bayesianflow-for-chem 1.2.4__tar.gz → 2.3.1__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (29) hide show
  1. {bayesianflow_for_chem-1.2.4 → bayesianflow_for_chem-2.3.1}/PKG-INFO +27 -20
  2. {bayesianflow_for_chem-1.2.4 → bayesianflow_for_chem-2.3.1}/README.md +10 -2
  3. bayesianflow_for_chem-2.3.1/bayesianflow_for_chem/__init__.py +35 -0
  4. bayesianflow_for_chem-2.3.1/bayesianflow_for_chem/cli.py +727 -0
  5. {bayesianflow_for_chem-1.2.4 → bayesianflow_for_chem-2.3.1}/bayesianflow_for_chem/data.py +25 -61
  6. {bayesianflow_for_chem-1.2.4 → bayesianflow_for_chem-2.3.1}/bayesianflow_for_chem/model.py +745 -195
  7. {bayesianflow_for_chem-1.2.4 → bayesianflow_for_chem-2.3.1}/bayesianflow_for_chem/scorer.py +2 -2
  8. bayesianflow_for_chem-2.3.1/bayesianflow_for_chem/spectra.py +56 -0
  9. bayesianflow_for_chem-2.3.1/bayesianflow_for_chem/tool.py +669 -0
  10. {bayesianflow_for_chem-1.2.4 → bayesianflow_for_chem-2.3.1}/bayesianflow_for_chem/train.py +14 -5
  11. {bayesianflow_for_chem-1.2.4 → bayesianflow_for_chem-2.3.1}/bayesianflow_for_chem.egg-info/PKG-INFO +27 -20
  12. {bayesianflow_for_chem-1.2.4 → bayesianflow_for_chem-2.3.1}/bayesianflow_for_chem.egg-info/SOURCES.txt +9 -2
  13. bayesianflow_for_chem-2.3.1/bayesianflow_for_chem.egg-info/entry_points.txt +2 -0
  14. bayesianflow_for_chem-2.3.1/bayesianflow_for_chem.egg-info/requires.txt +9 -0
  15. bayesianflow_for_chem-2.3.1/pyproject.toml +6 -0
  16. {bayesianflow_for_chem-1.2.4 → bayesianflow_for_chem-2.3.1}/setup.py +38 -22
  17. bayesianflow_for_chem-2.3.1/test/test_cli_plugin.py +55 -0
  18. bayesianflow_for_chem-2.3.1/test/test_jit_compatibility.py +26 -0
  19. bayesianflow_for_chem-2.3.1/test/test_merge_lora.py +40 -0
  20. bayesianflow_for_chem-2.3.1/test/test_molecular_embedding.py +67 -0
  21. bayesianflow_for_chem-1.2.4/bayesianflow_for_chem/__init__.py +0 -11
  22. bayesianflow_for_chem-1.2.4/bayesianflow_for_chem/tool.py +0 -613
  23. bayesianflow_for_chem-1.2.4/bayesianflow_for_chem.egg-info/requires.txt +0 -10
  24. bayesianflow_for_chem-1.2.4/pyproject.toml +0 -3
  25. {bayesianflow_for_chem-1.2.4 → bayesianflow_for_chem-2.3.1}/LICENSE +0 -0
  26. {bayesianflow_for_chem-1.2.4/bayesianflow_for_chem → bayesianflow_for_chem-2.3.1/bayesianflow_for_chem/_data}/vocab.txt +0 -0
  27. {bayesianflow_for_chem-1.2.4 → bayesianflow_for_chem-2.3.1}/bayesianflow_for_chem.egg-info/dependency_links.txt +0 -0
  28. {bayesianflow_for_chem-1.2.4 → bayesianflow_for_chem-2.3.1}/bayesianflow_for_chem.egg-info/top_level.txt +0 -0
  29. {bayesianflow_for_chem-1.2.4 → bayesianflow_for_chem-2.3.1}/setup.cfg +0 -0
@@ -1,36 +1,35 @@
1
- Metadata-Version: 2.2
1
+ Metadata-Version: 2.4
2
2
  Name: bayesianflow_for_chem
3
- Version: 1.2.4
3
+ Version: 2.3.1
4
4
  Summary: Bayesian flow network framework for Chemistry
5
5
  Home-page: https://augus1999.github.io/bayesian-flow-network-for-chemistry/
6
6
  Author: Nianze A. Tao
7
7
  Author-email: tao-nianze@hiroshima-u.ac.jp
8
- License: AGPL-3.0 licence
8
+ License: AGPL-3.0-or-later
9
9
  Project-URL: Source, https://github.com/Augus1999/bayesian-flow-network-for-chemistry
10
10
  Keywords: Chemistry,CLM,ChemBFN
11
11
  Classifier: Development Status :: 5 - Production/Stable
12
12
  Classifier: Intended Audience :: Science/Research
13
- Classifier: License :: OSI Approved :: GNU Affero General Public License v3
14
13
  Classifier: Natural Language :: English
15
14
  Classifier: Programming Language :: Python :: 3
16
- Classifier: Programming Language :: Python :: 3.9
17
- Classifier: Programming Language :: Python :: 3.10
18
15
  Classifier: Programming Language :: Python :: 3.11
19
16
  Classifier: Programming Language :: Python :: 3.12
17
+ Classifier: Programming Language :: Python :: 3.13
18
+ Classifier: Programming Language :: Python :: 3.14
20
19
  Classifier: Topic :: Scientific/Engineering :: Chemistry
21
20
  Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
22
- Requires-Python: >=3.9
21
+ Requires-Python: >=3.11
23
22
  Description-Content-Type: text/markdown
24
23
  License-File: LICENSE
25
- Requires-Dist: rdkit>=2023.9.6
26
- Requires-Dist: torch>=2.3.1
27
- Requires-Dist: numpy>=1.26.4
24
+ Requires-Dist: rdkit>=2025.3.5
25
+ Requires-Dist: torch>=2.8.0
26
+ Requires-Dist: torchao>=0.12
27
+ Requires-Dist: colorama>=0.4.6
28
+ Requires-Dist: numpy>=2.3.2
29
+ Requires-Dist: scipy>=1.16.1
28
30
  Requires-Dist: loralib>=0.1.2
29
- Requires-Dist: lightning>=2.2.0
30
- Requires-Dist: scikit-learn>=1.5.0
31
- Requires-Dist: typing_extensions>=4.8.0
32
- Provides-Extra: geo2seq
33
- Requires-Dist: pynauty>=2.8.8.1; extra == "geo2seq"
31
+ Requires-Dist: lightning>=2.5.3
32
+ Requires-Dist: scikit-learn>=1.7.1
34
33
  Dynamic: author
35
34
  Dynamic: author-email
36
35
  Dynamic: classifier
@@ -39,8 +38,8 @@ Dynamic: description-content-type
39
38
  Dynamic: home-page
40
39
  Dynamic: keywords
41
40
  Dynamic: license
41
+ Dynamic: license-file
42
42
  Dynamic: project-url
43
- Dynamic: provides-extra
44
43
  Dynamic: requires-dist
45
44
  Dynamic: requires-python
46
45
  Dynamic: summary
@@ -52,11 +51,18 @@ Dynamic: summary
52
51
 
53
52
  This is the repository of the PyTorch implementation of ChemBFN model.
54
53
 
54
+ ### Build State
55
+
56
+ [![PyPI](https://img.shields.io/pypi/v/bayesianflow-for-chem?color=ff69b4)](https://pypi.org/project/bayesianflow-for-chem/)
57
+ ![pytest](https://github.com/Augus1999/bayesian-flow-network-for-chemistry/actions/workflows/pytest.yml/badge.svg)
58
+ [![document](https://github.com/Augus1999/bayesian-flow-network-for-chemistry/actions/workflows/pages/pages-build-deployment/badge.svg)](https://augus1999.github.io/bayesian-flow-network-for-chemistry/)
59
+
55
60
  ## Features
56
61
 
57
62
  ChemBFN provides the state-of-the-art functionalities of
58
63
  * SMILES or SELFIES-based *de novo* molecule generation
59
64
  * Protein sequence *de novo* generation
65
+ * Template optimisation (mol2mol)
60
66
  * Classifier-free guidance conditional generation (single or multi-objective optimisation)
61
67
  * Context-guided conditional generation (inpaint)
62
68
  * Outstanding out-of-distribution chemical space sampling
@@ -68,6 +74,7 @@ in an all-in-one-model style.
68
74
 
69
75
  ## News
70
76
 
77
+ * [09/10/2025] A web app [`chembfn_webui`](https://github.com/Augus1999/ChemBFN-WebUI) for hosting ChemBFN models is available on [PyPI](https://pypi.org/project/chembfn-webui/).
71
78
  * [30/01/2025] The package `bayesianflow_for_chem` is available on [PyPI](https://pypi.org/project/bayesianflow-for-chem/).
72
79
  * [21/01/2025] Our first paper has been accepted by [JCIM](https://pubs.acs.org/doi/10.1021/acs.jcim.4c01792).
73
80
  * [17/12/2024] The second paper of out-of-distribution generation is available on [arxiv.org](https://arxiv.org/abs/2412.11439).
@@ -82,17 +89,17 @@ $ pip install -U bayesianflow_for_chem
82
89
 
83
90
  ## Usage
84
91
 
85
- You can find example scripts in [📁example](./example) folder.
92
+ You can find example scripts in [📁example](https://github.com/Augus1999/bayesian-flow-network-for-chemistry/tree/main/example) folder.
86
93
 
87
94
  ## Pre-trained Model
88
95
 
89
- You can find pretrained models in [release](https://github.com/Augus1999/bayesian-flow-network-for-chemistry/releases) or on our [🤗Hugging Face model page](https://huggingface.co/suenoomozawa/ChemBFN).
96
+ You can find pretrained models on our [🤗Hugging Face model page](https://huggingface.co/suenoomozawa/ChemBFN).
90
97
 
91
98
  ## Dataset Handling
92
99
 
93
- We provide a Python class [`CSVData`](./bayesianflow_for_chem/data.py) to handle data stored in CSV or similar format containing headers to identify the entities. The following is a quickstart.
100
+ We provide a Python class [`CSVData`](https://github.com/Augus1999/bayesian-flow-network-for-chemistry/blob/main/bayesianflow_for_chem/data.py#L153) to handle data stored in CSV or similar format containing headers to identify the entities. The following is a quickstart.
94
101
 
95
- 1. Download your dataset file (e.g., ESOL form [MoleculeNet](https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/delaney-processed.csv)) and split the file:
102
+ 1. Download your dataset file (e.g., ESOL from [MoleculeNet](https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/delaney-processed.csv)) and split the file:
96
103
  ```python
97
104
  >>> from bayesianflow_for_chem.tool import split_data
98
105
 
@@ -5,11 +5,18 @@
5
5
 
6
6
  This is the repository of the PyTorch implementation of ChemBFN model.
7
7
 
8
+ ### Build State
9
+
10
+ [![PyPI](https://img.shields.io/pypi/v/bayesianflow-for-chem?color=ff69b4)](https://pypi.org/project/bayesianflow-for-chem/)
11
+ ![pytest](https://github.com/Augus1999/bayesian-flow-network-for-chemistry/actions/workflows/pytest.yml/badge.svg)
12
+ [![document](https://github.com/Augus1999/bayesian-flow-network-for-chemistry/actions/workflows/pages/pages-build-deployment/badge.svg)](https://augus1999.github.io/bayesian-flow-network-for-chemistry/)
13
+
8
14
  ## Features
9
15
 
10
16
  ChemBFN provides the state-of-the-art functionalities of
11
17
  * SMILES or SELFIES-based *de novo* molecule generation
12
18
  * Protein sequence *de novo* generation
19
+ * Template optimisation (mol2mol)
13
20
  * Classifier-free guidance conditional generation (single or multi-objective optimisation)
14
21
  * Context-guided conditional generation (inpaint)
15
22
  * Outstanding out-of-distribution chemical space sampling
@@ -21,6 +28,7 @@ in an all-in-one-model style.
21
28
 
22
29
  ## News
23
30
 
31
+ * [09/10/2025] A web app [`chembfn_webui`](https://github.com/Augus1999/ChemBFN-WebUI) for hosting ChemBFN models is available on [PyPI](https://pypi.org/project/chembfn-webui/).
24
32
  * [30/01/2025] The package `bayesianflow_for_chem` is available on [PyPI](https://pypi.org/project/bayesianflow-for-chem/).
25
33
  * [21/01/2025] Our first paper has been accepted by [JCIM](https://pubs.acs.org/doi/10.1021/acs.jcim.4c01792).
26
34
  * [17/12/2024] The second paper of out-of-distribution generation is available on [arxiv.org](https://arxiv.org/abs/2412.11439).
@@ -39,13 +47,13 @@ You can find example scripts in [📁example](./example) folder.
39
47
 
40
48
  ## Pre-trained Model
41
49
 
42
- You can find pretrained models in [release](https://github.com/Augus1999/bayesian-flow-network-for-chemistry/releases) or on our [🤗Hugging Face model page](https://huggingface.co/suenoomozawa/ChemBFN).
50
+ You can find pretrained models on our [🤗Hugging Face model page](https://huggingface.co/suenoomozawa/ChemBFN).
43
51
 
44
52
  ## Dataset Handling
45
53
 
46
54
  We provide a Python class [`CSVData`](./bayesianflow_for_chem/data.py) to handle data stored in CSV or similar format containing headers to identify the entities. The following is a quickstart.
47
55
 
48
- 1. Download your dataset file (e.g., ESOL form [MoleculeNet](https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/delaney-processed.csv)) and split the file:
56
+ 1. Download your dataset file (e.g., ESOL from [MoleculeNet](https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/delaney-processed.csv)) and split the file:
49
57
  ```python
50
58
  >>> from bayesianflow_for_chem.tool import split_data
51
59
 
@@ -0,0 +1,35 @@
1
+ # -*- coding: utf-8 -*-
2
+ # Author: Nianze A. Tao (Omozawa Sueno)
3
+ """
4
+ ChemBFN package.
5
+ """
6
+ from . import data, tool, train, scorer, spectra
7
+ from .model import ChemBFN, MLP, EnsembleChemBFN
8
+
9
+ __all__ = [
10
+ "data",
11
+ "tool",
12
+ "train",
13
+ "scorer",
14
+ "spectra",
15
+ "ChemBFN",
16
+ "MLP",
17
+ "EnsembleChemBFN",
18
+ ]
19
+ __version__ = "2.3.1"
20
+ __author__ = "Nianze A. Tao (Omozawa Sueno)"
21
+
22
+
23
+ def main() -> None:
24
+ """
25
+ CLI main function.
26
+
27
+ :return:
28
+ :rtype: None
29
+ """
30
+ import colorama
31
+ from bayesianflow_for_chem.cli import main_script
32
+
33
+ colorama.just_fix_windows_console()
34
+ main_script(__version__)
35
+ colorama.deinit()