bezierv 0.1.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (36) hide show
  1. bezierv-0.1.0/.gitignore +171 -0
  2. bezierv-0.1.0/LICENSE +21 -0
  3. bezierv-0.1.0/PKG-INFO +32 -0
  4. bezierv-0.1.0/README.md +38 -0
  5. bezierv-0.1.0/bezierv/__init__.py +0 -0
  6. bezierv-0.1.0/bezierv/algorithms/__init__.py +0 -0
  7. bezierv-0.1.0/bezierv/algorithms/nelder_mead.py +157 -0
  8. bezierv-0.1.0/bezierv/algorithms/non_linear.py +167 -0
  9. bezierv-0.1.0/bezierv/algorithms/proj_grad.py +132 -0
  10. bezierv-0.1.0/bezierv/algorithms/proj_subgrad.py +203 -0
  11. bezierv-0.1.0/bezierv/algorithms/utils.py +67 -0
  12. bezierv-0.1.0/bezierv/classes/__init__.py +0 -0
  13. bezierv-0.1.0/bezierv/classes/bezierv.py +579 -0
  14. bezierv-0.1.0/bezierv/classes/convolver.py +74 -0
  15. bezierv-0.1.0/bezierv/classes/distfit.py +216 -0
  16. bezierv-0.1.0/bezierv.egg-info/PKG-INFO +32 -0
  17. bezierv-0.1.0/bezierv.egg-info/SOURCES.txt +34 -0
  18. bezierv-0.1.0/bezierv.egg-info/dependency_links.txt +1 -0
  19. bezierv-0.1.0/bezierv.egg-info/requires.txt +28 -0
  20. bezierv-0.1.0/bezierv.egg-info/top_level.txt +1 -0
  21. bezierv-0.1.0/docs/assets/logo.png +0 -0
  22. bezierv-0.1.0/docs/index.md +80 -0
  23. bezierv-0.1.0/docs/reference.md +84 -0
  24. bezierv-0.1.0/mkdocs.yml +17 -0
  25. bezierv-0.1.0/noxfile.py +77 -0
  26. bezierv-0.1.0/pyproject.toml +49 -0
  27. bezierv-0.1.0/setup.cfg +4 -0
  28. bezierv-0.1.0/tests/__init__.py +0 -0
  29. bezierv-0.1.0/tests/test_algorithms/test_nelder_mead.py +55 -0
  30. bezierv-0.1.0/tests/test_algorithms/test_proj_grad.py +60 -0
  31. bezierv-0.1.0/tests/test_algorithms/test_proj_subgrad.py +64 -0
  32. bezierv-0.1.0/tests/test_algorithms/test_utils.py +42 -0
  33. bezierv-0.1.0/tests/test_classes/conftest.py +42 -0
  34. bezierv-0.1.0/tests/test_classes/test_bezierv.py +59 -0
  35. bezierv-0.1.0/tests/test_classes/test_convolver.py +38 -0
  36. bezierv-0.1.0/tests/test_classes/test_distfit.py +33 -0
@@ -0,0 +1,171 @@
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+
6
+ # C extensions
7
+ *.so
8
+
9
+ # Distribution / packaging
10
+ .Python
11
+ build/
12
+ develop-eggs/
13
+ dist/
14
+ downloads/
15
+ eggs/
16
+ .eggs/
17
+ lib/
18
+ lib64/
19
+ parts/
20
+ sdist/
21
+ var/
22
+ wheels/
23
+ share/python-wheels/
24
+ *.egg-info/
25
+ .installed.cfg
26
+ *.egg
27
+ MANIFEST
28
+
29
+ # PyInstaller
30
+ # Usually these files are written by a python script from a template
31
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
32
+ *.manifest
33
+ *.spec
34
+
35
+ # Installer logs
36
+ pip-log.txt
37
+ pip-delete-this-directory.txt
38
+
39
+ # Unit test / coverage reports
40
+ htmlcov/
41
+ .tox/
42
+ .nox/
43
+ .coverage
44
+ .coverage.*
45
+ .cache
46
+ nosetests.xml
47
+ coverage.xml
48
+ *.cover
49
+ *.py,cover
50
+ .hypothesis/
51
+ .pytest_cache/
52
+ cover/
53
+
54
+ # Translations
55
+ *.mo
56
+ *.pot
57
+
58
+ # Django stuff:
59
+ *.log
60
+ local_settings.py
61
+ db.sqlite3
62
+ db.sqlite3-journal
63
+
64
+ # Flask stuff:
65
+ instance/
66
+ .webassets-cache
67
+
68
+ # Scrapy stuff:
69
+ .scrapy
70
+
71
+ # Sphinx documentation
72
+ docs/_build/
73
+
74
+ # PyBuilder
75
+ .pybuilder/
76
+ target/
77
+
78
+ # Jupyter Notebook
79
+ .ipynb_checkpoints
80
+
81
+ # IPython
82
+ profile_default/
83
+ ipython_config.py
84
+
85
+ # pyenv
86
+ # For a library or package, you might want to ignore these files since the code is
87
+ # intended to run in multiple environments; otherwise, check them in:
88
+ # .python-version
89
+
90
+ # pipenv
91
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
92
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
93
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
94
+ # install all needed dependencies.
95
+ #Pipfile.lock
96
+
97
+ # UV
98
+ # Similar to Pipfile.lock, it is generally recommended to include uv.lock in version control.
99
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
100
+ # commonly ignored for libraries.
101
+ #uv.lock
102
+
103
+ # poetry
104
+ # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
105
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
106
+ # commonly ignored for libraries.
107
+ # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
108
+ #poetry.lock
109
+
110
+ # pdm
111
+ # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
112
+ #pdm.lock
113
+ # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
114
+ # in version control.
115
+ # https://pdm.fming.dev/latest/usage/project/#working-with-version-control
116
+ .pdm.toml
117
+ .pdm-python
118
+ .pdm-build/
119
+
120
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
121
+ __pypackages__/
122
+
123
+ # Celery stuff
124
+ celerybeat-schedule
125
+ celerybeat.pid
126
+
127
+ # SageMath parsed files
128
+ *.sage.py
129
+
130
+ # Environments
131
+ .env
132
+ .venv
133
+ env/
134
+ venv/
135
+ ENV/
136
+ env.bak/
137
+ venv.bak/
138
+
139
+ # Spyder project settings
140
+ .spyderproject
141
+ .spyproject
142
+
143
+ # Rope project settings
144
+ .ropeproject
145
+
146
+ # mkdocs documentation
147
+ /site
148
+
149
+ # mypy
150
+ .mypy_cache/
151
+ .dmypy.json
152
+ dmypy.json
153
+
154
+ # Pyre type checker
155
+ .pyre/
156
+
157
+ # pytype static type analyzer
158
+ .pytype/
159
+
160
+ # Cython debug symbols
161
+ cython_debug/
162
+
163
+ # PyCharm
164
+ # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
165
+ # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
166
+ # and can be added to the global gitignore or merged into this file. For a more nuclear
167
+ # option (not recommended) you can uncomment the following to ignore the entire idea folder.
168
+ #.idea/
169
+
170
+ # PyPI configuration file
171
+ .pypirc
bezierv-0.1.0/LICENSE ADDED
@@ -0,0 +1,21 @@
1
+ MIT License
2
+
3
+ Copyright (c) 2025 Esteban Leiva and Andrés L. Medaglia
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
bezierv-0.1.0/PKG-INFO ADDED
@@ -0,0 +1,32 @@
1
+ Metadata-Version: 2.4
2
+ Name: bezierv
3
+ Version: 0.1.0
4
+ Author-email: Esteban Leiva <e.leivam@uniandes.edu.co>, "Andrés L. Medaglia" <amedagli@uniandes.edu.co>
5
+ Classifier: Programming Language :: Python :: 3 :: Only
6
+ Classifier: Programming Language :: Python :: 3.10
7
+ Classifier: Programming Language :: Python :: 3.11
8
+ Classifier: Programming Language :: Python :: 3.12
9
+ Classifier: Programming Language :: Python :: 3.13
10
+ Requires-Python: <3.14,>=3.10
11
+ License-File: LICENSE
12
+ Requires-Dist: numpy<2,>=1.26; python_version == "3.10"
13
+ Requires-Dist: scipy<1.16,>=1.13; python_version == "3.10"
14
+ Requires-Dist: matplotlib<3.11,>=3.9; python_version == "3.10"
15
+ Requires-Dist: statsmodels<0.15,>=0.14.2; python_version == "3.10"
16
+ Requires-Dist: pyomo<7,>=6.8; python_version == "3.10"
17
+ Requires-Dist: numpy<2.3,>=1.26; python_version == "3.11"
18
+ Requires-Dist: scipy<1.17,>=1.13; python_version == "3.11"
19
+ Requires-Dist: matplotlib<3.11,>=3.9; python_version == "3.11"
20
+ Requires-Dist: statsmodels<0.15,>=0.14.2; python_version == "3.11"
21
+ Requires-Dist: pyomo<7,>=6.8; python_version == "3.11"
22
+ Requires-Dist: numpy<2.3,>=2.1; python_version == "3.12"
23
+ Requires-Dist: scipy<1.17,>=1.14.1; python_version == "3.12"
24
+ Requires-Dist: matplotlib<3.11,>=3.9; python_version == "3.12"
25
+ Requires-Dist: statsmodels<0.15,>=0.14.2; python_version == "3.12"
26
+ Requires-Dist: pyomo<7,>=6.8; python_version == "3.12"
27
+ Requires-Dist: numpy<2.4,>=2.2; python_version == "3.13"
28
+ Requires-Dist: scipy<1.17,>=1.14.1; python_version == "3.13"
29
+ Requires-Dist: matplotlib<3.11,>=3.9; python_version == "3.13"
30
+ Requires-Dist: statsmodels<0.15,>=0.14.2; python_version == "3.13"
31
+ Requires-Dist: pyomo<7,>=6.8; python_version == "3.13"
32
+ Dynamic: license-file
@@ -0,0 +1,38 @@
1
+ <p align="center">
2
+ <!-- If you used a different path, update the src accordingly -->
3
+ <img src="docs/assets/logo.png" alt="bezierv logo" width="260"/>
4
+ </p>
5
+
6
+ <h1 align="center">bezierv</h1>
7
+ <p align="center">
8
+ <em>Fit smooth Bézier random variables to empirical data &mdash; elegant, differentiable, and fast.</em>
9
+ </p>
10
+
11
+ <p align="center">
12
+ <!-- Add real badges once you publish to PyPI / set up CI -->
13
+ <img alt="PyPI" src="https://img.shields.io/pypi/v/bezierv?style=flat-square">
14
+ <img alt="CI" src="https://img.shields.io/github/actions/workflow/status/EstebanLeiva/bezierv/ci.yml?style=flat-square">
15
+ <img alt="License" src="https://img.shields.io/github/license/EstebanLeiva/bezierv?style=flat-square">
16
+ </p>
17
+
18
+ ---
19
+
20
+ ## Why Bézier random variables?
21
+ Classical parametric distributions can be too rigid; non-parametric methods can be noisy.
22
+ Bézier curves offer a sweet spot: **smooth** and **shape-controlled**.
23
+ With **bezierv** you can:
24
+
25
+ * Fit Bézier CDFs/PDFs to sample data of any shape.
26
+ * Evaluate moments and quantiles.
27
+ * Compose variables via convolution.
28
+
29
+ ---
30
+
31
+ ## Installation
32
+
33
+ ```bash
34
+ pip install bezierv # from PyPI (coming soon)
35
+ # or, for development:
36
+ git clone https://github.com/your-org/bezierv
37
+ cd bezierv
38
+ pip install -e .
File without changes
File without changes
@@ -0,0 +1,157 @@
1
+ import numpy as np
2
+ from bezierv.classes.bezierv import Bezierv
3
+ from scipy.optimize import minimize
4
+ import bezierv.algorithms.utils as utils
5
+
6
+ def objective_function(concatenated: np.array,
7
+ n: int,
8
+ m: int,
9
+ data:np.array,
10
+ bezierv: Bezierv,
11
+ emp_cdf_data: np.array) -> float:
12
+ """
13
+ Compute the objective function value for the given control points.
14
+
15
+ This method calculates the sum of squared errors between the Bezier random variable's CDF
16
+ and the empirical CDF data.
17
+
18
+ Parameters
19
+ ----------
20
+ concatenated : np.array
21
+ A concatenated array containing the control points for z and x coordinates.
22
+ The first n+1 elements are the z control points, and the remaining elements are the x control points.
23
+ n : int
24
+ The number of control points minus one for the Bezier curve.
25
+ m : int
26
+ The number of empirical CDF data points.
27
+ data : np.array
28
+ The sorted data points used to fit the Bezier distribution.
29
+ bezierv : Bezierv
30
+ An instance of the Bezierv class representing the Bezier random variable.
31
+ emp_cdf_data : np.array
32
+ The empirical CDF data points used for fitting.
33
+
34
+ Returns
35
+ -------
36
+ float
37
+ The value of the objective function (MSE).
38
+ """
39
+ x = concatenated[0 : n + 1]
40
+ z = concatenated[n + 1:]
41
+ t = utils.get_t(n, m, data, bezierv, x)
42
+ se = 0
43
+ for j in range(m):
44
+ se += (bezierv.poly_z(t[j], z) - emp_cdf_data[j])**2
45
+ return se / m
46
+
47
+ def objective_function_lagrangian(concatenated: np.array,
48
+ n: int,
49
+ m: int,
50
+ data: np.array,
51
+ bezierv: Bezierv,
52
+ emp_cdf_data: np.array,
53
+ penalty_weight: float=1e3) -> float:
54
+ """
55
+ Compute the objective function value for the given control points.
56
+
57
+ This method calculates the sum of squared errors between the Bezier random variable's CDF
58
+ and the empirical CDF data.
59
+
60
+ Parameters
61
+ ----------
62
+ concatenated : np.array
63
+ A concatenated array containing the control points for z and x coordinates.
64
+ The first n+1 elements are the z control points, and the remaining elements are the x control points.
65
+ n : int
66
+ The number of control points minus one for the Bezier curve.
67
+ m : int
68
+ The number of empirical CDF data points.
69
+ data : np.array
70
+ The sorted data points used to fit the Bezier distribution.
71
+ bezierv : Bezierv
72
+ An instance of the Bezierv class representing the Bezier random variable.
73
+ emp_cdf_data : np.array
74
+ The empirical CDF data points used for fitting.
75
+ penalty_weight : float, optional
76
+ The weight for the penalty term in the objective function (default is 1e3).
77
+
78
+ Returns
79
+ -------
80
+ float
81
+ The value of the objective function + penalty (MSE + penalty).
82
+ """
83
+
84
+ x = concatenated[0 : n + 1]
85
+ z = concatenated[n + 1 : ]
86
+
87
+ try:
88
+ t = utils.get_t(n, m, data, bezierv, x)
89
+ except ValueError as e:
90
+ return np.inf
91
+
92
+ se = 0
93
+ for j in range(m):
94
+ se += (bezierv.poly_z(t[j], z) - emp_cdf_data[j])**2
95
+ mse = se / m
96
+
97
+ penalty = 0.0
98
+ penalty += abs(z[0] - 0.0)
99
+ penalty += abs(z[-1] - 1.0)
100
+ delta_zs = np.diff(z)
101
+ delta_xs = np.diff(x)
102
+ penalty += np.sum(abs(np.minimum(0, delta_zs)))
103
+ penalty += np.sum(abs(np.minimum(0, delta_xs)))
104
+ penalty += abs(x[0] - data[0])
105
+ penalty += abs(data[-1] - x[-1])
106
+
107
+ return mse + penalty_weight * penalty
108
+
109
+ def fit(n: int,
110
+ m: int,
111
+ data: np.array,
112
+ bezierv: Bezierv,
113
+ init_x: np.array,
114
+ init_z: np.array,
115
+ emp_cdf_data: np.array,
116
+ max_iter: int
117
+ ) -> Bezierv:
118
+ """
119
+ Fit the Bezier random variable to the empirical CDF data using the Nelder-Mead optimization algorithm.
120
+
121
+ Parameters
122
+ ----------
123
+ n : int
124
+ The number of control points minus one for the Bezier curve.
125
+ m : int
126
+ The number of empirical CDF data points.
127
+ data : np.array
128
+ The sorted data points used to fit the Bezier distribution.
129
+ bezierv : Bezierv
130
+ An instance of the Bezierv class representing the Bezier random variable.
131
+ init_x : np.array
132
+ Initial guess for the x-coordinates of the control points.
133
+ init_z : np.array
134
+ Initial guess for the z-coordinates of the control points.
135
+ emp_cdf_data : np.array
136
+ The empirical CDF data points used for fitting.
137
+
138
+ Returns
139
+ -------
140
+ Bezierv
141
+ The fitted Bezierv object with updated control points.
142
+ float
143
+ The mean squared error (MSE) of the fit.
144
+ """
145
+ start = np.concatenate((init_x, init_z))
146
+ result = minimize(
147
+ fun=objective_function_lagrangian,
148
+ args=(n, m, data, bezierv, emp_cdf_data),
149
+ x0=start,
150
+ method='Nelder-Mead',
151
+ options={'maxiter': max_iter, 'disp': False})
152
+ sol = result.x
153
+ controls_x = sol[0 : n + 1]
154
+ controls_z = sol[n + 1: ]
155
+ bezierv.update_bezierv(controls_x, controls_z)
156
+ mse = objective_function(sol, n, m, data, bezierv, emp_cdf_data)
157
+ return bezierv, mse
@@ -0,0 +1,167 @@
1
+ from pyexpat import model
2
+ import pyomo.environ as pyo
3
+ import numpy as np
4
+ from bezierv.classes.bezierv import Bezierv
5
+ from pyomo.opt import SolverFactory, SolverStatus, TerminationCondition
6
+
7
+ def fit(n: int,
8
+ m: int,
9
+ data: np.array,
10
+ bezierv: Bezierv,
11
+ init_x: np.array,
12
+ init_z: np.array,
13
+ init_t: np.array,
14
+ emp_cdf_data: np.array,
15
+ solver: str) -> Bezierv:
16
+ """
17
+ Fit a Bézier random variable to the empirical CDF data using a nonlinear optimization solver.
18
+
19
+ Parameters
20
+ ----------
21
+ n : int
22
+ The number of control points minus one for the Bezier curve.
23
+ m : int
24
+ The number of empirical CDF data points.
25
+ data : np.array
26
+ The sorted data points used to fit the Bézier distribution.
27
+ bezierv : Bezierv
28
+ An instance of the Bezierv class representing the Bézier random variable.
29
+ init_x : np.array
30
+ Initial guess for the x-coordinates of the control points.
31
+ init_z : np.array
32
+ Initial guess for the z-coordinates of the control points.
33
+ init_t : np.array
34
+ Initial guess for the Bézier 'time' parameters corresponding to the data points.
35
+ emp_cdf_data : np.array
36
+ The empirical CDF data points used for fitting.
37
+ solver : str, optional
38
+ The name of the solver to use for optimization.
39
+
40
+ Returns
41
+ -------
42
+ Bezierv
43
+ The fitted Bezierv object with updated control points.
44
+ float
45
+ The mean squared error (MSE) of the fit.
46
+
47
+ Raises:
48
+ Exception: If the solver fails to find an optimal solution.
49
+
50
+ Notes:
51
+ - The method uses the IPOPT solver for optimization.
52
+ - The control points are constrained to lie within the range of the data.
53
+ - The method ensures that the control points and the Bézier 'time' parameters are sorted.
54
+ - Convexity constraints are applied to the control points and the Bézier 'time' parameters.
55
+ - The first and last control points are fixed to the minimum and maximum of the data, respectively.
56
+ - The first and last Bézier 'time' parameters are fixed to 0 and 1, respectively.
57
+ """
58
+ # Defining the optimization model
59
+ model = pyo.ConcreteModel()
60
+
61
+ # Sets
62
+ model.N = pyo.Set(initialize=list(range(n + 1))) # N = 0,...,i,...,n
63
+ model.N_n = pyo.Set(initialize=list(range(n))) # N = 0,...,i,...,n-1
64
+ model.M = pyo.Set(initialize=list(range(1, m + 1))) # M = 1,...,j,...,m
65
+ model.M_m = pyo.Set(initialize=list(range(1, m))) # M = 1,...,j,...,m-1
66
+
67
+ # Decision variables
68
+ # Control points. Box constraints.
69
+ X_min = data[0];
70
+ X_max = data[-1];
71
+ # var x{i in 0..n} >=X[1], <=X[m];
72
+ # Initialization:
73
+ def init_x_rule(model, i):
74
+ return float(init_x[i])
75
+ model.x = pyo.Var(model.N, within=pyo.Reals, bounds=(X_min, X_max), initialize=init_x_rule)
76
+ # var z{i in 0..n} >=0, <=1;
77
+ # Initialization:
78
+ def init_z_rule(model, i):
79
+ return float(init_z[i])
80
+ model.z = pyo.Var(model.N, within=pyo.NonNegativeReals, bounds=(0, 1), initialize=init_z_rule)
81
+ # Bezier 'time' parameter t for the j-th sample point.
82
+ # var t{j in 1..m} >=0, <= 1;
83
+ # Initialization:
84
+ def init_t_rule(model, j):
85
+ return float(init_t[j - 1]) # j starts from 1, so we access init_t with j-1
86
+ model.t = pyo.Var(model.M, within=pyo.NonNegativeReals, bounds=(0,1), initialize=init_t_rule )
87
+ # Estimated cdf for the j-th sample point.
88
+ # var F_hat{j in 1..m} >=0, <= 1;
89
+ model.F_hat = pyo.Var(model.M, within=pyo.NonNegativeReals, bounds=(0,1) )
90
+
91
+ # Objective function
92
+ # minimize mean_square_error:
93
+ # 1/m * sum {j in 1..m} ( ( j/m - F_hat[j] )^2);
94
+ def mse_rule(model):
95
+ return (1 / m) * sum((emp_cdf_data[j - 1] - model.F_hat[j])**2 for j in model.M)
96
+ model.mse = pyo.Objective(rule=mse_rule, sense=pyo.minimize )
97
+
98
+ # Constraints
99
+ # subject to F_hat_estimates {j in 1..m}:
100
+ # sum{i in 0..n}( comb[i]*t[j]^i*(1-t[j])^(n-i)*z[i] ) = F_hat[j];
101
+ def F_hat_rule(model, j):
102
+ return sum(bezierv.comb[i] * model.t[j]**i * (1 - model.t[j])**(n - i) * model.z[i] for i in model.N ) == model.F_hat[j]
103
+ model.ctr_F_hat = pyo.Constraint(model.M , rule=F_hat_rule)
104
+
105
+ # subject to data_sample {j in 1..m}:
106
+ # sum{i in 0..n}( comb[i]*t[j]^i*(1-t[j])^(n-i)*x[i] ) = X[j];
107
+ def data_sample_rule(model, j):
108
+ return sum(bezierv.comb[i] * model.t[j]**i * (1 - model.t[j])**(n - i) * model.x[i] for i in model.N ) == data[j-1]
109
+ model.ctr_sample = pyo.Constraint(model.M , rule=data_sample_rule)
110
+
111
+ # subject to convexity_x {i in 0..n-1}:
112
+ # x[i] <= x[i+1];
113
+ def convexity_x_rule(model, i):
114
+ return model.x[i] <= model.x[i + 1]
115
+ model.ctr_convexity_x = pyo.Constraint(model.N_n , rule=convexity_x_rule)
116
+
117
+ # subject to convexity_z {i in 0..n-1}:
118
+ # z[i] <= z[i+1];
119
+ def convexity_z_rule(model, i):
120
+ return model.z[i] <= model.z[i + 1]
121
+ model.ctr_convexity_z = pyo.Constraint(model.N_n , rule=convexity_z_rule)
122
+
123
+ # subject to first_control_x:
124
+ # x[0] = X[1];
125
+ model.first_control_x = pyo.Constraint(expr=model.x[0] <= data[0])
126
+ # subject to first_control_z:
127
+ # z[0] = 0;
128
+ model.first_control_z = pyo.Constraint(expr=model.z[0] == 0)
129
+
130
+ # subject to last_control_x:
131
+ # x[n] = X[m];
132
+ model.last_control_x = pyo.Constraint(expr=model.x[n] >= data[-1])
133
+ # subject to last_control_z:
134
+ # z[n] = 1;
135
+ model.last_control_z = pyo.Constraint(expr=model.z[n] == 1)
136
+
137
+ # subject to first_data_t:
138
+ # t[1] = 0;
139
+ model.first_t = pyo.Constraint(expr=model.t[1] == 0)
140
+ # subject to last_data_t:
141
+ # t[m] = 1;
142
+ model.last_t = pyo.Constraint(expr=model.t[m] == 1)
143
+
144
+ delta_z = 0.0001
145
+ delta_x = 0.5
146
+ # Left end: x1 ~= x0, z1 ~= z0
147
+ #model.end_close_z_left = pyo.Constraint(expr = model.z[1] - model.z[0] <= delta_z)
148
+ #model.end_close_x_left = pyo.Constraint(expr = model.x[1] - model.x[0] <= delta_x)
149
+
150
+ # Right end: xn ~= xn-1, zn ~= zn-1
151
+ #model.end_close_x_right = pyo.Constraint(expr = model.x[n] - model.x[n-1] <= delta_x)
152
+ #model.end_close_z_right = pyo.Constraint(expr = model.z[n] - model.z[n-1] <= delta_z)
153
+
154
+ # Set solver
155
+ pyo_solver = SolverFactory(solver)
156
+
157
+ try:
158
+ results = pyo_solver.solve(model, tee=False, timelimit=60)
159
+ if (results.solver.status == SolverStatus.ok) and (results.solver.termination_condition == TerminationCondition.optimal):
160
+ controls_x = np.array([model.x[i]() for i in model.N])
161
+ controls_z = np.array([model.z[i]() for i in model.N])
162
+ mse = model.mse()
163
+ bezierv.update_bezierv(controls_x, controls_z)
164
+ except Exception as e:
165
+ print("NonLinearSolver [fit]: An exception occurred during model evaluation:", e)
166
+
167
+ return bezierv, mse