output_names_map)
|
390
|
+
raise Exception("Could not wrap model of type {} to GraphIteratorTFGraph.".format(type(input_model)))
|
391
|
+
|
392
|
+
|
393
|
+
def extract_model_graph(argv):
|
394
|
+
model = argv["input_model"]
|
395
|
+
import tensorflow as tf
|
396
|
+
trackable_is_imported = False
|
397
|
+
try:
|
398
|
+
from tensorflow.python.training.tracking.base import Trackable # pylint: disable=no-name-in-module,import-error
|
399
|
+
trackable_is_imported = True
|
400
|
+
except:
|
401
|
+
try:
|
402
|
+
from tensorflow.python.trackable.base import Trackable
|
403
|
+
trackable_is_imported = True
|
404
|
+
except:
|
405
|
+
log.warning("Could not import tensorflow.python.training.tracking.base.Trackable type.")
|
406
|
+
env_setup = get_environment_setup("tf")
|
407
|
+
if isinstance(model, tf.Graph):
|
408
|
+
return True
|
409
|
+
if isinstance(model, tf.compat.v1.GraphDef):
|
410
|
+
graph = tf.Graph()
|
411
|
+
with graph.as_default():
|
412
|
+
tf.graph_util.import_graph_def(model, name='')
|
413
|
+
argv["input_model"] = graph
|
414
|
+
return True
|
415
|
+
if isinstance(model, tf.compat.v1.Session):
|
416
|
+
argv["input_model"] = model.graph
|
417
|
+
return True
|
418
|
+
if Version(env_setup["tensorflow"]) >= parse("2.6.0") and isinstance(model, (tf.types.experimental.GenericFunction,
|
419
|
+
tf.types.experimental.ConcreteFunction)):
|
420
|
+
return True
|
421
|
+
if isinstance(model, tf.train.Checkpoint):
|
422
|
+
if isinstance(model.root, tf.keras.Model):
|
423
|
+
argv["input_model"] = model.root
|
424
|
+
return True
|
425
|
+
else:
|
426
|
+
raise Exception("Unknown checkpoint format.")
|
427
|
+
|
428
|
+
if isinstance(model, (tf.keras.layers.Layer, tf.Module, tf.keras.Model)):
|
429
|
+
return True
|
430
|
+
if trackable_is_imported and isinstance(model, Trackable):
|
431
|
+
if hasattr(model, "signatures") and len(model.signatures.items()):
|
432
|
+
if "serving_default" in model.signatures:
|
433
|
+
argv["input_model"] = model.signatures["serving_default"]
|
434
|
+
elif "default" in model.signatures:
|
435
|
+
argv["input_model"] = model.signatures["default"]
|
436
|
+
else:
|
437
|
+
for signature_name, signature in model.signatures.items():
|
438
|
+
argv["input_model"] = model.signatures[signature_name]
|
439
|
+
log.warning("Could not find the default signature. "
|
440
|
+
"The following signature was used for conversion: {}".format(signature_name))
|
441
|
+
break
|
442
|
+
|
443
|
+
elif hasattr(model, "graph"):
|
444
|
+
argv["input_model"] = model.graph
|
445
|
+
else:
|
446
|
+
raise Exception("Could not find signature of graph in a Trackable object.")
|
447
|
+
return True
|
448
|
+
if model_is_graph_iterator(model):
|
449
|
+
return True
|
450
|
+
return False
|
451
|
+
|
452
|
+
|
453
|
+
def model_is_graph_iterator(model):
|
454
|
+
try:
|
455
|
+
from openvino.frontend.tensorflow.graph_iterator import GraphIteratorTFGraph
|
456
|
+
except:
|
457
|
+
return False
|
458
|
+
return isinstance(model, GraphIteratorTFGraph)
|
459
|
+
|
460
|
+
|
461
|
+
def tf_type_to_ov_type(val):
|
462
|
+
import tensorflow as tf # pylint: disable=import-error
|
463
|
+
if not isinstance(val, tf.dtypes.DType):
|
464
|
+
raise Exception("The provided type is not a TF type {}.".format(val))
|
465
|
+
|
466
|
+
tf_to_ov_type = {
|
467
|
+
tf.float32: Type.f32,
|
468
|
+
tf.float16: Type.f16,
|
469
|
+
tf.float64: Type.f64,
|
470
|
+
tf.bfloat16: Type.bf16,
|
471
|
+
tf.uint8: Type.u8,
|
472
|
+
tf.int8: Type.i8,
|
473
|
+
tf.int16: Type.i16,
|
474
|
+
tf.int32: Type.i32,
|
475
|
+
tf.int64: Type.i64,
|
476
|
+
tf.bool: Type.boolean,
|
477
|
+
tf.string: Type.string
|
478
|
+
}
|
479
|
+
if val not in tf_to_ov_type:
|
480
|
+
raise Exception("The provided data type is not supported by OpenVino {}.".format(val))
|
481
|
+
return tf_to_ov_type[val]
|
@@ -0,0 +1,87 @@
|
|
1
|
+
# Copyright (C) 2018-2024 Intel Corporation
|
2
|
+
# SPDX-License-Identifier: Apache-2.0
|
3
|
+
|
4
|
+
# flake8: noqa
|
5
|
+
|
6
|
+
import numpy as np
|
7
|
+
from typing import Union
|
8
|
+
from openvino.runtime import Type, Shape
|
9
|
+
|
10
|
+
|
11
|
+
def pack_data(array: np.ndarray, type: Type) -> np.ndarray:
|
12
|
+
"""Represent array values as u1,u4 or i4 openvino element type and pack them into uint8 numpy array.
|
13
|
+
|
14
|
+
If the number of elements in array is odd we pad them with zero value to be able to fit the bit
|
15
|
+
sequence into the uint8 array.
|
16
|
+
|
17
|
+
Example: two uint8 values - [7, 8] can be represented as uint4 values and be packed into one int8
|
18
|
+
value - [120], because [7, 8] bit representation is [0111, 1000] will be viewed
|
19
|
+
as [01111000], which is bit representation of [120].
|
20
|
+
|
21
|
+
:param array: numpy array with values to pack.
|
22
|
+
:type array: numpy array
|
23
|
+
:param type: Type to interpret the array values. Type must be u1, u4, i4, nf4 or f4e2m1.
|
24
|
+
:type type: openvino.runtime.Type
|
25
|
+
"""
|
26
|
+
assert type in [Type.u1, Type.u4, Type.i4, Type.nf4, Type.f4e2m1], "Packing algorithm for the" "data types stored in 1, 2 or 4 bits"
|
27
|
+
|
28
|
+
minimum_regular_dtype = np.int8 if type == Type.i4 else np.uint8
|
29
|
+
casted_to_regular_type = array.astype(dtype=minimum_regular_dtype, casting="unsafe")
|
30
|
+
if not np.array_equal(casted_to_regular_type, array):
|
31
|
+
raise RuntimeError(f'The conversion of array "{array}" to dtype' f' "{casted_to_regular_type}" results in rounding')
|
32
|
+
|
33
|
+
data_size = casted_to_regular_type.size
|
34
|
+
num_bits = type.bitwidth
|
35
|
+
|
36
|
+
assert num_bits < 8 and 8 % num_bits == 0, "Packing algorithm for the" "data types stored in 1, 2 or 4 bits"
|
37
|
+
num_values_fitting_into_uint8 = 8 // num_bits
|
38
|
+
pad = (-data_size) % num_values_fitting_into_uint8
|
39
|
+
|
40
|
+
flattened = casted_to_regular_type.flatten()
|
41
|
+
padded = np.concatenate((flattened, np.zeros([pad], dtype=minimum_regular_dtype))) # type: ignore
|
42
|
+
assert padded.size % num_values_fitting_into_uint8 == 0
|
43
|
+
|
44
|
+
bit_order_little = (padded[:, None] & (1 << np.arange(num_bits)) > 0).astype(minimum_regular_dtype)
|
45
|
+
bit_order_big = np.flip(bit_order_little, axis=1) # type: ignore
|
46
|
+
bit_order_big_flattened = bit_order_big.flatten()
|
47
|
+
|
48
|
+
return np.packbits(bit_order_big_flattened)
|
49
|
+
|
50
|
+
|
51
|
+
def unpack_data(array: np.ndarray, type: Type, shape: Union[list, Shape]) -> np.ndarray:
|
52
|
+
"""Extract openvino element type values from array into new uint8/int8 array given shape.
|
53
|
+
|
54
|
+
Example: uint8 value [120] can be represented as two u4 values and be unpacked into [7, 8]
|
55
|
+
because [120] bit representation is [01111000] will be viewed as [0111, 1000],
|
56
|
+
which is bit representation of [7, 8].
|
57
|
+
|
58
|
+
:param array: numpy array to unpack.
|
59
|
+
:type array: numpy array
|
60
|
+
:param type: Type to extract from array values. Type must be u1, u4, i4, nf4 or f4e2m1.
|
61
|
+
:type type: openvino.runtime.Type
|
62
|
+
:param shape: the new shape for the unpacked array.
|
63
|
+
:type shape: Union[list, openvino.runtime.Shape]
|
64
|
+
"""
|
65
|
+
assert type in [Type.u1, Type.u4, Type.i4, Type.nf4, Type.f4e2m1], "Unpacking algorithm for the" "data types stored in 1, 2 or 4 bits"
|
66
|
+
unpacked = np.unpackbits(array.view(np.uint8))
|
67
|
+
shape = list(shape)
|
68
|
+
if type.bitwidth == 1:
|
69
|
+
return np.resize(unpacked, shape)
|
70
|
+
else:
|
71
|
+
unpacked = unpacked.reshape(-1, type.bitwidth)
|
72
|
+
padding_shape = (unpacked.shape[0], 8 - type.bitwidth)
|
73
|
+
padding = np.ndarray(padding_shape, np.uint8) # type: np.ndarray
|
74
|
+
if type == Type.i4:
|
75
|
+
for axis, bits in enumerate(unpacked):
|
76
|
+
if bits[0] == 1:
|
77
|
+
padding[axis] = np.ones((padding_shape[1],), np.uint8)
|
78
|
+
else:
|
79
|
+
padding[axis] = np.zeros((padding_shape[1],), np.uint8)
|
80
|
+
else:
|
81
|
+
padding = np.zeros(padding_shape, np.uint8)
|
82
|
+
padded = np.concatenate((padding, unpacked), 1) # type: ignore
|
83
|
+
packed = np.packbits(padded, 1)
|
84
|
+
if type == Type.i4:
|
85
|
+
return np.resize(packed, shape).astype(dtype=np.int8)
|
86
|
+
else:
|
87
|
+
return np.resize(packed, shape)
|
@@ -0,0 +1,60 @@
|
|
1
|
+
# Torchvision to OpenVINO preprocessing converter
|
2
|
+
|
3
|
+
The Torchvision to OpenVINO preprocessing converter enables the use of an existing `torchvision.transforms` object to automatically translate it to OpenVINO preprocessing. It is then being embedded into the model, resulting in better inference performance.
|
4
|
+
|
5
|
+
|
6
|
+
## Supported transforms
|
7
|
+
|
8
|
+
Currently, the torchvision to OpenVINO preprocessing converter does not support all torchvision transforms.
|
9
|
+
|
10
|
+
Supported operations:
|
11
|
+
- `transforms.Compose`
|
12
|
+
- `transforms.Normalize`
|
13
|
+
- `transforms.ConvertImageDtype`
|
14
|
+
- `transforms.Grayscale`
|
15
|
+
- `transforms.Pad`
|
16
|
+
- `transforms.ToTensor`
|
17
|
+
- `transforms.CenterCrop`
|
18
|
+
- `transforms.Resize`
|
19
|
+
|
20
|
+
## Example usage
|
21
|
+
|
22
|
+
```python
|
23
|
+
preprocess_pipeline = torchvision.transforms.Compose(
|
24
|
+
[
|
25
|
+
torchvision.transforms.Resize(256, interpolation=transforms.InterpolationMode.NEAREST),
|
26
|
+
torchvision.transforms.CenterCrop((216, 218)),
|
27
|
+
torchvision.transforms.Pad((2, 3, 4, 5), fill=3),
|
28
|
+
torchvision.transforms.ToTensor(),
|
29
|
+
torchvision.transforms.ConvertImageDtype(torch.float32),
|
30
|
+
torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
31
|
+
]
|
32
|
+
)
|
33
|
+
|
34
|
+
torch_model = SimpleConvnet(input_channels=3)
|
35
|
+
|
36
|
+
torch.onnx.export(torch_model, torch.randn(1, 3, 224, 224), "test_convnet.onnx", verbose=False, input_names=["input"], output_names=["output"])
|
37
|
+
core = Core()
|
38
|
+
ov_model = core.read_model(model="test_convnet.onnx")
|
39
|
+
|
40
|
+
test_input = np.random.randint(255, size=(260, 260, 3), dtype=np.uint16)
|
41
|
+
ov_model = PreprocessConverter.from_torchvision(
|
42
|
+
model=ov_model, transform=preprocess_pipeline, input_example=Image.fromarray(test_input.astype("uint8"), "RGB")
|
43
|
+
)
|
44
|
+
ov_model = core.compile_model(ov_model, "CPU")
|
45
|
+
ov_input = np.expand_dims(test_input, axis=0)
|
46
|
+
output = ov_model.output(0)
|
47
|
+
ov_result = ov_model(ov_input)[output]
|
48
|
+
```
|
49
|
+
|
50
|
+
## Key contacts
|
51
|
+
|
52
|
+
If you have any questions, feature requests or want us to review your PRs, send us a message or ping us on GitHub via [openvino-ie-python-api-maintainers](https://github.com/orgs/openvinotoolkit/teams/openvino-ie-python-api-maintainers). You can always directly contact everyone from this group.
|
53
|
+
|
54
|
+
## See also
|
55
|
+
|
56
|
+
* [OpenVINO™ README](../../../README.md)
|
57
|
+
* [OpenVINO™ Core Components](../../README.md)
|
58
|
+
* [OpenVINO™ Python API Reference](https://docs.openvino.ai/2024/api/ie_python_api/api.html)
|
59
|
+
* [OpenVINO™ Python API Advanced Inference](https://docs.openvino.ai/2024/openvino-workflow/running-inference/integrate-openvino-with-your-application/python-api-advanced-inference.html)
|
60
|
+
* [OpenVINO™ Python API Exclusives](https://docs.openvino.ai/2024/openvino-workflow/running-inference/integrate-openvino-with-your-application/python-api-exclusives.html)
|
@@ -0,0 +1,28 @@
|
|
1
|
+
# Copyright (C) 2018-2024 Intel Corporation
|
2
|
+
# SPDX-License-Identifier: Apache-2.0
|
3
|
+
|
4
|
+
"""
|
5
|
+
Package: openvino
|
6
|
+
Low level wrappers for the PrePostProcessing C++ API.
|
7
|
+
"""
|
8
|
+
|
9
|
+
# flake8: noqa
|
10
|
+
|
11
|
+
from openvino._pyopenvino import get_version
|
12
|
+
|
13
|
+
__version__ = get_version()
|
14
|
+
|
15
|
+
# main classes
|
16
|
+
from openvino._pyopenvino.preprocess import InputInfo
|
17
|
+
from openvino._pyopenvino.preprocess import OutputInfo
|
18
|
+
from openvino._pyopenvino.preprocess import InputTensorInfo
|
19
|
+
from openvino._pyopenvino.preprocess import OutputTensorInfo
|
20
|
+
from openvino._pyopenvino.preprocess import InputModelInfo
|
21
|
+
from openvino._pyopenvino.preprocess import OutputModelInfo
|
22
|
+
from openvino._pyopenvino.preprocess import PrePostProcessor
|
23
|
+
from openvino._pyopenvino.preprocess import PreProcessSteps
|
24
|
+
from openvino._pyopenvino.preprocess import PostProcessSteps
|
25
|
+
from openvino._pyopenvino.preprocess import ColorFormat
|
26
|
+
from openvino._pyopenvino.preprocess import ResizeAlgorithm
|
27
|
+
from openvino._pyopenvino.preprocess import PaddingMode
|
28
|
+
|
@@ -0,0 +1,15 @@
|
|
1
|
+
# Copyright (C) 2018-2024 Intel Corporation
|
2
|
+
# SPDX-License-Identifier: Apache-2.0
|
3
|
+
|
4
|
+
"""
|
5
|
+
Package: openvino
|
6
|
+
Torchvision to OpenVINO preprocess converter.
|
7
|
+
"""
|
8
|
+
|
9
|
+
# flake8: noqa
|
10
|
+
|
11
|
+
from openvino._pyopenvino import get_version as _get_version
|
12
|
+
|
13
|
+
__version__ = _get_version()
|
14
|
+
|
15
|
+
from .preprocess_converter import PreprocessConverter
|