beswarm 0.1.61__tar.gz → 0.1.63__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (141) hide show
  1. {beswarm-0.1.61 → beswarm-0.1.63}/PKG-INFO +1 -1
  2. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/setup.py +1 -1
  3. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/src/aient/core/request.py +18 -5
  4. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/src/aient/core/response.py +22 -3
  5. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/src/aient/core/utils.py +23 -4
  6. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/tools/__init__.py +2 -1
  7. beswarm-0.1.63/beswarm/tools/worker.py +271 -0
  8. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm.egg-info/PKG-INFO +1 -1
  9. {beswarm-0.1.61 → beswarm-0.1.63}/pyproject.toml +1 -1
  10. beswarm-0.1.61/beswarm/tools/worker.py +0 -130
  11. {beswarm-0.1.61 → beswarm-0.1.63}/MANIFEST.in +0 -0
  12. {beswarm-0.1.61 → beswarm-0.1.63}/README.md +0 -0
  13. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/__init__.py +0 -0
  14. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/main.py +0 -0
  15. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/src/aient/__init__.py +0 -0
  16. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/src/aient/core/__init__.py +0 -0
  17. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/src/aient/core/log_config.py +0 -0
  18. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/src/aient/core/models.py +0 -0
  19. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/src/aient/core/test/test_base_api.py +0 -0
  20. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/src/aient/core/test/test_geminimask.py +0 -0
  21. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/src/aient/core/test/test_image.py +0 -0
  22. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/src/aient/core/test/test_payload.py +0 -0
  23. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/src/aient/models/__init__.py +0 -0
  24. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/src/aient/models/audio.py +0 -0
  25. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/src/aient/models/base.py +0 -0
  26. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/src/aient/models/chatgpt.py +0 -0
  27. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/src/aient/models/claude.py +0 -0
  28. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/src/aient/models/duckduckgo.py +0 -0
  29. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/src/aient/models/gemini.py +0 -0
  30. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/src/aient/models/groq.py +0 -0
  31. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/src/aient/models/vertex.py +0 -0
  32. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/src/aient/plugins/__init__.py +0 -0
  33. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/src/aient/plugins/arXiv.py +0 -0
  34. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/src/aient/plugins/config.py +0 -0
  35. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/src/aient/plugins/excute_command.py +0 -0
  36. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/src/aient/plugins/get_time.py +0 -0
  37. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/src/aient/plugins/image.py +0 -0
  38. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/src/aient/plugins/list_directory.py +0 -0
  39. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/src/aient/plugins/read_file.py +0 -0
  40. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/src/aient/plugins/read_image.py +0 -0
  41. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/src/aient/plugins/registry.py +0 -0
  42. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/src/aient/plugins/run_python.py +0 -0
  43. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/src/aient/plugins/websearch.py +0 -0
  44. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/src/aient/plugins/write_file.py +0 -0
  45. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/src/aient/prompt/__init__.py +0 -0
  46. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/src/aient/prompt/agent.py +0 -0
  47. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/src/aient/utils/__init__.py +0 -0
  48. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/src/aient/utils/prompt.py +0 -0
  49. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/src/aient/utils/scripts.py +0 -0
  50. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/test/chatgpt.py +0 -0
  51. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/test/claude.py +0 -0
  52. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/test/test.py +0 -0
  53. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/test/test_API.py +0 -0
  54. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/test/test_Deepbricks.py +0 -0
  55. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/test/test_Web_crawler.py +0 -0
  56. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/test/test_aiwaves.py +0 -0
  57. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/test/test_aiwaves_arxiv.py +0 -0
  58. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/test/test_ask_gemini.py +0 -0
  59. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/test/test_class.py +0 -0
  60. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/test/test_claude.py +0 -0
  61. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/test/test_claude_zh_char.py +0 -0
  62. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/test/test_ddg_search.py +0 -0
  63. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/test/test_download_pdf.py +0 -0
  64. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/test/test_gemini.py +0 -0
  65. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/test/test_get_token_dict.py +0 -0
  66. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/test/test_google_search.py +0 -0
  67. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/test/test_jieba.py +0 -0
  68. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/test/test_json.py +0 -0
  69. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/test/test_logging.py +0 -0
  70. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/test/test_ollama.py +0 -0
  71. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/test/test_plugin.py +0 -0
  72. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/test/test_py_run.py +0 -0
  73. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/test/test_requests.py +0 -0
  74. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/test/test_search.py +0 -0
  75. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/test/test_tikitoken.py +0 -0
  76. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/test/test_token.py +0 -0
  77. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/test/test_url.py +0 -0
  78. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/test/test_whisper.py +0 -0
  79. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/test/test_wildcard.py +0 -0
  80. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/aient/test/test_yjh.py +0 -0
  81. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/queries/tree-sitter-language-pack/README.md +0 -0
  82. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/queries/tree-sitter-language-pack/arduino-tags.scm +0 -0
  83. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/queries/tree-sitter-language-pack/c-tags.scm +0 -0
  84. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/queries/tree-sitter-language-pack/chatito-tags.scm +0 -0
  85. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/queries/tree-sitter-language-pack/commonlisp-tags.scm +0 -0
  86. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/queries/tree-sitter-language-pack/cpp-tags.scm +0 -0
  87. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/queries/tree-sitter-language-pack/csharp-tags.scm +0 -0
  88. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/queries/tree-sitter-language-pack/d-tags.scm +0 -0
  89. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/queries/tree-sitter-language-pack/dart-tags.scm +0 -0
  90. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/queries/tree-sitter-language-pack/elisp-tags.scm +0 -0
  91. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/queries/tree-sitter-language-pack/elixir-tags.scm +0 -0
  92. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/queries/tree-sitter-language-pack/elm-tags.scm +0 -0
  93. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/queries/tree-sitter-language-pack/gleam-tags.scm +0 -0
  94. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/queries/tree-sitter-language-pack/go-tags.scm +0 -0
  95. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/queries/tree-sitter-language-pack/java-tags.scm +0 -0
  96. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/queries/tree-sitter-language-pack/javascript-tags.scm +0 -0
  97. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/queries/tree-sitter-language-pack/lua-tags.scm +0 -0
  98. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/queries/tree-sitter-language-pack/pony-tags.scm +0 -0
  99. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/queries/tree-sitter-language-pack/properties-tags.scm +0 -0
  100. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/queries/tree-sitter-language-pack/python-tags.scm +0 -0
  101. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/queries/tree-sitter-language-pack/r-tags.scm +0 -0
  102. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/queries/tree-sitter-language-pack/racket-tags.scm +0 -0
  103. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/queries/tree-sitter-language-pack/ruby-tags.scm +0 -0
  104. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/queries/tree-sitter-language-pack/rust-tags.scm +0 -0
  105. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/queries/tree-sitter-language-pack/solidity-tags.scm +0 -0
  106. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/queries/tree-sitter-language-pack/swift-tags.scm +0 -0
  107. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/queries/tree-sitter-language-pack/udev-tags.scm +0 -0
  108. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/queries/tree-sitter-languages/README.md +0 -0
  109. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/queries/tree-sitter-languages/c-tags.scm +0 -0
  110. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/queries/tree-sitter-languages/c_sharp-tags.scm +0 -0
  111. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/queries/tree-sitter-languages/cpp-tags.scm +0 -0
  112. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/queries/tree-sitter-languages/dart-tags.scm +0 -0
  113. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/queries/tree-sitter-languages/elisp-tags.scm +0 -0
  114. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/queries/tree-sitter-languages/elixir-tags.scm +0 -0
  115. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/queries/tree-sitter-languages/elm-tags.scm +0 -0
  116. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/queries/tree-sitter-languages/go-tags.scm +0 -0
  117. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/queries/tree-sitter-languages/hcl-tags.scm +0 -0
  118. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/queries/tree-sitter-languages/java-tags.scm +0 -0
  119. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/queries/tree-sitter-languages/javascript-tags.scm +0 -0
  120. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/queries/tree-sitter-languages/kotlin-tags.scm +0 -0
  121. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/queries/tree-sitter-languages/ocaml-tags.scm +0 -0
  122. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/queries/tree-sitter-languages/php-tags.scm +0 -0
  123. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/queries/tree-sitter-languages/python-tags.scm +0 -0
  124. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/queries/tree-sitter-languages/ql-tags.scm +0 -0
  125. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/queries/tree-sitter-languages/ruby-tags.scm +0 -0
  126. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/queries/tree-sitter-languages/rust-tags.scm +0 -0
  127. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/queries/tree-sitter-languages/scala-tags.scm +0 -0
  128. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/queries/tree-sitter-languages/typescript-tags.scm +0 -0
  129. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/tools/click.py +0 -0
  130. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/tools/edit_file.py +0 -0
  131. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/tools/planner.py +0 -0
  132. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/tools/repomap.py +0 -0
  133. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/tools/search_arxiv.py +0 -0
  134. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/tools/search_web.py +0 -0
  135. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/tools/think.py +0 -0
  136. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm/utils.py +0 -0
  137. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm.egg-info/SOURCES.txt +0 -0
  138. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm.egg-info/dependency_links.txt +0 -0
  139. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm.egg-info/requires.txt +0 -0
  140. {beswarm-0.1.61 → beswarm-0.1.63}/beswarm.egg-info/top_level.txt +0 -0
  141. {beswarm-0.1.61 → beswarm-0.1.63}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: beswarm
3
- Version: 0.1.61
3
+ Version: 0.1.63
4
4
  Summary: MAS
5
5
  Requires-Python: >=3.11
6
6
  Description-Content-Type: text/markdown
@@ -4,7 +4,7 @@ from setuptools import setup, find_packages
4
4
 
5
5
  setup(
6
6
  name="aient",
7
- version="1.1.16",
7
+ version="1.1.17",
8
8
  description="Aient: The Awakening of Agent.",
9
9
  long_description=Path.open(Path("README.md"), encoding="utf-8").read(),
10
10
  long_description_content_type="text/markdown",
@@ -4,7 +4,7 @@ import httpx
4
4
  import base64
5
5
  import urllib.parse
6
6
 
7
- from .models import RequestModel
7
+ from .models import RequestModel, Message
8
8
  from .utils import (
9
9
  c3s,
10
10
  c3o,
@@ -50,7 +50,12 @@ async def get_gemini_payload(request, engine, provider, api_key=None):
50
50
  systemInstruction = None
51
51
  system_prompt = ""
52
52
  function_arguments = None
53
- for msg in request.messages:
53
+
54
+ try:
55
+ request_messages = [Message(role="user", content=request.prompt)]
56
+ except:
57
+ request_messages = request.messages
58
+ for msg in request_messages:
54
59
  if msg.role == "assistant":
55
60
  msg.role = "model"
56
61
  tool_calls = None
@@ -104,9 +109,10 @@ async def get_gemini_payload(request, engine, provider, api_key=None):
104
109
  elif msg.role == "system":
105
110
  content[0]["text"] = re.sub(r"_+", "_", content[0]["text"])
106
111
  system_prompt = system_prompt + "\n\n" + content[0]["text"]
107
- systemInstruction = {"parts": [{"text": system_prompt}]}
112
+ if system_prompt.strip():
113
+ systemInstruction = {"parts": [{"text": system_prompt}]}
108
114
 
109
- if any(off_model in original_model for off_model in gemini_max_token_65k_models):
115
+ if any(off_model in original_model for off_model in gemini_max_token_65k_models) or original_model == "gemini-2.0-flash-preview-image-generation":
110
116
  safety_settings = "OFF"
111
117
  else:
112
118
  safety_settings = "BLOCK_NONE"
@@ -160,6 +166,7 @@ async def get_gemini_payload(request, engine, provider, api_key=None):
160
166
  'top_logprobs',
161
167
  'response_format',
162
168
  'stream_options',
169
+ 'prompt',
163
170
  ]
164
171
  generation_config = {}
165
172
 
@@ -214,6 +221,12 @@ async def get_gemini_payload(request, engine, provider, api_key=None):
214
221
  else:
215
222
  payload["generationConfig"]["maxOutputTokens"] = 8192
216
223
 
224
+ if original_model == "gemini-2.0-flash-preview-image-generation":
225
+ payload["generationConfig"]["response_modalities"] = [
226
+ "Text",
227
+ "Image",
228
+ ]
229
+
217
230
  if "gemini-2.5" in original_model:
218
231
  payload["generationConfig"]["thinkingConfig"] = {
219
232
  "includeThoughts": True,
@@ -241,7 +254,7 @@ async def get_gemini_payload(request, engine, provider, api_key=None):
241
254
  if key == request.model:
242
255
  for k, v in value.items():
243
256
  payload[k] = v
244
- elif all(_model not in request.model.lower() for _model in ["gemini", "gpt", "claude"]):
257
+ elif all(_model not in request.model.lower() for _model in ["gemini", "gpt", "claude", "deepseek"]) and "-" not in key:
245
258
  payload[key] = value
246
259
 
247
260
  return url, headers, payload
@@ -36,6 +36,7 @@ async def fetch_gemini_response_stream(client, url, headers, payload, model):
36
36
  candidatesTokenCount = 0
37
37
  totalTokenCount = 0
38
38
  parts_json = ""
39
+ image_base64 = ""
39
40
  # line_index = 0
40
41
  # last_text_line = 0
41
42
  # if "thinking" in model:
@@ -53,6 +54,8 @@ async def fetch_gemini_response_stream(client, url, headers, payload, model):
53
54
  if line and '\"finishReason\": \"' in line:
54
55
  if "stop" not in line.lower():
55
56
  logger.error(f"finishReason: {line}")
57
+ sse_string = await generate_sse_response(timestamp, model, stop="stop")
58
+ yield sse_string
56
59
  is_finish = True
57
60
  if is_finish and '\"promptTokenCount\": ' in line:
58
61
  json_data = parse_json_safely( "{" + line + "}")
@@ -67,17 +70,25 @@ async def fetch_gemini_response_stream(client, url, headers, payload, model):
67
70
  if (line and '"parts": [' in line or parts_json != "") and is_finish == False:
68
71
  parts_json += line
69
72
  if parts_json != "" and line and '],' == line.strip():
70
- tmp_parts_json = "{" + parts_json.split("} ] },")[0].strip().rstrip("}], ").replace("\n", "\\n").lstrip("{") + "}]}"
73
+ # tmp_parts_json = "{" + parts_json.split("} ] },")[0].strip().rstrip("}], ").replace("\n", "\\n").lstrip("{") + "}]}"
74
+ tmp_parts_json = "{" + parts_json.split("} ] },")[0].strip().rstrip("}], ").replace("\n", "\\n").lstrip("{")
75
+ if "inlineData" in tmp_parts_json:
76
+ tmp_parts_json = tmp_parts_json + "}}]}"
77
+ else:
78
+ tmp_parts_json = tmp_parts_json + "}]}"
71
79
  try:
72
80
  json_data = json.loads(tmp_parts_json)
73
81
 
74
82
  content = safe_get(json_data, "parts", 0, "text", default="")
83
+ b64_json = safe_get(json_data, "parts", 0, "inlineData", "data", default="")
84
+ if b64_json:
85
+ image_base64 = b64_json
75
86
 
76
87
  is_thinking = safe_get(json_data, "parts", 0, "thought", default=False)
77
88
  if is_thinking:
78
89
  sse_string = await generate_sse_response(timestamp, model, reasoning_content=content)
79
90
  yield sse_string
80
- else:
91
+ elif not image_base64:
81
92
  sse_string = await generate_sse_response(timestamp, model, content=content)
82
93
  yield sse_string
83
94
  except json.JSONDecodeError:
@@ -93,6 +104,10 @@ async def fetch_gemini_response_stream(client, url, headers, payload, model):
93
104
 
94
105
  function_full_response += line
95
106
 
107
+ if image_base64:
108
+ yield await generate_no_stream_response(timestamp, model, content=content, tools_id=None, function_call_name=None, function_call_content=None, role=None, total_tokens=totalTokenCount, prompt_tokens=promptTokenCount, completion_tokens=candidatesTokenCount, image_base64=image_base64)
109
+ return
110
+
96
111
  if need_function_call:
97
112
  function_call = json.loads(function_full_response)
98
113
  function_call_name = function_call["functionCall"]["name"]
@@ -535,9 +550,13 @@ async def fetch_response(client, url, headers, payload, engine, model):
535
550
  # print("parsed_data", json.dumps(parsed_data, indent=4, ensure_ascii=False))
536
551
  content = ""
537
552
  reasoning_content = ""
553
+ image_base64 = ""
538
554
  parts_list = safe_get(parsed_data, 0, "candidates", 0, "content", "parts", default=[])
539
555
  for item in parts_list:
540
556
  chunk = safe_get(item, "text")
557
+ b64_json = safe_get(item, "inlineData", "data", default="")
558
+ if b64_json:
559
+ image_base64 = b64_json
541
560
  is_think = safe_get(item, "thought", default=False)
542
561
  # logger.info(f"chunk: {repr(chunk)}")
543
562
  if chunk:
@@ -571,7 +590,7 @@ async def fetch_response(client, url, headers, payload, engine, model):
571
590
  function_call_content = safe_get(parsed_data, -1, "candidates", 0, "content", "parts", 0, "functionCall", "args", default=None)
572
591
 
573
592
  timestamp = int(datetime.timestamp(datetime.now()))
574
- yield await generate_no_stream_response(timestamp, model, content=content, tools_id=None, function_call_name=function_call_name, function_call_content=function_call_content, role=role, total_tokens=total_tokens, prompt_tokens=prompt_tokens, completion_tokens=candidates_tokens, reasoning_content=reasoning_content)
593
+ yield await generate_no_stream_response(timestamp, model, content=content, tools_id=None, function_call_name=function_call_name, function_call_content=function_call_content, role=role, total_tokens=total_tokens, prompt_tokens=prompt_tokens, completion_tokens=candidates_tokens, reasoning_content=reasoning_content, image_base64=image_base64)
575
594
 
576
595
  elif engine == "claude":
577
596
  response_json = response.json()
@@ -112,7 +112,7 @@ def get_engine(provider, endpoint=None, original_model=""):
112
112
  if provider.get("engine"):
113
113
  engine = provider["engine"]
114
114
 
115
- if endpoint == "/v1/images/generations" or "stable-diffusion" in original_model:
115
+ if engine != "gemini" and (endpoint == "/v1/images/generations" or "stable-diffusion" in original_model):
116
116
  engine = "dalle"
117
117
  stream = False
118
118
 
@@ -449,7 +449,7 @@ end_of_line = "\n\n"
449
449
 
450
450
  import random
451
451
  import string
452
- async def generate_sse_response(timestamp, model, content=None, tools_id=None, function_call_name=None, function_call_content=None, role=None, total_tokens=0, prompt_tokens=0, completion_tokens=0, reasoning_content=None):
452
+ async def generate_sse_response(timestamp, model, content=None, tools_id=None, function_call_name=None, function_call_content=None, role=None, total_tokens=0, prompt_tokens=0, completion_tokens=0, reasoning_content=None, stop=None):
453
453
  random.seed(timestamp)
454
454
  random_str = ''.join(random.choices(string.ascii_letters + string.digits, k=29))
455
455
 
@@ -467,7 +467,7 @@ async def generate_sse_response(timestamp, model, content=None, tools_id=None, f
467
467
  "index": 0,
468
468
  "delta": delta_content,
469
469
  "logprobs": None,
470
- "finish_reason": None if content else "stop"
470
+ "finish_reason": None if content or reasoning_content else "stop"
471
471
  }
472
472
  ],
473
473
  "usage": None,
@@ -484,14 +484,19 @@ async def generate_sse_response(timestamp, model, content=None, tools_id=None, f
484
484
  total_tokens = prompt_tokens + completion_tokens
485
485
  sample_data["usage"] = {"prompt_tokens": prompt_tokens, "completion_tokens": completion_tokens, "total_tokens": total_tokens}
486
486
  sample_data["choices"] = []
487
+ if stop:
488
+ sample_data["choices"][0]["delta"] = {}
489
+ sample_data["choices"][0]["finish_reason"] = stop
490
+
487
491
  json_data = json.dumps(sample_data, ensure_ascii=False)
492
+ # print("json_data", json.dumps(sample_data, indent=4, ensure_ascii=False))
488
493
 
489
494
  # 构建SSE响应
490
495
  sse_response = f"data: {json_data}" + end_of_line
491
496
 
492
497
  return sse_response
493
498
 
494
- async def generate_no_stream_response(timestamp, model, content=None, tools_id=None, function_call_name=None, function_call_content=None, role=None, total_tokens=0, prompt_tokens=0, completion_tokens=0, reasoning_content=None):
499
+ async def generate_no_stream_response(timestamp, model, content=None, tools_id=None, function_call_name=None, function_call_content=None, role=None, total_tokens=0, prompt_tokens=0, completion_tokens=0, reasoning_content=None, image_base64=None):
495
500
  random.seed(timestamp)
496
501
  random_str = ''.join(random.choices(string.ascii_letters + string.digits, k=29))
497
502
  message = {
@@ -554,11 +559,25 @@ async def generate_no_stream_response(timestamp, model, content=None, tools_id=N
554
559
  "system_fingerprint": "fp_4691090a87"
555
560
  }
556
561
 
562
+ if image_base64:
563
+ sample_data = {
564
+ "created": timestamp,
565
+ "data": [{
566
+ "b64_json": image_base64
567
+ }],
568
+ # "usage": {
569
+ # "total_tokens": 100,
570
+ # "input_tokens": 50,
571
+ # "output_tokens": 50,
572
+ # }
573
+ }
574
+
557
575
  if total_tokens:
558
576
  total_tokens = prompt_tokens + completion_tokens
559
577
  sample_data["usage"] = {"prompt_tokens": prompt_tokens, "completion_tokens": completion_tokens, "total_tokens": total_tokens}
560
578
 
561
579
  json_data = json.dumps(sample_data, ensure_ascii=False)
580
+ # print("json_data", json.dumps(sample_data, indent=4, ensure_ascii=False))
562
581
 
563
582
  return json_data
564
583
 
@@ -1,6 +1,6 @@
1
1
  from .think import think
2
2
  from .edit_file import edit_file
3
- from .worker import worker
3
+ from .worker import worker, worker_gen
4
4
 
5
5
  from .search_arxiv import search_arxiv
6
6
  from .repomap import get_code_repo_map
@@ -26,6 +26,7 @@ __all__ = [
26
26
  "think",
27
27
  "edit_file",
28
28
  "worker",
29
+ "worker_gen",
29
30
  "search_arxiv",
30
31
  "get_code_repo_map",
31
32
  # aient.plugins
@@ -0,0 +1,271 @@
1
+ import os
2
+ import re
3
+ import copy
4
+ import json
5
+ import platform
6
+ from datetime import datetime
7
+
8
+ from ..aient.src.aient.models import chatgpt
9
+ from ..aient.src.aient.plugins import register_tool, get_function_call_list
10
+ from ..aient.src.aient.prompt import system_prompt, instruction_system_prompt
11
+ from ..utils import extract_xml_content, get_current_screen_image_message
12
+
13
+ @register_tool()
14
+ async def worker(goal, tools, work_dir, cache_messages=None):
15
+ """
16
+ 启动一个 **工作智能体 (Worker Agent)** 来自动完成指定的任务目标 (`goal`)。
17
+
18
+ 这个工作智能体接收一个清晰的任务描述、一组可供调用的工具 (`tools`),以及一个工作目录 (`work_dir`)。
19
+ 它会利用语言模型的能力,结合可用的工具,自主规划并逐步执行必要的操作,直到最终完成指定的任务目标。
20
+ 核心功能是根据输入的目标,驱动整个任务执行流程。
21
+
22
+ Args:
23
+ goal (str): 需要完成的具体任务目标描述。工作智能体将围绕此目标进行工作。必须清晰、具体。
24
+ tools (list[str]): 一个包含可用工具函数对象的列表。工作智能体在执行任务时可能会调用这些工具来与环境交互(例如读写文件、执行命令等)。
25
+ work_dir (str): 工作目录的绝对路径。工作智能体将在此目录上下文中执行操作。
26
+
27
+ Returns:
28
+ str: 当任务成功完成时,返回字符串 "任务已完成"。
29
+ """
30
+
31
+ tools_json = [value for _, value in get_function_call_list(tools).items()]
32
+ work_agent_system_prompt = system_prompt.format(
33
+ os_version=platform.platform(),
34
+ workspace_path=work_dir,
35
+ shell=os.getenv('SHELL', 'Unknown'),
36
+ tools_list=tools_json
37
+ )
38
+
39
+ work_agent_config = {
40
+ "api_key": os.getenv("API_KEY"),
41
+ "api_url": os.getenv("BASE_URL"),
42
+ "engine": os.getenv("MODEL"),
43
+ "system_prompt": work_agent_system_prompt,
44
+ "print_log": True,
45
+ # "max_tokens": 8000,
46
+ "temperature": 0.5,
47
+ "function_call_max_loop": 100,
48
+ }
49
+ if cache_messages:
50
+ work_agent_config["cache_messages"] = cache_messages
51
+
52
+ instruction_agent_config = {
53
+ "api_key": os.getenv("API_KEY"),
54
+ "api_url": os.getenv("BASE_URL"),
55
+ "engine": os.getenv("MODEL"),
56
+ "system_prompt": instruction_system_prompt.format(os_version=platform.platform(), tools_list=tools_json, workspace_path=work_dir, current_time=datetime.now().strftime("%Y-%m-%d %H:%M:%S")),
57
+ "print_log": False,
58
+ # "max_tokens": 4000,
59
+ "temperature": 0.7,
60
+ "use_plugins": False,
61
+ }
62
+
63
+ # 工作agent初始化
64
+ work_agent = chatgpt(**work_agent_config)
65
+ async def instruction_agent_task():
66
+ while True:
67
+
68
+ instruction_prompt = f"""
69
+ </work_agent_conversation_end>
70
+ 任务目标: {goal}
71
+
72
+ 在 tag <work_agent_conversation_start>...</work_agent_conversation_end> 之前的对话历史都是工作智能体的对话历史。
73
+
74
+ 根据以上对话历史和目标,请生成下一步指令。如果任务已完成,请回复"任务已完成"。
75
+ """
76
+ # 让指令agent分析对话历史并生成新指令
77
+ instruction_agent = chatgpt(**instruction_agent_config)
78
+ conversation_history = copy.deepcopy(work_agent.conversation["default"])
79
+
80
+ cache_dir = os.path.join(work_dir, ".beswarm")
81
+ os.makedirs(cache_dir, exist_ok=True)
82
+ cache_file = os.path.join(cache_dir, "work_agent_conversation_history.json")
83
+ with open(cache_file, "w", encoding="utf-8") as f:
84
+ f.write(json.dumps(conversation_history, ensure_ascii=False, indent=4))
85
+
86
+ work_agent_system_prompt = conversation_history.pop(0)
87
+ if conversation_history:
88
+ # 获取原始内容
89
+ original_content = work_agent_system_prompt["content"]
90
+
91
+ # 定义正则表达式
92
+ regex = r"<latest_file_content>(.*?)</latest_file_content>"
93
+
94
+ # 进行匹配
95
+ match = re.search(regex, original_content, re.DOTALL)
96
+
97
+ # 提取内容或设置为空字符串
98
+ if match:
99
+ extracted_content = f"<latest_file_content>{match.group(1)}</latest_file_content>\n\n"
100
+ else:
101
+ extracted_content = ""
102
+
103
+ conversation_history[0]["content"] = extracted_content + conversation_history[0]["content"]
104
+
105
+ instruction_agent.conversation["default"][1:] = conversation_history
106
+ if "find_and_click_element" in str(tools_json):
107
+ instruction_prompt = await get_current_screen_image_message(instruction_prompt)
108
+ next_instruction = await instruction_agent.ask_async(instruction_prompt)
109
+ print("\n🤖 指令智能体生成的下一步指令:", next_instruction)
110
+ if "fetch_gpt_response_stream HTTP Error', 'status_code': 404" in next_instruction:
111
+ raise Exception(f"Model: {instruction_agent_config['engine']} not found!")
112
+ if "'status_code': 413" in next_instruction:
113
+ raise Exception(f"The request body is too long, please try again.")
114
+ next_instruction = extract_xml_content(next_instruction, "instructions")
115
+ if not next_instruction:
116
+ print("\n❌ 指令智能体生成的指令不符合要求,请重新生成。")
117
+ continue
118
+ else:
119
+ if conversation_history == []:
120
+ next_instruction = (
121
+ "任务描述:\n"
122
+ f"{goal}\n\n"
123
+ "现在开始执行第一步:\n"
124
+ f"{next_instruction}"
125
+ )
126
+ break
127
+ return next_instruction
128
+
129
+ need_instruction = True
130
+ while True:
131
+ next_instruction = ''
132
+ if need_instruction:
133
+ next_instruction = await instruction_agent_task()
134
+
135
+ # 检查任务是否完成
136
+ if "任务已完成" in next_instruction:
137
+ print("\n✅ 任务已完成!")
138
+ break
139
+ if "find_and_click_element" in str(tools_json):
140
+ next_instruction = await get_current_screen_image_message(next_instruction)
141
+ result = await work_agent.ask_async(next_instruction)
142
+ if result.strip() == '' or result.strip() == '</content>\n</write_to_file>':
143
+ print("\n❌ 工作智能体回复为空,请重新生成指令。")
144
+ need_instruction = False
145
+ continue
146
+ print("✅ 工作智能体回复:", result)
147
+ need_instruction = True
148
+
149
+ return "任务已完成"
150
+
151
+ async def worker_gen(goal, tools, work_dir, cache_messages=None):
152
+ tools_json = [value for _, value in get_function_call_list(tools).items()]
153
+ work_agent_system_prompt = system_prompt.format(
154
+ os_version=platform.platform(),
155
+ workspace_path=work_dir,
156
+ shell=os.getenv('SHELL', 'Unknown'),
157
+ tools_list=tools_json
158
+ )
159
+
160
+ work_agent_config = {
161
+ "api_key": os.getenv("API_KEY"),
162
+ "api_url": os.getenv("BASE_URL"),
163
+ "engine": os.getenv("MODEL"),
164
+ "system_prompt": work_agent_system_prompt,
165
+ "print_log": True,
166
+ # "max_tokens": 8000,
167
+ "temperature": 0.5,
168
+ "function_call_max_loop": 100,
169
+ }
170
+ if cache_messages:
171
+ work_agent_config["cache_messages"] = cache_messages
172
+
173
+ instruction_agent_config = {
174
+ "api_key": os.getenv("API_KEY"),
175
+ "api_url": os.getenv("BASE_URL"),
176
+ "engine": os.getenv("MODEL"),
177
+ "system_prompt": instruction_system_prompt.format(os_version=platform.platform(), tools_list=tools_json, workspace_path=work_dir, current_time=datetime.now().strftime("%Y-%m-%d %H:%M:%S")),
178
+ "print_log": False,
179
+ # "max_tokens": 4000,
180
+ "temperature": 0.7,
181
+ "use_plugins": False,
182
+ }
183
+
184
+ # 工作agent初始化
185
+ work_agent = chatgpt(**work_agent_config)
186
+ async def instruction_agent_task():
187
+ while True:
188
+
189
+ instruction_prompt = f"""
190
+ </work_agent_conversation_end>
191
+ 任务目标: {goal}
192
+
193
+ 在 tag <work_agent_conversation_start>...</work_agent_conversation_end> 之前的对话历史都是工作智能体的对话历史。
194
+
195
+ 根据以上对话历史和目标,请生成下一步指令。如果任务已完成,请回复"任务已完成"。
196
+ """
197
+ # 让指令agent分析对话历史并生成新指令
198
+ instruction_agent = chatgpt(**instruction_agent_config)
199
+ conversation_history = copy.deepcopy(work_agent.conversation["default"])
200
+
201
+ cache_dir = os.path.join(work_dir, ".beswarm")
202
+ os.makedirs(cache_dir, exist_ok=True)
203
+ cache_file = os.path.join(cache_dir, "work_agent_conversation_history.json")
204
+ with open(cache_file, "w", encoding="utf-8") as f:
205
+ f.write(json.dumps(conversation_history, ensure_ascii=False, indent=4))
206
+
207
+ work_agent_system_prompt = conversation_history.pop(0)
208
+ if conversation_history:
209
+ # 获取原始内容
210
+ original_content = work_agent_system_prompt["content"]
211
+
212
+ # 定义正则表达式
213
+ regex = r"<latest_file_content>(.*?)</latest_file_content>"
214
+
215
+ # 进行匹配
216
+ match = re.search(regex, original_content, re.DOTALL)
217
+
218
+ # 提取内容或设置为空字符串
219
+ if match:
220
+ extracted_content = f"<latest_file_content>{match.group(1)}</latest_file_content>\n\n"
221
+ else:
222
+ extracted_content = ""
223
+
224
+ conversation_history[0]["content"] = extracted_content + conversation_history[0]["content"]
225
+
226
+ instruction_agent.conversation["default"][1:] = conversation_history
227
+ if "find_and_click_element" in str(tools_json):
228
+ instruction_prompt = await get_current_screen_image_message(instruction_prompt)
229
+ next_instruction = await instruction_agent.ask_async(instruction_prompt)
230
+ print("\n🤖 指令智能体生成的下一步指令:", next_instruction)
231
+ if "fetch_gpt_response_stream HTTP Error', 'status_code': 404" in next_instruction:
232
+ raise Exception(f"Model: {instruction_agent_config['engine']} not found!")
233
+ if "'status_code': 413" in next_instruction:
234
+ raise Exception(f"The request body is too long, please try again.")
235
+ next_instruction = extract_xml_content(next_instruction, "instructions")
236
+ if not next_instruction:
237
+ print("\n❌ 指令智能体生成的指令不符合要求,请重新生成。")
238
+ continue
239
+ else:
240
+ if conversation_history == []:
241
+ next_instruction = (
242
+ "任务描述:\n"
243
+ f"{goal}\n\n"
244
+ "现在开始执行第一步:\n"
245
+ f"{next_instruction}"
246
+ )
247
+ break
248
+ return next_instruction
249
+
250
+ need_instruction = True
251
+ while True:
252
+ next_instruction = ''
253
+ if need_instruction:
254
+ next_instruction = await instruction_agent_task()
255
+
256
+ yield {"user": next_instruction}
257
+
258
+ # 检查任务是否完成
259
+ if "任务已完成" in next_instruction:
260
+ print("\n✅ 任务已完成!")
261
+ break
262
+ if "find_and_click_element" in str(tools_json):
263
+ next_instruction = await get_current_screen_image_message(next_instruction)
264
+ result = await work_agent.ask_async(next_instruction)
265
+ if result.strip() == '' or result.strip() == '</content>\n</write_to_file>':
266
+ print("\n❌ 工作智能体回复为空,请重新生成指令。")
267
+ need_instruction = False
268
+ continue
269
+ yield {"assistant": result}
270
+ print("✅ 工作智能体回复:", result)
271
+ need_instruction = True
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: beswarm
3
- Version: 0.1.61
3
+ Version: 0.1.63
4
4
  Summary: MAS
5
5
  Requires-Python: >=3.11
6
6
  Description-Content-Type: text/markdown
@@ -1,6 +1,6 @@
1
1
  [project]
2
2
  name = "beswarm"
3
- version = "0.1.61"
3
+ version = "0.1.63"
4
4
  description = "MAS"
5
5
  readme = "README.md"
6
6
  requires-python = ">=3.11"
@@ -1,130 +0,0 @@
1
- import os
2
- import copy
3
- import json
4
- import platform
5
- from datetime import datetime
6
-
7
- from ..aient.src.aient.models import chatgpt
8
- from ..aient.src.aient.plugins import register_tool, get_function_call_list
9
- from ..aient.src.aient.prompt import system_prompt, instruction_system_prompt
10
- from ..utils import extract_xml_content, get_current_screen_image_message
11
-
12
- @register_tool()
13
- async def worker(goal, tools, work_dir, cache_messages=None):
14
- """
15
- 启动一个 **工作智能体 (Worker Agent)** 来自动完成指定的任务目标 (`goal`)。
16
-
17
- 这个工作智能体接收一个清晰的任务描述、一组可供调用的工具 (`tools`),以及一个工作目录 (`work_dir`)。
18
- 它会利用语言模型的能力,结合可用的工具,自主规划并逐步执行必要的操作,直到最终完成指定的任务目标。
19
- 核心功能是根据输入的目标,驱动整个任务执行流程。
20
-
21
- Args:
22
- goal (str): 需要完成的具体任务目标描述。工作智能体将围绕此目标进行工作。必须清晰、具体。
23
- tools (list[str]): 一个包含可用工具函数对象的列表。工作智能体在执行任务时可能会调用这些工具来与环境交互(例如读写文件、执行命令等)。
24
- work_dir (str): 工作目录的绝对路径。工作智能体将在此目录上下文中执行操作。
25
-
26
- Returns:
27
- str: 当任务成功完成时,返回字符串 "任务已完成"。
28
- """
29
-
30
- tools_json = [value for _, value in get_function_call_list(tools).items()]
31
- work_agent_system_prompt = system_prompt.format(
32
- os_version=platform.platform(),
33
- workspace_path=work_dir,
34
- shell=os.getenv('SHELL', 'Unknown'),
35
- tools_list=tools_json
36
- )
37
-
38
- work_agent_config = {
39
- "api_key": os.getenv("API_KEY"),
40
- "api_url": os.getenv("BASE_URL"),
41
- "engine": os.getenv("MODEL"),
42
- "system_prompt": work_agent_system_prompt,
43
- "print_log": True,
44
- # "max_tokens": 8000,
45
- "temperature": 0.5,
46
- "function_call_max_loop": 100,
47
- }
48
- if cache_messages:
49
- work_agent_config["cache_messages"] = cache_messages
50
-
51
- instruction_agent_config = {
52
- "api_key": os.getenv("API_KEY"),
53
- "api_url": os.getenv("BASE_URL"),
54
- "engine": os.getenv("MODEL"),
55
- "system_prompt": instruction_system_prompt.format(os_version=platform.platform(), tools_list=tools_json, workspace_path=work_dir, current_time=datetime.now().strftime("%Y-%m-%d %H:%M:%S")),
56
- "print_log": False,
57
- # "max_tokens": 4000,
58
- "temperature": 0.7,
59
- "use_plugins": False,
60
- }
61
-
62
- # 工作agent初始化
63
- work_agent = chatgpt(**work_agent_config)
64
- async def instruction_agent_task():
65
- while True:
66
-
67
- instruction_prompt = f"""
68
- </work_agent_conversation_end>
69
- 任务目标: {goal}
70
-
71
- 在 tag <work_agent_conversation_start>...</work_agent_conversation_end> 之前的对话历史都是工作智能体的对话历史。
72
-
73
- 根据以上对话历史和目标,请生成下一步指令。如果任务已完成,请回复"任务已完成"。
74
- """
75
- # 让指令agent分析对话历史并生成新指令
76
- instruction_agent = chatgpt(**instruction_agent_config)
77
- conversation_history = copy.deepcopy(work_agent.conversation["default"])
78
-
79
- cache_dir = os.path.join(work_dir, ".beswarm")
80
- os.makedirs(cache_dir, exist_ok=True)
81
- cache_file = os.path.join(cache_dir, "work_agent_conversation_history.json")
82
- with open(cache_file, "w", encoding="utf-8") as f:
83
- f.write(json.dumps(conversation_history, ensure_ascii=False, indent=4))
84
-
85
- conversation_history.pop(0)
86
- instruction_agent.conversation["default"][1:] = conversation_history
87
- if "find_and_click_element" in str(tools_json):
88
- instruction_prompt = await get_current_screen_image_message(instruction_prompt)
89
- next_instruction = await instruction_agent.ask_async(instruction_prompt)
90
- print("\n🤖 指令智能体生成的下一步指令:", next_instruction)
91
- if "fetch_gpt_response_stream HTTP Error', 'status_code': 404" in next_instruction:
92
- raise Exception(f"Model: {instruction_agent_config['engine']} not found!")
93
- if "'status_code': 413" in next_instruction:
94
- raise Exception(f"The request body is too long, please try again.")
95
- next_instruction = extract_xml_content(next_instruction, "instructions")
96
- if not next_instruction:
97
- print("\n❌ 指令智能体生成的指令不符合要求,请重新生成。")
98
- continue
99
- else:
100
- if conversation_history == []:
101
- next_instruction = (
102
- "任务描述:\n"
103
- f"{goal}\n\n"
104
- "现在开始执行第一步:\n"
105
- f"{next_instruction}"
106
- )
107
- break
108
- return next_instruction
109
-
110
- need_instruction = True
111
- while True:
112
- next_instruction = ''
113
- if need_instruction:
114
- next_instruction = await instruction_agent_task()
115
-
116
- # 检查任务是否完成
117
- if "任务已完成" in next_instruction:
118
- print("\n✅ 任务已完成!")
119
- break
120
- if "find_and_click_element" in str(tools_json):
121
- next_instruction = await get_current_screen_image_message(next_instruction)
122
- result = await work_agent.ask_async(next_instruction)
123
- if result.strip() == '' or result.strip() == '</content>\n</write_to_file>':
124
- print("\n❌ 工作智能体回复为空,请重新生成指令。")
125
- need_instruction = False
126
- continue
127
- print("✅ 工作智能体回复:", result)
128
- need_instruction = True
129
-
130
- return "任务已完成"
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes