beswarm 0.2.35__py3-none-any.whl → 0.2.37__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of beswarm might be problematic. Click here for more details.

beswarm/tools/worker.py CHANGED
@@ -1,455 +1,29 @@
1
- import os
2
- import re
3
- import sys
4
- import copy
5
- import json
6
- import difflib
7
- import platform
8
- from pathlib import Path
9
1
  from datetime import datetime
2
+ from typing import List, Dict, Union
10
3
 
11
- class Tee:
12
- def __init__(self, *files):
13
- self.files = files
4
+ from ..core import mcp_manager, broker, task_manager
5
+ from ..agents.planact import BrokerWorker
6
+ from ..aient.src.aient.plugins import register_tool
14
7
 
15
- def write(self, obj):
16
- for f in self.files:
17
- f.write(obj)
18
- f.flush()
19
-
20
- def flush(self):
21
- for f in self.files:
22
- f.flush()
23
-
24
- from ..aient.src.aient.models import chatgpt
25
- from ..aient.src.aient.plugins import register_tool, get_function_call_list, registry
26
- from ..prompt import worker_system_prompt, instruction_system_prompt
27
- from ..utils import extract_xml_content, get_current_screen_image_message, replace_xml_content, register_mcp_tools
28
- from ..bemcp.bemcp import MCPClient, convert_tool_format, MCPManager
29
-
30
- manager = MCPManager()
31
8
 
32
9
  @register_tool()
33
- async def worker(goal, tools, work_dir, cache_messages=None):
34
- cache_dir = Path(work_dir) / ".beswarm"
35
- cache_dir.mkdir(parents=True, exist_ok=True)
36
- task_manager.set_root_path(work_dir)
37
- cache_file = cache_dir / "work_agent_conversation_history.json"
38
- if not cache_file.exists():
39
- cache_file.write_text("[]", encoding="utf-8")
40
-
41
- DEBUG = os.getenv("DEBUG", "false").lower() in ("true", "1", "t", "yes")
42
- if DEBUG:
43
- log_file = open(cache_dir / "history.log", "a", encoding="utf-8")
44
- log_file.write(f"========== {datetime.now().strftime('%Y-%m-%d %H:%M:%S')} ==========\n")
45
- original_stdout = sys.stdout
46
- original_stderr = sys.stderr
47
- sys.stdout = Tee(original_stdout, log_file)
48
- sys.stderr = Tee(original_stderr, log_file)
49
-
10
+ async def worker(goal: str, tools: List[Union[str, Dict]], work_dir: str, cache_messages: Union[bool, List[Dict]] = None):
50
11
  start_time = datetime.now()
51
- os.chdir(Path(work_dir).absolute())
52
- finish_flag = 0
53
- goal_diff = None
54
-
55
- mcp_list = [item for item in tools if isinstance(item, dict)]
56
- if mcp_list:
57
- for mcp_item in mcp_list:
58
- mcp_name, mcp_config = list(mcp_item.items())[0]
59
- await manager.add_server(mcp_name, mcp_config)
60
- client = manager.clients.get(mcp_name)
61
- await register_mcp_tools(client, registry)
62
- all_tools = await manager.get_all_tools()
63
- mcp_tools_name = [tool.name for tool in sum(all_tools.values(), [])]
64
- tools += mcp_tools_name
65
-
66
- tools = [item for item in tools if not isinstance(item, dict)]
67
- if "task_complete" not in tools:
68
- tools.append("task_complete")
69
-
70
- tools_json = [value for _, value in get_function_call_list(tools).items()]
71
- work_agent_system_prompt = worker_system_prompt.format(
72
- os_version=platform.platform(),
73
- workspace_path=work_dir,
74
- shell=os.getenv('SHELL', 'Unknown'),
75
- current_time=datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
76
- tools_list=tools_json
77
- )
78
-
79
- work_agent_config = {
80
- "api_key": os.getenv("API_KEY"),
81
- "api_url": os.getenv("BASE_URL"),
82
- "engine": os.getenv("FAST_MODEL") or os.getenv("MODEL"),
83
- "system_prompt": work_agent_system_prompt,
84
- "print_log": True,
85
- # "max_tokens": 8000,
86
- "temperature": 0.5,
87
- "function_call_max_loop": 100,
88
- }
89
- if cache_messages:
90
- if isinstance(cache_messages, bool) and cache_messages == True:
91
- cache_messages = json.loads(cache_file.read_text(encoding="utf-8"))
92
- if cache_messages and isinstance(cache_messages, list) and len(cache_messages) > 1:
93
- old_goal = extract_xml_content(cache_messages[1]["content"], "goal")
94
- if old_goal.strip() != goal.strip():
95
- diff_generator = difflib.ndiff(old_goal.splitlines(), goal.splitlines())
96
- changed_lines = []
97
- for line in diff_generator:
98
- if (line.startswith('+ ') or line.startswith('- ')) and line[2:].strip():
99
- changed_lines.append(line)
100
- goal_diff = '\n'.join(changed_lines).strip()
101
- first_user_message = replace_xml_content(cache_messages[1]["content"], "goal", goal)
102
- work_agent_config["cache_messages"] = cache_messages[0:1] + [{"role": "user", "content": first_user_message}] + cache_messages[2:]
103
-
104
- instruction_agent_config = {
105
- "api_key": os.getenv("API_KEY"),
106
- "api_url": os.getenv("BASE_URL"),
107
- "engine": os.getenv("MODEL"),
108
- "system_prompt": instruction_system_prompt.format(os_version=platform.platform(), tools_list=tools_json, workspace_path=work_dir, current_time=datetime.now().strftime("%Y-%m-%d %H:%M:%S")),
109
- "print_log": DEBUG,
110
- # "max_tokens": 4000,
111
- "temperature": 0.7,
112
- "use_plugins": False,
113
- }
114
-
115
- # 工作agent初始化
116
- work_agent = chatgpt(**work_agent_config)
117
- async def instruction_agent_task():
118
- last_instruction = None
119
- while True:
120
- instruction_prompt = "".join([
121
- "</work_agent_conversation_end>\n\n",
122
- f"任务目标: {goal}\n\n",
123
- f"任务目标新变化:\n{goal_diff}\n\n" if goal_diff else "",
124
- "在 tag <work_agent_conversation_start>...</work_agent_conversation_end> 之前的对话历史都是工作智能体的对话历史。\n\n",
125
- "根据以上对话历史和目标,请生成下一步指令。如果任务已完成,指示工作智能体调用task_complete工具。\n\n",
126
- ])
127
- if last_instruction and 'fetch_gpt_response_stream HTTP Error' not in last_instruction:
128
- instruction_prompt = (
129
- f"{instruction_prompt}\n\n"
130
- "你生成的指令格式错误,必须把给assistant的指令放在<instructions>...</instructions>标签内。请重新生成格式正确的指令。"
131
- f"这是你上次给assistant的错误格式的指令:\n{last_instruction}"
132
- )
133
- # 让指令agent分析对话历史并生成新指令
134
- instruction_agent = chatgpt(**instruction_agent_config)
135
- conversation_history = copy.deepcopy(work_agent.conversation["default"])
136
- if len(conversation_history) > 1 and conversation_history[-2]["role"] == "user" \
137
- and "<task_complete_message>" in conversation_history[-2]["content"]:
138
- task_complete_message = extract_xml_content(conversation_history[-2]["content"], "task_complete_message")
139
- # del work_agent.conversation["default"][-4:]
140
- return "<task_complete_message>" + task_complete_message + "</task_complete_message>"
141
-
142
- cache_file.write_text(json.dumps(conversation_history, ensure_ascii=False, indent=4), encoding="utf-8")
143
-
144
- work_agent_system_prompt = conversation_history.pop(0)
145
- if conversation_history:
146
- # 获取原始内容
147
- original_content = work_agent_system_prompt["content"]
148
-
149
- # 定义正则表达式
150
- regex = r"<latest_file_content>(.*?)</latest_file_content>"
151
-
152
- # 进行匹配
153
- match = re.search(regex, original_content, re.DOTALL)
154
-
155
- # 提取内容或设置为空字符串
156
- if match:
157
- extracted_content = f"<latest_file_content>{match.group(1)}</latest_file_content>\n\n"
158
- else:
159
- extracted_content = ""
160
- if isinstance(conversation_history[0]["content"], str):
161
- conversation_history[0]["content"] = extracted_content + conversation_history[0]["content"]
162
- elif isinstance(conversation_history[0]["content"], list) and extracted_content:
163
- conversation_history[0]["content"].append({"type": "text", "text": extracted_content})
164
-
165
- instruction_agent.conversation["default"][1:] = conversation_history
166
- if "find_and_click_element" in str(tools_json):
167
- instruction_prompt = await get_current_screen_image_message(instruction_prompt)
168
- next_instruction = await instruction_agent.ask_async(instruction_prompt)
169
- print("\n🤖 指令智能体生成的下一步指令:", next_instruction)
170
- if "fetch_gpt_response_stream HTTP Error', 'status_code': 404" in next_instruction:
171
- raise Exception(f"Model: {instruction_agent_config['engine']} not found!")
172
- if "'status_code': 413" in next_instruction or \
173
- "'status_code': 400" in next_instruction:
174
- end_time = datetime.now()
175
- total_time = end_time - start_time
176
- print(f"\n任务开始时间: {start_time.strftime('%Y-%m-%d %H:%M:%S')}")
177
- print(f"任务结束时间: {end_time.strftime('%Y-%m-%d %H:%M:%S')}")
178
- print(f"总用时: {total_time}")
179
- raise Exception(f"The request body is too long, please try again.")
180
-
181
- last_instruction = next_instruction
182
- next_instruction = extract_xml_content(next_instruction, "instructions")
183
- if not next_instruction:
184
- print("\n❌ 指令智能体生成的指令不符合要求,请重新生成。")
185
- continue
186
- else:
187
- if conversation_history == []:
188
- next_instruction = (
189
- "任务描述:\n"
190
- f"<goal>{goal}</goal>\n\n"
191
- "你作为指令的**执行者**,而非任务的**规划师**,你必须严格遵循以下单步工作流程:\n"
192
- "**执行指令**\n"
193
- " - **严格遵从:** 只执行我当前下达的明确指令。在我明确给出下一步指令前,绝不擅自行动或推测、执行任何未明确要求的后续步骤。\n"
194
- " - **严禁越权:** 禁止执行任何我未指定的步骤。`<goal>` 标签中的内容仅为背景信息,不得据此进行任务规划或推测。\n"
195
- "**汇报结果**\n"
196
- " - **聚焦单步:** 指令完成后,仅汇报该步骤的执行结果与产出。\n"
197
- "**暂停等待**\n"
198
- " - **原地待命:** 汇报后,任务暂停。在收到我新的指令前,严禁发起任何新的工具调用或操作。\n"
199
- " - **请求指令:** 回复的最后必须明确请求我提供下一步指令。\n"
200
- "**注意:** 禁止完成超出下面我未规定的步骤,`<goal>` 标签中的内容仅为背景信息。"
201
- "现在开始执行第一步:\n"
202
- f"{next_instruction}"
203
- )
204
- break
205
- return next_instruction
206
-
207
- need_instruction = True
208
- result = None
209
- while True:
210
- next_instruction = ''
211
- if need_instruction:
212
- next_instruction = await instruction_agent_task()
213
-
214
- # 检查任务是否完成
215
- if "<task_complete_message>" in next_instruction:
216
- if finish_flag == 0:
217
- finish_flag = 1
218
- continue
219
- elif finish_flag == 1:
220
- result = extract_xml_content(next_instruction, "task_complete_message")
221
- break
222
- else:
223
- finish_flag = 0
224
- if "find_and_click_element" in str(tools_json):
225
- next_instruction = await get_current_screen_image_message(next_instruction)
226
- result = await work_agent.ask_async(next_instruction)
227
- if result.strip() == '' or result.strip() == '</content>\n</write_to_file>':
228
- print("\n❌ 工作智能体回复为空,请重新生成指令。")
229
- need_instruction = False
230
- continue
231
- print("✅ 工作智能体回复:", result)
232
- need_instruction = True
233
-
12
+ worker_instance = BrokerWorker(goal, tools, work_dir, cache_messages, broker, mcp_manager, task_manager)
13
+ result = await worker_instance.run()
234
14
  end_time = datetime.now()
235
- total_time = end_time - start_time
236
- print("\n✅ 任务已完成:", result)
237
15
  print(f"\n任务开始时间: {start_time.strftime('%Y-%m-%d %H:%M:%S')}")
238
16
  print(f"任务结束时间: {end_time.strftime('%Y-%m-%d %H:%M:%S')}")
239
- print(f"总用时: {total_time}")
240
- await manager.cleanup()
17
+ print(f"总用时: {end_time - start_time}")
241
18
  return result
242
19
 
243
- async def worker_gen(goal, tools, work_dir, cache_messages=None):
244
- cache_dir = Path(work_dir) / ".beswarm"
245
- cache_dir.mkdir(parents=True, exist_ok=True)
246
- task_manager.set_root_path(work_dir)
247
- cache_file = cache_dir / "work_agent_conversation_history.json"
248
- if not cache_file.exists():
249
- cache_file.write_text("[]", encoding="utf-8")
250
-
251
- DEBUG = os.getenv("DEBUG", "false").lower() in ("true", "1", "t", "yes")
252
- if DEBUG:
253
- log_file = open(cache_dir / "history.log", "a", encoding="utf-8")
254
- log_file.write(f"========== {datetime.now().strftime('%Y-%m-%d %H:%M:%S')} ==========\n")
255
- original_stdout = sys.stdout
256
- original_stderr = sys.stderr
257
- sys.stdout = Tee(original_stdout, log_file)
258
- sys.stderr = Tee(original_stderr, log_file)
259
-
20
+ @register_tool()
21
+ async def worker_gen(goal: str, tools: List[Union[str, Dict]], work_dir: str, cache_messages: Union[bool, List[Dict]] = None):
260
22
  start_time = datetime.now()
261
- os.chdir(Path(work_dir).absolute())
262
- finish_flag = 0
263
- goal_diff = None
264
-
265
- mcp_list = [item for item in tools if isinstance(item, dict)]
266
- if mcp_list:
267
- for mcp_item in mcp_list:
268
- mcp_name, mcp_config = list(mcp_item.items())[0]
269
- await manager.add_server(mcp_name, mcp_config)
270
- client = manager.clients.get(mcp_name)
271
- await register_mcp_tools(client, registry)
272
- all_tools = await manager.get_all_tools()
273
- mcp_tools_name = [tool.name for tool in sum(all_tools.values(), [])]
274
- tools += mcp_tools_name
275
-
276
- tools = [item for item in tools if not isinstance(item, dict)]
277
- if "task_complete" not in tools:
278
- tools.append("task_complete")
279
-
280
- tools_json = [value for _, value in get_function_call_list(tools).items()]
281
- work_agent_system_prompt = worker_system_prompt.format(
282
- os_version=platform.platform(),
283
- workspace_path=work_dir,
284
- shell=os.getenv('SHELL', 'Unknown'),
285
- current_time=datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
286
- tools_list=tools_json
287
- )
288
-
289
- work_agent_config = {
290
- "api_key": os.getenv("API_KEY"),
291
- "api_url": os.getenv("BASE_URL"),
292
- "engine": os.getenv("FAST_MODEL") or os.getenv("MODEL"),
293
- "system_prompt": work_agent_system_prompt,
294
- "print_log": True,
295
- # "max_tokens": 8000,
296
- "temperature": 0.5,
297
- "function_call_max_loop": 100,
298
- }
299
- if cache_messages:
300
- if isinstance(cache_messages, bool) and cache_messages == True:
301
- cache_messages = json.loads(cache_file.read_text(encoding="utf-8"))
302
- if cache_messages and isinstance(cache_messages, list) and len(cache_messages) > 1:
303
- old_goal = extract_xml_content(cache_messages[1]["content"], "goal")
304
- if old_goal.strip() != goal.strip():
305
- diff_generator = difflib.ndiff(old_goal.splitlines(), goal.splitlines())
306
- changed_lines = []
307
- for line in diff_generator:
308
- if (line.startswith('+ ') or line.startswith('- ')) and line[2:].strip():
309
- changed_lines.append(line)
310
- goal_diff = '\n'.join(changed_lines).strip()
311
- first_user_message = replace_xml_content(cache_messages[1]["content"], "goal", goal)
312
- work_agent_config["cache_messages"] = cache_messages[0:1] + [{"role": "user", "content": first_user_message}] + cache_messages[2:]
313
-
314
- instruction_agent_config = {
315
- "api_key": os.getenv("API_KEY"),
316
- "api_url": os.getenv("BASE_URL"),
317
- "engine": os.getenv("MODEL"),
318
- "system_prompt": instruction_system_prompt.format(os_version=platform.platform(), tools_list=tools_json, workspace_path=work_dir, current_time=datetime.now().strftime("%Y-%m-%d %H:%M:%S")),
319
- "print_log": DEBUG,
320
- # "max_tokens": 4000,
321
- "temperature": 0.7,
322
- "use_plugins": False,
323
- }
324
-
325
- # 工作agent初始化
326
- work_agent = chatgpt(**work_agent_config)
327
- async def instruction_agent_task():
328
- last_instruction = None
329
- while True:
330
- instruction_prompt = "".join([
331
- "</work_agent_conversation_end>\n\n",
332
- f"任务目标: {goal}\n\n",
333
- f"任务目标新变化:\n{goal_diff}\n\n" if goal_diff else "",
334
- "在 tag <work_agent_conversation_start>...</work_agent_conversation_end> 之前的对话历史都是工作智能体的对话历史。\n\n",
335
- "根据以上对话历史和目标,请生成下一步指令。如果任务已完成,指示工作智能体调用task_complete工具。\n\n",
336
- ])
337
- if last_instruction and 'fetch_gpt_response_stream HTTP Error' not in last_instruction:
338
- instruction_prompt = (
339
- f"{instruction_prompt}\n\n"
340
- "你生成的指令格式错误,必须把给assistant的指令放在<instructions>...</instructions>标签内。请重新生成格式正确的指令。"
341
- f"这是你上次给assistant的错误格式的指令:\n{last_instruction}"
342
- )
343
- # 让指令agent分析对话历史并生成新指令
344
- instruction_agent = chatgpt(**instruction_agent_config)
345
- conversation_history = copy.deepcopy(work_agent.conversation["default"])
346
- if len(conversation_history) > 1 and conversation_history[-2]["role"] == "user" \
347
- and "<task_complete_message>" in conversation_history[-2]["content"]:
348
- task_complete_message = extract_xml_content(conversation_history[-2]["content"], "task_complete_message")
349
- # del work_agent.conversation["default"][-4:]
350
- return "<task_complete_message>" + task_complete_message + "</task_complete_message>"
351
-
352
- cache_file.write_text(json.dumps(conversation_history, ensure_ascii=False, indent=4), encoding="utf-8")
353
-
354
- work_agent_system_prompt = conversation_history.pop(0)
355
- if conversation_history:
356
- # 获取原始内容
357
- original_content = work_agent_system_prompt["content"]
358
-
359
- # 定义正则表达式
360
- regex = r"<latest_file_content>(.*?)</latest_file_content>"
361
-
362
- # 进行匹配
363
- match = re.search(regex, original_content, re.DOTALL)
364
-
365
- # 提取内容或设置为空字符串
366
- if match:
367
- extracted_content = f"<latest_file_content>{match.group(1)}</latest_file_content>\n\n"
368
- else:
369
- extracted_content = ""
370
- if isinstance(conversation_history[0]["content"], str):
371
- conversation_history[0]["content"] = extracted_content + conversation_history[0]["content"]
372
- elif isinstance(conversation_history[0]["content"], list) and extracted_content:
373
- conversation_history[0]["content"].append({"type": "text", "text": extracted_content})
374
-
375
- instruction_agent.conversation["default"][1:] = conversation_history
376
- if "find_and_click_element" in str(tools_json):
377
- instruction_prompt = await get_current_screen_image_message(instruction_prompt)
378
- next_instruction = await instruction_agent.ask_async(instruction_prompt)
379
- print("\n🤖 指令智能体生成的下一步指令:", next_instruction)
380
- if "fetch_gpt_response_stream HTTP Error', 'status_code': 404" in next_instruction:
381
- raise Exception(f"Model: {instruction_agent_config['engine']} not found!")
382
- if "'status_code': 413" in next_instruction or \
383
- "'status_code': 400" in next_instruction:
384
- end_time = datetime.now()
385
- total_time = end_time - start_time
386
- print(f"\n任务开始时间: {start_time.strftime('%Y-%m-%d %H:%M:%S')}")
387
- print(f"任务结束时间: {end_time.strftime('%Y-%m-%d %H:%M:%S')}")
388
- print(f"总用时: {total_time}")
389
- raise Exception(f"The request body is too long, please try again.")
390
-
391
- last_instruction = next_instruction
392
- next_instruction = extract_xml_content(next_instruction, "instructions")
393
- if not next_instruction:
394
- print("\n❌ 指令智能体生成的指令不符合要求,请重新生成。")
395
- continue
396
- else:
397
- if conversation_history == []:
398
- next_instruction = (
399
- "任务描述:\n"
400
- f"<goal>{goal}</goal>\n\n"
401
- "你作为指令的**执行者**,而非任务的**规划师**,你必须严格遵循以下单步工作流程:\n"
402
- "**执行指令**\n"
403
- " - **严格遵从:** 只执行我当前下达的明确指令。在我明确给出下一步指令前,绝不擅自行动或推测、执行任何未明确要求的后续步骤。\n"
404
- " - **严禁越权:** 禁止执行任何我未指定的步骤。`<goal>` 标签中的内容仅为背景信息,不得据此进行任务规划或推测。\n"
405
- "**汇报结果**\n"
406
- " - **聚焦单步:** 指令完成后,仅汇报该步骤的执行结果与产出。\n"
407
- "**暂停等待**\n"
408
- " - **原地待命:** 汇报后,任务暂停。在收到我新的指令前,严禁发起任何新的工具调用或操作。\n"
409
- " - **请求指令:** 回复的最后必须明确请求我提供下一步指令。\n"
410
- "**注意:** 禁止完成超出下面我未规定的步骤,`<goal>` 标签中的内容仅为背景信息。"
411
- "现在开始执行第一步:\n"
412
- f"{next_instruction}"
413
- )
414
- break
415
- return next_instruction
416
-
417
- need_instruction = True
418
- result = None
419
- while True:
420
- next_instruction = ''
421
- if need_instruction:
422
- next_instruction = await instruction_agent_task()
423
-
424
- yield {"user": next_instruction}
425
-
426
- # 检查任务是否完成
427
- if "<task_complete_message>" in next_instruction:
428
- if finish_flag == 0:
429
- finish_flag = 1
430
- continue
431
- elif finish_flag == 1:
432
- result = extract_xml_content(next_instruction, "task_complete_message")
433
- break
434
- else:
435
- finish_flag = 0
436
- if "find_and_click_element" in str(tools_json):
437
- next_instruction = await get_current_screen_image_message(next_instruction)
438
- result = await work_agent.ask_async(next_instruction)
439
- if result.strip() == '' or result.strip() == '</content>\n</write_to_file>':
440
- print("\n❌ 工作智能体回复为空,请重新生成指令。")
441
- need_instruction = False
442
- continue
443
- yield {"assistant": result}
444
- print("✅ 工作智能体回复:", result)
445
- need_instruction = True
446
-
23
+ worker_instance = BrokerWorker(goal, tools, work_dir, cache_messages, broker, mcp_manager, task_manager)
24
+ async for result in worker_instance.stream_run():
25
+ yield result
447
26
  end_time = datetime.now()
448
- total_time = end_time - start_time
449
- print("\n✅ 任务已完成:", result)
450
27
  print(f"\n任务开始时间: {start_time.strftime('%Y-%m-%d %H:%M:%S')}")
451
28
  print(f"任务结束时间: {end_time.strftime('%Y-%m-%d %H:%M:%S')}")
452
- print(f"总用时: {total_time}")
453
- await manager.cleanup()
454
-
455
- from .taskmanager import task_manager
29
+ print(f"总用时: {end_time - start_time}")
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: beswarm
3
- Version: 0.2.35
3
+ Version: 0.2.37
4
4
  Summary: MAS
5
5
  Requires-Python: >=3.11
6
6
  Description-Content-Type: text/markdown
@@ -1,14 +1,18 @@
1
1
  beswarm/__init__.py,sha256=HZjUOJtZR5QhMuDbq-wukQQn1VrBusNWai_ysGo-VVI,20
2
+ beswarm/broker.py,sha256=RtnQZVbhf25acUHahNBiaS5FGxcrj0rhBhkon9gFY_M,9873
3
+ beswarm/core.py,sha256=_J_LPc0HZFQTLGHy021OMEh2WbsjL_hc6jxd2engpyY,216
2
4
  beswarm/prompt.py,sha256=5JMfOuXWHscsaeDzwBn223mj9N85eAQdOHXQZk7zeWE,32238
5
+ beswarm/taskmanager.py,sha256=oyvmxZmiguUXx1vYDQIuHS_GKDHEoDBhQ2Bjo4s128Q,9329
3
6
  beswarm/utils.py,sha256=xxbNifOPlfcVkKmF_qFzuEnZgF3MQg3mnOfz1EF0Qss,6697
7
+ beswarm/agents/planact.py,sha256=-wS9bVUJRWfUePBh_F6crCSeFIq6rl4RewlLls4d4oE,17322
4
8
  beswarm/aient/main.py,sha256=SiYAIgQlLJqYusnTVEJOx1WNkSJKMImhgn5aWjfroxg,3814
5
- beswarm/aient/setup.py,sha256=LqjY1x8CQrcvFrHKFSyZpm5h6iBuosHIpZqXdCPnPes,487
9
+ beswarm/aient/setup.py,sha256=lSEY6pYNdIdUB8F3gkj0XsEos1FMkd_c6PfIt-hscII,487
6
10
  beswarm/aient/src/aient/__init__.py,sha256=SRfF7oDVlOOAi6nGKiJIUK6B_arqYLO9iSMp-2IZZps,21
7
11
  beswarm/aient/src/aient/core/__init__.py,sha256=NxjebTlku35S4Dzr16rdSqSTWUvvwEeACe8KvHJnjPg,34
8
12
  beswarm/aient/src/aient/core/log_config.py,sha256=kz2_yJv1p-o3lUQOwA3qh-LSc3wMHv13iCQclw44W9c,274
9
13
  beswarm/aient/src/aient/core/models.py,sha256=d4MISNezTSe0ls0-fjuToI2SoT-sk5fWqAJuKVinIlo,7502
10
- beswarm/aient/src/aient/core/request.py,sha256=1tedDQf8GRv5Y7rYNE_596vQb4o7e1icaKAA7lIl4YY,76114
11
- beswarm/aient/src/aient/core/response.py,sha256=Ba0BwsIN2ozZC_UInkGS07qKlpo3dIei6rw0INQ66BE,33086
14
+ beswarm/aient/src/aient/core/request.py,sha256=GrB8hQY1K8AF1O9f5g-hoY8fwZR4SUNNhvCDpuhHVl0,76822
15
+ beswarm/aient/src/aient/core/response.py,sha256=LwaDyCuuT0RPxBwE08k8_Dmh0df_q7q4BUix7NcCJV8,33207
12
16
  beswarm/aient/src/aient/core/utils.py,sha256=8TR442o3VV7Kl9l6f6LlmOUQ1UDZ-aXMzQqm-qIrqE4,28166
13
17
  beswarm/aient/src/aient/core/test/test_base_api.py,sha256=pWnycRJbuPSXKKU9AQjWrMAX1wiLC_014Qc9hh5C2Pw,524
14
18
  beswarm/aient/src/aient/core/test/test_geminimask.py,sha256=HFX8jDbNg_FjjgPNxfYaR-0-roUrOO-ND-FVsuxSoiw,13254
@@ -17,7 +21,7 @@ beswarm/aient/src/aient/core/test/test_payload.py,sha256=8jBiJY1uidm1jzL-EiK0s6U
17
21
  beswarm/aient/src/aient/models/__init__.py,sha256=ouNDNvoBBpIFrLsk09Q_sq23HR0GbLAKfGLIFmfEuXE,219
18
22
  beswarm/aient/src/aient/models/audio.py,sha256=kRd-8-WXzv4vwvsTGwnstK-WR8--vr9CdfCZzu8y9LA,1934
19
23
  beswarm/aient/src/aient/models/base.py,sha256=z-Z0pJfTN2x0cuwfvu0BdMRY9O-RmLwHEnBIJN1x4Fg,6719
20
- beswarm/aient/src/aient/models/chatgpt.py,sha256=Yum3_-LgHmFUII0AljfNNfSc8gBhJzyPYAWZJyr4yFo,46969
24
+ beswarm/aient/src/aient/models/chatgpt.py,sha256=UP7cn6Vo0bXzj6FpqTHIOjg1UygYQDXMSlUbXbH1uU4,47118
21
25
  beswarm/aient/src/aient/models/claude.py,sha256=JezghW7y0brl4Y5qiSHvnYR5prQCFywX4RViHt39pGI,26037
22
26
  beswarm/aient/src/aient/models/duckduckgo.py,sha256=1l7vYCs9SG5SWPCbcl7q6pCcB5AUF_r-a4l9frz3Ogo,8115
23
27
  beswarm/aient/src/aient/models/gemini.py,sha256=chGLc-8G_DAOxr10HPoOhvVFW1RvMgHd6mt--VyAW98,14730
@@ -125,8 +129,8 @@ beswarm/queries/tree-sitter-languages/ruby-tags.scm,sha256=vIidsCeE2A0vdFN18yXKq
125
129
  beswarm/queries/tree-sitter-languages/rust-tags.scm,sha256=9ljM1nzhfPs_ZTRw7cr2P9ToOyhGcKkCoN4_HPXSWi4,1451
126
130
  beswarm/queries/tree-sitter-languages/scala-tags.scm,sha256=UxQjz80JIrrJ7Pm56uUnQyThfmQNvwk7aQzPNypB-Ao,1761
127
131
  beswarm/queries/tree-sitter-languages/typescript-tags.scm,sha256=OMdCeedPiA24ky82DpgTMKXK_l2ySTuF2zrQ2fJAi9E,1253
128
- beswarm/tools/__init__.py,sha256=Q24EPaPvYzuwxmshvvCQR0-bXRllzxmMFiya8ZL5YEI,1472
129
- beswarm/tools/click.py,sha256=I62GF-bzcoNzhfu3DeWdiA88Sd_6gMFihrQSwFj4nks,20795
132
+ beswarm/tools/__init__.py,sha256=WUPfDbg7m6GIDL-vmWtSPtA_VNRATHNZETVh6y4y4tk,1448
133
+ beswarm/tools/click.py,sha256=7g6x1X7ffTInGWp7112KS-MAQ5-8wa1Ze2sIipUIbjc,20884
130
134
  beswarm/tools/completion.py,sha256=BHMMZeDCNEnaoOuwOoJjkuU_idwDB43mD1bT63p_waU,590
131
135
  beswarm/tools/edit_file.py,sha256=iwWl7a8sTVq4vj0e1ny3H6UGcHfYnxALRGcLuk5hZS8,9155
132
136
  beswarm/tools/planner.py,sha256=lguBCS6kpwNPoXQvqH-WySabVubT82iyWOkJnjt6dXw,1265
@@ -134,10 +138,10 @@ beswarm/tools/repomap.py,sha256=YsTPq5MXfn_Ds5begcvHDnY_Xp2d4jH-xmWqNMHnNHY,4523
134
138
  beswarm/tools/request_input.py,sha256=gXNAJPOJektMqxJVyzNTFOeMQ7xUkO-wWMYH-r2Rdwk,942
135
139
  beswarm/tools/screenshot.py,sha256=u6t8FCgW5YHJ_Oc4coo8e0F3wTusWE_-H8dFh1rBq9Q,1011
136
140
  beswarm/tools/search_arxiv.py,sha256=caVIUOzMhFu-r_gVgJZrH2EO9xI5iV_qLAg0b3Ie9Xg,8095
137
- beswarm/tools/search_web.py,sha256=ybbdbJq80plooXLMiyjAMOSCEyZJ0hquGUpabBhfFx0,16195
138
- beswarm/tools/taskmanager.py,sha256=n7G6cH96Tcz57MfiOffISMMAfUtr49_uikkeoCDCeRg,12940
139
- beswarm/tools/worker.py,sha256=s6tN4JhA07qzTlP7xWiB0MjnBIJ6XSrtlJTA_RqG1_A,23539
140
- beswarm-0.2.35.dist-info/METADATA,sha256=cfwB-Cq_qEDmpCNZyzrFNjDtnikxw8IqmrKf0MZd_Yk,3878
141
- beswarm-0.2.35.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
142
- beswarm-0.2.35.dist-info/top_level.txt,sha256=pJw4O87wvt5882smuSO6DfByJz7FJ8SxxT8h9fHCmpo,8
143
- beswarm-0.2.35.dist-info/RECORD,,
141
+ beswarm/tools/search_web.py,sha256=LhgXOSHL9fwxg5T2AAOV4TTJkcJVLogsfRJW2faPvDE,16147
142
+ beswarm/tools/subtasks.py,sha256=isc0bo24vVe3jCWW1wdP7hD5OQymilyka-QR7VSxx78,3652
143
+ beswarm/tools/worker.py,sha256=OVQeY3_I2Ornrv40BzIbd-kWfPd91GWLOziVNLl0NsQ,1383
144
+ beswarm-0.2.37.dist-info/METADATA,sha256=Ts-1AWrJJkDa6_BfwhILt3prvZjrkfmIBGdBid7lY7U,3878
145
+ beswarm-0.2.37.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
146
+ beswarm-0.2.37.dist-info/top_level.txt,sha256=pJw4O87wvt5882smuSO6DfByJz7FJ8SxxT8h9fHCmpo,8
147
+ beswarm-0.2.37.dist-info/RECORD,,