bayesianflow-for-chem 1.2.4__tar.gz → 2.3.1__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {bayesianflow_for_chem-1.2.4 → bayesianflow_for_chem-2.3.1}/PKG-INFO +27 -20
- {bayesianflow_for_chem-1.2.4 → bayesianflow_for_chem-2.3.1}/README.md +10 -2
- bayesianflow_for_chem-2.3.1/bayesianflow_for_chem/__init__.py +35 -0
- bayesianflow_for_chem-2.3.1/bayesianflow_for_chem/cli.py +727 -0
- {bayesianflow_for_chem-1.2.4 → bayesianflow_for_chem-2.3.1}/bayesianflow_for_chem/data.py +25 -61
- {bayesianflow_for_chem-1.2.4 → bayesianflow_for_chem-2.3.1}/bayesianflow_for_chem/model.py +745 -195
- {bayesianflow_for_chem-1.2.4 → bayesianflow_for_chem-2.3.1}/bayesianflow_for_chem/scorer.py +2 -2
- bayesianflow_for_chem-2.3.1/bayesianflow_for_chem/spectra.py +56 -0
- bayesianflow_for_chem-2.3.1/bayesianflow_for_chem/tool.py +669 -0
- {bayesianflow_for_chem-1.2.4 → bayesianflow_for_chem-2.3.1}/bayesianflow_for_chem/train.py +14 -5
- {bayesianflow_for_chem-1.2.4 → bayesianflow_for_chem-2.3.1}/bayesianflow_for_chem.egg-info/PKG-INFO +27 -20
- {bayesianflow_for_chem-1.2.4 → bayesianflow_for_chem-2.3.1}/bayesianflow_for_chem.egg-info/SOURCES.txt +9 -2
- bayesianflow_for_chem-2.3.1/bayesianflow_for_chem.egg-info/entry_points.txt +2 -0
- bayesianflow_for_chem-2.3.1/bayesianflow_for_chem.egg-info/requires.txt +9 -0
- bayesianflow_for_chem-2.3.1/pyproject.toml +6 -0
- {bayesianflow_for_chem-1.2.4 → bayesianflow_for_chem-2.3.1}/setup.py +38 -22
- bayesianflow_for_chem-2.3.1/test/test_cli_plugin.py +55 -0
- bayesianflow_for_chem-2.3.1/test/test_jit_compatibility.py +26 -0
- bayesianflow_for_chem-2.3.1/test/test_merge_lora.py +40 -0
- bayesianflow_for_chem-2.3.1/test/test_molecular_embedding.py +67 -0
- bayesianflow_for_chem-1.2.4/bayesianflow_for_chem/__init__.py +0 -11
- bayesianflow_for_chem-1.2.4/bayesianflow_for_chem/tool.py +0 -613
- bayesianflow_for_chem-1.2.4/bayesianflow_for_chem.egg-info/requires.txt +0 -10
- bayesianflow_for_chem-1.2.4/pyproject.toml +0 -3
- {bayesianflow_for_chem-1.2.4 → bayesianflow_for_chem-2.3.1}/LICENSE +0 -0
- {bayesianflow_for_chem-1.2.4/bayesianflow_for_chem → bayesianflow_for_chem-2.3.1/bayesianflow_for_chem/_data}/vocab.txt +0 -0
- {bayesianflow_for_chem-1.2.4 → bayesianflow_for_chem-2.3.1}/bayesianflow_for_chem.egg-info/dependency_links.txt +0 -0
- {bayesianflow_for_chem-1.2.4 → bayesianflow_for_chem-2.3.1}/bayesianflow_for_chem.egg-info/top_level.txt +0 -0
- {bayesianflow_for_chem-1.2.4 → bayesianflow_for_chem-2.3.1}/setup.cfg +0 -0
|
@@ -1,36 +1,35 @@
|
|
|
1
|
-
Metadata-Version: 2.
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
2
|
Name: bayesianflow_for_chem
|
|
3
|
-
Version:
|
|
3
|
+
Version: 2.3.1
|
|
4
4
|
Summary: Bayesian flow network framework for Chemistry
|
|
5
5
|
Home-page: https://augus1999.github.io/bayesian-flow-network-for-chemistry/
|
|
6
6
|
Author: Nianze A. Tao
|
|
7
7
|
Author-email: tao-nianze@hiroshima-u.ac.jp
|
|
8
|
-
License: AGPL-3.0
|
|
8
|
+
License: AGPL-3.0-or-later
|
|
9
9
|
Project-URL: Source, https://github.com/Augus1999/bayesian-flow-network-for-chemistry
|
|
10
10
|
Keywords: Chemistry,CLM,ChemBFN
|
|
11
11
|
Classifier: Development Status :: 5 - Production/Stable
|
|
12
12
|
Classifier: Intended Audience :: Science/Research
|
|
13
|
-
Classifier: License :: OSI Approved :: GNU Affero General Public License v3
|
|
14
13
|
Classifier: Natural Language :: English
|
|
15
14
|
Classifier: Programming Language :: Python :: 3
|
|
16
|
-
Classifier: Programming Language :: Python :: 3.9
|
|
17
|
-
Classifier: Programming Language :: Python :: 3.10
|
|
18
15
|
Classifier: Programming Language :: Python :: 3.11
|
|
19
16
|
Classifier: Programming Language :: Python :: 3.12
|
|
17
|
+
Classifier: Programming Language :: Python :: 3.13
|
|
18
|
+
Classifier: Programming Language :: Python :: 3.14
|
|
20
19
|
Classifier: Topic :: Scientific/Engineering :: Chemistry
|
|
21
20
|
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
|
|
22
|
-
Requires-Python: >=3.
|
|
21
|
+
Requires-Python: >=3.11
|
|
23
22
|
Description-Content-Type: text/markdown
|
|
24
23
|
License-File: LICENSE
|
|
25
|
-
Requires-Dist: rdkit>=
|
|
26
|
-
Requires-Dist: torch>=2.
|
|
27
|
-
Requires-Dist:
|
|
24
|
+
Requires-Dist: rdkit>=2025.3.5
|
|
25
|
+
Requires-Dist: torch>=2.8.0
|
|
26
|
+
Requires-Dist: torchao>=0.12
|
|
27
|
+
Requires-Dist: colorama>=0.4.6
|
|
28
|
+
Requires-Dist: numpy>=2.3.2
|
|
29
|
+
Requires-Dist: scipy>=1.16.1
|
|
28
30
|
Requires-Dist: loralib>=0.1.2
|
|
29
|
-
Requires-Dist: lightning>=2.
|
|
30
|
-
Requires-Dist: scikit-learn>=1.
|
|
31
|
-
Requires-Dist: typing_extensions>=4.8.0
|
|
32
|
-
Provides-Extra: geo2seq
|
|
33
|
-
Requires-Dist: pynauty>=2.8.8.1; extra == "geo2seq"
|
|
31
|
+
Requires-Dist: lightning>=2.5.3
|
|
32
|
+
Requires-Dist: scikit-learn>=1.7.1
|
|
34
33
|
Dynamic: author
|
|
35
34
|
Dynamic: author-email
|
|
36
35
|
Dynamic: classifier
|
|
@@ -39,8 +38,8 @@ Dynamic: description-content-type
|
|
|
39
38
|
Dynamic: home-page
|
|
40
39
|
Dynamic: keywords
|
|
41
40
|
Dynamic: license
|
|
41
|
+
Dynamic: license-file
|
|
42
42
|
Dynamic: project-url
|
|
43
|
-
Dynamic: provides-extra
|
|
44
43
|
Dynamic: requires-dist
|
|
45
44
|
Dynamic: requires-python
|
|
46
45
|
Dynamic: summary
|
|
@@ -52,11 +51,18 @@ Dynamic: summary
|
|
|
52
51
|
|
|
53
52
|
This is the repository of the PyTorch implementation of ChemBFN model.
|
|
54
53
|
|
|
54
|
+
### Build State
|
|
55
|
+
|
|
56
|
+
[](https://pypi.org/project/bayesianflow-for-chem/)
|
|
57
|
+

|
|
58
|
+
[](https://augus1999.github.io/bayesian-flow-network-for-chemistry/)
|
|
59
|
+
|
|
55
60
|
## Features
|
|
56
61
|
|
|
57
62
|
ChemBFN provides the state-of-the-art functionalities of
|
|
58
63
|
* SMILES or SELFIES-based *de novo* molecule generation
|
|
59
64
|
* Protein sequence *de novo* generation
|
|
65
|
+
* Template optimisation (mol2mol)
|
|
60
66
|
* Classifier-free guidance conditional generation (single or multi-objective optimisation)
|
|
61
67
|
* Context-guided conditional generation (inpaint)
|
|
62
68
|
* Outstanding out-of-distribution chemical space sampling
|
|
@@ -68,6 +74,7 @@ in an all-in-one-model style.
|
|
|
68
74
|
|
|
69
75
|
## News
|
|
70
76
|
|
|
77
|
+
* [09/10/2025] A web app [`chembfn_webui`](https://github.com/Augus1999/ChemBFN-WebUI) for hosting ChemBFN models is available on [PyPI](https://pypi.org/project/chembfn-webui/).
|
|
71
78
|
* [30/01/2025] The package `bayesianflow_for_chem` is available on [PyPI](https://pypi.org/project/bayesianflow-for-chem/).
|
|
72
79
|
* [21/01/2025] Our first paper has been accepted by [JCIM](https://pubs.acs.org/doi/10.1021/acs.jcim.4c01792).
|
|
73
80
|
* [17/12/2024] The second paper of out-of-distribution generation is available on [arxiv.org](https://arxiv.org/abs/2412.11439).
|
|
@@ -82,17 +89,17 @@ $ pip install -U bayesianflow_for_chem
|
|
|
82
89
|
|
|
83
90
|
## Usage
|
|
84
91
|
|
|
85
|
-
You can find example scripts in [📁example](
|
|
92
|
+
You can find example scripts in [📁example](https://github.com/Augus1999/bayesian-flow-network-for-chemistry/tree/main/example) folder.
|
|
86
93
|
|
|
87
94
|
## Pre-trained Model
|
|
88
95
|
|
|
89
|
-
You can find pretrained models
|
|
96
|
+
You can find pretrained models on our [🤗Hugging Face model page](https://huggingface.co/suenoomozawa/ChemBFN).
|
|
90
97
|
|
|
91
98
|
## Dataset Handling
|
|
92
99
|
|
|
93
|
-
We provide a Python class [`CSVData`](
|
|
100
|
+
We provide a Python class [`CSVData`](https://github.com/Augus1999/bayesian-flow-network-for-chemistry/blob/main/bayesianflow_for_chem/data.py#L153) to handle data stored in CSV or similar format containing headers to identify the entities. The following is a quickstart.
|
|
94
101
|
|
|
95
|
-
1. Download your dataset file (e.g., ESOL
|
|
102
|
+
1. Download your dataset file (e.g., ESOL from [MoleculeNet](https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/delaney-processed.csv)) and split the file:
|
|
96
103
|
```python
|
|
97
104
|
>>> from bayesianflow_for_chem.tool import split_data
|
|
98
105
|
|
|
@@ -5,11 +5,18 @@
|
|
|
5
5
|
|
|
6
6
|
This is the repository of the PyTorch implementation of ChemBFN model.
|
|
7
7
|
|
|
8
|
+
### Build State
|
|
9
|
+
|
|
10
|
+
[](https://pypi.org/project/bayesianflow-for-chem/)
|
|
11
|
+

|
|
12
|
+
[](https://augus1999.github.io/bayesian-flow-network-for-chemistry/)
|
|
13
|
+
|
|
8
14
|
## Features
|
|
9
15
|
|
|
10
16
|
ChemBFN provides the state-of-the-art functionalities of
|
|
11
17
|
* SMILES or SELFIES-based *de novo* molecule generation
|
|
12
18
|
* Protein sequence *de novo* generation
|
|
19
|
+
* Template optimisation (mol2mol)
|
|
13
20
|
* Classifier-free guidance conditional generation (single or multi-objective optimisation)
|
|
14
21
|
* Context-guided conditional generation (inpaint)
|
|
15
22
|
* Outstanding out-of-distribution chemical space sampling
|
|
@@ -21,6 +28,7 @@ in an all-in-one-model style.
|
|
|
21
28
|
|
|
22
29
|
## News
|
|
23
30
|
|
|
31
|
+
* [09/10/2025] A web app [`chembfn_webui`](https://github.com/Augus1999/ChemBFN-WebUI) for hosting ChemBFN models is available on [PyPI](https://pypi.org/project/chembfn-webui/).
|
|
24
32
|
* [30/01/2025] The package `bayesianflow_for_chem` is available on [PyPI](https://pypi.org/project/bayesianflow-for-chem/).
|
|
25
33
|
* [21/01/2025] Our first paper has been accepted by [JCIM](https://pubs.acs.org/doi/10.1021/acs.jcim.4c01792).
|
|
26
34
|
* [17/12/2024] The second paper of out-of-distribution generation is available on [arxiv.org](https://arxiv.org/abs/2412.11439).
|
|
@@ -39,13 +47,13 @@ You can find example scripts in [📁example](./example) folder.
|
|
|
39
47
|
|
|
40
48
|
## Pre-trained Model
|
|
41
49
|
|
|
42
|
-
You can find pretrained models
|
|
50
|
+
You can find pretrained models on our [🤗Hugging Face model page](https://huggingface.co/suenoomozawa/ChemBFN).
|
|
43
51
|
|
|
44
52
|
## Dataset Handling
|
|
45
53
|
|
|
46
54
|
We provide a Python class [`CSVData`](./bayesianflow_for_chem/data.py) to handle data stored in CSV or similar format containing headers to identify the entities. The following is a quickstart.
|
|
47
55
|
|
|
48
|
-
1. Download your dataset file (e.g., ESOL
|
|
56
|
+
1. Download your dataset file (e.g., ESOL from [MoleculeNet](https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/delaney-processed.csv)) and split the file:
|
|
49
57
|
```python
|
|
50
58
|
>>> from bayesianflow_for_chem.tool import split_data
|
|
51
59
|
|
|
@@ -0,0 +1,35 @@
|
|
|
1
|
+
# -*- coding: utf-8 -*-
|
|
2
|
+
# Author: Nianze A. Tao (Omozawa Sueno)
|
|
3
|
+
"""
|
|
4
|
+
ChemBFN package.
|
|
5
|
+
"""
|
|
6
|
+
from . import data, tool, train, scorer, spectra
|
|
7
|
+
from .model import ChemBFN, MLP, EnsembleChemBFN
|
|
8
|
+
|
|
9
|
+
__all__ = [
|
|
10
|
+
"data",
|
|
11
|
+
"tool",
|
|
12
|
+
"train",
|
|
13
|
+
"scorer",
|
|
14
|
+
"spectra",
|
|
15
|
+
"ChemBFN",
|
|
16
|
+
"MLP",
|
|
17
|
+
"EnsembleChemBFN",
|
|
18
|
+
]
|
|
19
|
+
__version__ = "2.3.1"
|
|
20
|
+
__author__ = "Nianze A. Tao (Omozawa Sueno)"
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
def main() -> None:
|
|
24
|
+
"""
|
|
25
|
+
CLI main function.
|
|
26
|
+
|
|
27
|
+
:return:
|
|
28
|
+
:rtype: None
|
|
29
|
+
"""
|
|
30
|
+
import colorama
|
|
31
|
+
from bayesianflow_for_chem.cli import main_script
|
|
32
|
+
|
|
33
|
+
colorama.just_fix_windows_console()
|
|
34
|
+
main_script(__version__)
|
|
35
|
+
colorama.deinit()
|