bayesianflow-for-chem 1.2.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of bayesianflow-for-chem might be problematic. Click here for more details.

@@ -0,0 +1,162 @@
1
+ Metadata-Version: 2.2
2
+ Name: bayesianflow_for_chem
3
+ Version: 1.2.0
4
+ Summary: Bayesian flow network framework for Chemistry
5
+ Home-page: https://augus1999.github.io/bayesian-flow-network-for-chemistry/
6
+ Author: Nianze A. Tao
7
+ Author-email: tao-nianze@hiroshima-u.ac.jp
8
+ License: AGPL-3.0 licence
9
+ Project-URL: Source, https://github.com/Augus1999/bayesian-flow-network-for-chemistry
10
+ Keywords: Chemistry,CLM,ChemBFN
11
+ Classifier: Development Status :: 5 - Production/Stable
12
+ Classifier: Intended Audience :: Science/Research
13
+ Classifier: License :: OSI Approved :: GNU Affero General Public License v3
14
+ Classifier: Natural Language :: English
15
+ Classifier: Programming Language :: Python :: 3
16
+ Classifier: Programming Language :: Python :: 3.9
17
+ Classifier: Programming Language :: Python :: 3.10
18
+ Classifier: Programming Language :: Python :: 3.11
19
+ Classifier: Programming Language :: Python :: 3.12
20
+ Classifier: Topic :: Scientific/Engineering :: Chemistry
21
+ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
22
+ Requires-Python: >=3.9
23
+ Description-Content-Type: text/markdown
24
+ Requires-Dist: rdkit>=2023.9.6
25
+ Requires-Dist: torch>=2.3.1
26
+ Requires-Dist: numpy>=1.26.4
27
+ Requires-Dist: loralib>=0.1.2
28
+ Requires-Dist: lightning>=2.2.0
29
+ Requires-Dist: scikit-learn>=1.5.0
30
+ Requires-Dist: typing_extensions>=4.8.0
31
+ Provides-Extra: geo2seq
32
+ Requires-Dist: pynauty>=2.8.8.1; extra == "geo2seq"
33
+ Dynamic: author
34
+ Dynamic: author-email
35
+ Dynamic: classifier
36
+ Dynamic: description
37
+ Dynamic: description-content-type
38
+ Dynamic: home-page
39
+ Dynamic: keywords
40
+ Dynamic: license
41
+ Dynamic: project-url
42
+ Dynamic: provides-extra
43
+ Dynamic: requires-dist
44
+ Dynamic: requires-python
45
+ Dynamic: summary
46
+
47
+ # ChemBFN: Bayesian Flow Network for Chemistry
48
+
49
+ [![DOI](https://zenodo.org/badge/DOI/10.1021/acs.jcim.4c01792.svg)](https://doi.org/10.1021/acs.jcim.4c01792)
50
+ [![arxiv](https://img.shields.io/badge/arXiv-2412.11439-red)](https://arxiv.org/abs/2412.11439)
51
+
52
+ This is the repository of the PyTorch implementation of ChemBFN model.
53
+
54
+ ## Features
55
+
56
+ ChemBFN provides the state-of-the-art functionalities of
57
+ * SMILES or SELFIES-based *de novo* molecule generation
58
+ * Protein sequence *de novo* generation
59
+ * Classifier-free guidance conditional generation (single or multi-objective optimisation)
60
+ * Context-guided conditional generation (inpaint)
61
+ * Outstanding out-of-distribution chemical space sampling
62
+ * Fast sampling via ODE solver
63
+ * Molecular property and activity prediction finetuning
64
+ * Reaction yield prediction finetuning
65
+
66
+ in an all-in-one-model style.
67
+
68
+ ## News
69
+
70
+ * [21/01/2025] Our first paper has been accepted by [JCIM](https://pubs.acs.org/doi/10.1021/acs.jcim.4c01792).
71
+ * [17/12/2024] The second paper of out-of-distribution generation is available on [arxiv.org](https://arxiv.org/abs/2412.11439).
72
+ * [31/07/2024] Paper is available on [arxiv.org](https://arxiv.org/abs/2407.20294).
73
+ * [21/07/2024] Paper was submitted to arXiv.
74
+
75
+ ## Install
76
+
77
+ ```bash
78
+ $ pip install -U bayesianflow_for_chemistry
79
+ ```
80
+
81
+ ## Usage
82
+
83
+ You can find example scripts in [📁example](./example) folder.
84
+
85
+ ## Pre-trained Model
86
+
87
+ You can find pretrained models in [release](https://github.com/Augus1999/bayesian-flow-network-for-chemistry/releases) or on our [🤗Hugging Face model page](https://huggingface.co/suenoomozawa/ChemBFN).
88
+
89
+ ## Dataset Handling
90
+
91
+ We provide a Python class [`CSVData`](./bayesianflow_for_chem/data.py) to handle data stored in CSV or similar format containing headers to identify the entities. The following is a quickstart.
92
+
93
+ 1. Download your dataset file (e.g., ESOL form [MoleculeNet](https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/delaney-processed.csv)) and split the file:
94
+ ```python
95
+ >>> from bayesianflow_for_chem.tool import split_data
96
+
97
+ >>> split_data("delaney-processed.csv", method="scaffold")
98
+ ```
99
+
100
+ 2. Load the split data:
101
+ ```python
102
+ >>> from bayesianflow_for_chem.data import smiles2token, collate, CSVData
103
+
104
+ >>> dataset = CSVData("delaney-processed_train.csv")
105
+ >>> dataset[0]
106
+ {'Compound ID': ['Thiophene'],
107
+ 'ESOL predicted log solubility in mols per litre': ['-2.2319999999999998'],
108
+ 'Minimum Degree': ['2'],
109
+ 'Molecular Weight': ['84.14299999999999'],
110
+ 'Number of H-Bond Donors': ['0'],
111
+ 'Number of Rings': ['1'],
112
+ 'Number of Rotatable Bonds': ['0'],
113
+ 'Polar Surface Area': ['0.0'],
114
+ 'measured log solubility in mols per litre': ['-1.33'],
115
+ 'smiles': ['c1ccsc1']}
116
+ ```
117
+
118
+ 3. Create a mapping function to tokenise the dataset and select values:
119
+ ```python
120
+ >>> import torch
121
+
122
+ >>> def encode(x):
123
+ ... smiles = x["smiles"][0]
124
+ ... value = [float(i) for i in x["measured log solubility in mols per litre"]]
125
+ ... return {"token": smiles2token(smiles), "value": torch.tensor(value)}
126
+
127
+ >>> dataset.map(encode)
128
+ >>> dataset[0]
129
+ {'token': tensor([ 1, 151, 23, 151, 151, 154, 151, 23, 2]),
130
+ 'value': tensor([-1.3300])}
131
+ ```
132
+
133
+ 4. Wrap the dataset in <u>torch.utils.data.DataLoader</u>:
134
+ ```python
135
+ >>> dataloader = torch.utils.data.DataLoader(dataset, 32, collate_fn=collate)
136
+ ```
137
+
138
+ ## Cite This Work
139
+
140
+ ```bibtex
141
+ @misc{2024chembfn,
142
+ title={A Bayesian Flow Network Framework for Chemistry Tasks},
143
+ author={Nianze Tao and Minori Abe},
144
+ year={2024},
145
+ eprint={2407.20294},
146
+ archivePrefix={arXiv},
147
+ primaryClass={cs.LG},
148
+ url={https://arxiv.org/abs/2407.20294},
149
+ }
150
+ ```
151
+ Out-of-distribution generation:
152
+ ```bibtex
153
+ @misc{2024chembfn_ood,
154
+ title={Bayesian Flow Is All You Need to Sample Out-of-Distribution Chemical Spaces},
155
+ author={Nianze Tao},
156
+ year={2024},
157
+ eprint={2412.11439},
158
+ archivePrefix={arXiv},
159
+ primaryClass={cs.LG},
160
+ url={https://arxiv.org/abs/2412.11439},
161
+ }
162
+ ```
@@ -0,0 +1,116 @@
1
+ # ChemBFN: Bayesian Flow Network for Chemistry
2
+
3
+ [![DOI](https://zenodo.org/badge/DOI/10.1021/acs.jcim.4c01792.svg)](https://doi.org/10.1021/acs.jcim.4c01792)
4
+ [![arxiv](https://img.shields.io/badge/arXiv-2412.11439-red)](https://arxiv.org/abs/2412.11439)
5
+
6
+ This is the repository of the PyTorch implementation of ChemBFN model.
7
+
8
+ ## Features
9
+
10
+ ChemBFN provides the state-of-the-art functionalities of
11
+ * SMILES or SELFIES-based *de novo* molecule generation
12
+ * Protein sequence *de novo* generation
13
+ * Classifier-free guidance conditional generation (single or multi-objective optimisation)
14
+ * Context-guided conditional generation (inpaint)
15
+ * Outstanding out-of-distribution chemical space sampling
16
+ * Fast sampling via ODE solver
17
+ * Molecular property and activity prediction finetuning
18
+ * Reaction yield prediction finetuning
19
+
20
+ in an all-in-one-model style.
21
+
22
+ ## News
23
+
24
+ * [21/01/2025] Our first paper has been accepted by [JCIM](https://pubs.acs.org/doi/10.1021/acs.jcim.4c01792).
25
+ * [17/12/2024] The second paper of out-of-distribution generation is available on [arxiv.org](https://arxiv.org/abs/2412.11439).
26
+ * [31/07/2024] Paper is available on [arxiv.org](https://arxiv.org/abs/2407.20294).
27
+ * [21/07/2024] Paper was submitted to arXiv.
28
+
29
+ ## Install
30
+
31
+ ```bash
32
+ $ pip install -U bayesianflow_for_chemistry
33
+ ```
34
+
35
+ ## Usage
36
+
37
+ You can find example scripts in [📁example](./example) folder.
38
+
39
+ ## Pre-trained Model
40
+
41
+ You can find pretrained models in [release](https://github.com/Augus1999/bayesian-flow-network-for-chemistry/releases) or on our [🤗Hugging Face model page](https://huggingface.co/suenoomozawa/ChemBFN).
42
+
43
+ ## Dataset Handling
44
+
45
+ We provide a Python class [`CSVData`](./bayesianflow_for_chem/data.py) to handle data stored in CSV or similar format containing headers to identify the entities. The following is a quickstart.
46
+
47
+ 1. Download your dataset file (e.g., ESOL form [MoleculeNet](https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/delaney-processed.csv)) and split the file:
48
+ ```python
49
+ >>> from bayesianflow_for_chem.tool import split_data
50
+
51
+ >>> split_data("delaney-processed.csv", method="scaffold")
52
+ ```
53
+
54
+ 2. Load the split data:
55
+ ```python
56
+ >>> from bayesianflow_for_chem.data import smiles2token, collate, CSVData
57
+
58
+ >>> dataset = CSVData("delaney-processed_train.csv")
59
+ >>> dataset[0]
60
+ {'Compound ID': ['Thiophene'],
61
+ 'ESOL predicted log solubility in mols per litre': ['-2.2319999999999998'],
62
+ 'Minimum Degree': ['2'],
63
+ 'Molecular Weight': ['84.14299999999999'],
64
+ 'Number of H-Bond Donors': ['0'],
65
+ 'Number of Rings': ['1'],
66
+ 'Number of Rotatable Bonds': ['0'],
67
+ 'Polar Surface Area': ['0.0'],
68
+ 'measured log solubility in mols per litre': ['-1.33'],
69
+ 'smiles': ['c1ccsc1']}
70
+ ```
71
+
72
+ 3. Create a mapping function to tokenise the dataset and select values:
73
+ ```python
74
+ >>> import torch
75
+
76
+ >>> def encode(x):
77
+ ... smiles = x["smiles"][0]
78
+ ... value = [float(i) for i in x["measured log solubility in mols per litre"]]
79
+ ... return {"token": smiles2token(smiles), "value": torch.tensor(value)}
80
+
81
+ >>> dataset.map(encode)
82
+ >>> dataset[0]
83
+ {'token': tensor([ 1, 151, 23, 151, 151, 154, 151, 23, 2]),
84
+ 'value': tensor([-1.3300])}
85
+ ```
86
+
87
+ 4. Wrap the dataset in <u>torch.utils.data.DataLoader</u>:
88
+ ```python
89
+ >>> dataloader = torch.utils.data.DataLoader(dataset, 32, collate_fn=collate)
90
+ ```
91
+
92
+ ## Cite This Work
93
+
94
+ ```bibtex
95
+ @misc{2024chembfn,
96
+ title={A Bayesian Flow Network Framework for Chemistry Tasks},
97
+ author={Nianze Tao and Minori Abe},
98
+ year={2024},
99
+ eprint={2407.20294},
100
+ archivePrefix={arXiv},
101
+ primaryClass={cs.LG},
102
+ url={https://arxiv.org/abs/2407.20294},
103
+ }
104
+ ```
105
+ Out-of-distribution generation:
106
+ ```bibtex
107
+ @misc{2024chembfn_ood,
108
+ title={Bayesian Flow Is All You Need to Sample Out-of-Distribution Chemical Spaces},
109
+ author={Nianze Tao},
110
+ year={2024},
111
+ eprint={2412.11439},
112
+ archivePrefix={arXiv},
113
+ primaryClass={cs.LG},
114
+ url={https://arxiv.org/abs/2412.11439},
115
+ }
116
+ ```
@@ -0,0 +1,11 @@
1
+ # -*- coding: utf-8 -*-
2
+ # Author: Nianze A. Tao (Omozawa Sueno)
3
+ """
4
+ ChemBFN package.
5
+ """
6
+ from . import data, tool, train, scorer
7
+ from .model import ChemBFN, MLP
8
+
9
+ __all__ = ["data", "tool", "train", "scorer", "ChemBFN", "MLP"]
10
+ __version__ = "1.2.0"
11
+ __author__ = "Nianze A. Tao (Omozawa Sueno)"
@@ -0,0 +1,250 @@
1
+ # -*- coding: utf-8 -*-
2
+ # Author: Nianze A. TAO (Omozawa SUENO)
3
+ """
4
+ Tokenise SMILES/SAFE/SELFIES/GEO2SEQ/protein-sequence strings.
5
+ """
6
+ import os
7
+ import re
8
+ from pathlib import Path
9
+ from typing import Any, List, Dict, Union, Callable
10
+ import torch
11
+ import torch.nn.functional as F
12
+ from torch import Tensor
13
+ from torch.utils.data import Dataset
14
+
15
+ __filedir__ = Path(__file__).parent
16
+
17
+ SMI_REGEX_PATTERN = (
18
+ r"(\[|\]|H[e,f,g,s,o]?|"
19
+ r"L[i,v,a,r,u]|"
20
+ r"B[e,r,a,i,h,k]?|"
21
+ r"C[l,a,r,o,u,d,s,n,e,m,f]?|"
22
+ r"N[e,a,i,b,h,d,o,p]?|"
23
+ r"O[s,g]?|S[i,c,e,r,n,m,b,g]?|"
24
+ r"K[r]?|T[i,c,e,a,l,b,h,m,s]|"
25
+ r"G[a,e,d]|R[b,u,h,e,n,a,f,g]|"
26
+ r"Yb?|Z[n,r]|P[t,o,d,r,a,u,b,m]?|"
27
+ r"F[e,r,l,m]?|M[g,n,o,t,c,d]|"
28
+ r"A[l,r,s,g,u,t,c,m]|I[n,r]?|"
29
+ r"W|X[e]|E[u,r,s]|U|D[b,s,y]|"
30
+ r"b|c|n|o|s|p|"
31
+ r"\(|\)|\.|=|#|-|\+|\\|\/|:|"
32
+ r"~|@|\?|>>?|\*|\$|\%[0-9]{2}|[0-9])"
33
+ )
34
+ SEL_REGEX_PATTERN = r"(\[[^\]]+]|\.)"
35
+ GEO_REGEX_PATTERN = (
36
+ r"(H[e,f,g,s,o]?|"
37
+ r"L[i,v,a,r,u]|"
38
+ r"B[e,r,a,i,h,k]?|"
39
+ r"C[l,a,r,o,u,d,s,n,e,m,f]?|"
40
+ r"N[e,a,i,b,h,d,o,p]?|"
41
+ r"O[s,g]?|S[i,c,e,r,n,m,b,g]?|"
42
+ r"K[r]?|T[i,c,e,a,l,b,h,m,s]|"
43
+ r"G[a,e,d]|R[b,u,h,e,n,a,f,g]|"
44
+ r"Yb?|Z[n,r]|P[t,o,d,r,a,u,b,m]?|"
45
+ r"F[e,r,l,m]?|M[g,n,o,t,c,d]|"
46
+ r"A[l,r,s,g,u,t,c,m]|I[n,r]?|"
47
+ r"W|X[e]|E[u,r,s]|U|D[b,s,y]|"
48
+ r"-|.| |[0-9])"
49
+ )
50
+ AA_REGEX_PATTERN = r"(A|B|C|D|E|F|G|H|I|K|L|M|N|P|Q|R|S|T|V|W|Y|Z|-|.)"
51
+ smi_regex = re.compile(SMI_REGEX_PATTERN)
52
+ sel_regex = re.compile(SEL_REGEX_PATTERN)
53
+ geo_regex = re.compile(GEO_REGEX_PATTERN)
54
+ aa_regex = re.compile(AA_REGEX_PATTERN)
55
+
56
+
57
+ def load_vocab(
58
+ vocab_file: Union[str, Path]
59
+ ) -> Dict[str, Union[int, List[str], Dict[str, int]]]:
60
+ """
61
+ Load vocabulary from source file.
62
+
63
+ :param vocab_file: file that contains vocabulary
64
+ :type vocab_file: str | pathlib.Path
65
+ :return: {"vocab_keys": vocab_keys, "vocab_count": vocab_count, "vocab_dict": vocab_dict}
66
+ :rtype: dict
67
+ """
68
+ with open(vocab_file, "r", encoding="utf-8") as f:
69
+ lines = f.read().strip()
70
+ vocab_keys = lines.split("\n")
71
+ vocab_count = len(vocab_keys)
72
+ vocab_dict = dict(zip(vocab_keys, range(vocab_count)))
73
+ return {
74
+ "vocab_keys": vocab_keys,
75
+ "vocab_count": vocab_count,
76
+ "vocab_dict": vocab_dict,
77
+ }
78
+
79
+
80
+ _DEFUALT_VOCAB = load_vocab(__filedir__ / "vocab.txt")
81
+ VOCAB_KEYS: List[str] = _DEFUALT_VOCAB["vocab_keys"]
82
+ VOCAB_DICT: Dict[str, int] = _DEFUALT_VOCAB["vocab_dict"]
83
+ VOCAB_COUNT: int = _DEFUALT_VOCAB["vocab_count"]
84
+ AA_VOCAB_KEYS = (
85
+ VOCAB_KEYS[0:3] + "A B C D E F G H I K L M N P Q R S T V W Y Z - .".split()
86
+ )
87
+ AA_VOCAB_COUNT = len(AA_VOCAB_KEYS)
88
+ AA_VOCAB_DICT = dict(zip(AA_VOCAB_KEYS, range(AA_VOCAB_COUNT)))
89
+ GEO_VOCAB_KEYS = VOCAB_KEYS[0:3] + [" "] + VOCAB_KEYS[22:150] + [".", "-"]
90
+ GEO_VOCAB_COUNT = len(GEO_VOCAB_KEYS)
91
+ GEO_VOCAB_DICT = dict(zip(GEO_VOCAB_KEYS, range(GEO_VOCAB_COUNT)))
92
+
93
+
94
+ def smiles2vec(smiles: str) -> List[int]:
95
+ """
96
+ SMILES tokenisation using a dataset-independent regex pattern.
97
+
98
+ :param smiles: SMILES string
99
+ :type smiles: str
100
+ :return: tokens w/o `<start>` and `<end>`
101
+ :rtype: list
102
+ """
103
+ tokens = [token for token in smi_regex.findall(smiles)]
104
+ return [VOCAB_DICT[token] for token in tokens]
105
+
106
+
107
+ def geo2vec(geo2seq: str) -> List[int]:
108
+ """
109
+ Geo2Seq tokenisation using a dataset-independent regex pattern.
110
+
111
+ :param geo2seq: Geo2Seq string
112
+ :type geo2seq: str
113
+ :return: tokens w/o `<start>` and `<end>`
114
+ :rtype: list
115
+ """
116
+ tokens = [token for token in geo_regex.findall(geo2seq)]
117
+ return [GEO_VOCAB_DICT[token] for token in tokens]
118
+
119
+
120
+ def aa2vec(aa_seq: str) -> List[int]:
121
+ """
122
+ Protein sequence tokenisation using a dataset-independent regex pattern.
123
+
124
+ :param aa_seq: protein (amino acid) sequence
125
+ :type aa_seq: str
126
+ :return: tokens w/o `<start>` and `<end>`
127
+ :rtype: list
128
+ """
129
+ tokens = [token for token in aa_regex.findall(aa_seq)]
130
+ return [AA_VOCAB_DICT[token] for token in tokens]
131
+
132
+
133
+ def split_selfies(selfies: str) -> List[str]:
134
+ """
135
+ SELFIES tokenisation.
136
+
137
+ :param selfies: SELFIES string
138
+ :type selfies: str
139
+ :return: SELFIES vocab
140
+ :rtype: list
141
+ """
142
+ return [token for token in sel_regex.findall(selfies)]
143
+
144
+
145
+ def smiles2token(smiles: str) -> Tensor:
146
+ # start token: <start> = 1; end token: <esc> = 2
147
+ return torch.tensor([1] + smiles2vec(smiles) + [2], dtype=torch.long)
148
+
149
+
150
+ def geo2token(geo2seq: str) -> Tensor:
151
+ # start token: <start> = 1; end token: <esc> = 2
152
+ return torch.tensor([1] + geo2vec(geo2seq) + [2], dtype=torch.long)
153
+
154
+
155
+ def aa2token(aa_seq: str) -> Tensor:
156
+ # start token: <start> = 1; end token: <end> = 2
157
+ return torch.tensor([1] + aa2vec(aa_seq) + [2], dtype=torch.long)
158
+
159
+
160
+ def collate(batch: List[Dict[str, Tensor]]) -> Dict[str, Tensor]:
161
+ """
162
+ Padding the data in one batch into the same size.\n
163
+ Should be passed to `~torch.utils.data.DataLoader` as `DataLoader(collate_fn=collate, ...)`.
164
+
165
+ :param batch: a list of data (one batch)
166
+ :type batch: list
167
+ :return: batched {"token": token} or {"token": token, "value": value}
168
+ :rtype: dict
169
+ """
170
+ token = [i["token"] for i in batch]
171
+ if "MAX_PADDING_LENGTH" in os.environ:
172
+ lmax = int(os.environ["MAX_PADDING_LENGTH"])
173
+ else:
174
+ lmax = max([len(w) for w in token])
175
+ token = torch.cat(
176
+ [F.pad(i, (0, lmax - len(i)), value=0)[None, :] for i in token], 0
177
+ )
178
+ out_dict = {"token": token}
179
+ if "value" in batch[0]:
180
+ out_dict["value"] = torch.cat([i["value"][None, :] for i in batch], 0)
181
+ if "mask" in batch[0]:
182
+ mask = [i["mask"] for i in batch]
183
+ out_dict["mask"] = torch.cat(
184
+ [F.pad(i, (0, lmax - len(i)), value=0)[None, :] for i in mask], 0
185
+ )
186
+ return out_dict
187
+
188
+
189
+ class CSVData(Dataset):
190
+ def __init__(self, file: Union[str, Path]):
191
+ """
192
+ Define dataset stored in CSV file.
193
+
194
+ :param file: dataset file name <file>
195
+ :type file: str | pathlib.Path
196
+ """
197
+ super().__init__()
198
+ with open(file, "r") as db:
199
+ self.data = db.readlines()
200
+ self.header_idx_dict: Dict[str, List[int]] = {}
201
+ for key, i in enumerate(self.data[0].replace("\n", "").split(",")):
202
+ if i in self.header_idx_dict:
203
+ self.header_idx_dict[i].append(key)
204
+ else:
205
+ self.header_idx_dict[i] = [key]
206
+ self.mapping = lambda x: x
207
+
208
+ def __len__(self) -> int:
209
+ return len(self.data) - 1
210
+
211
+ def __getitem__(self, idx: Union[int, Tensor]) -> Dict[str, Tensor]:
212
+ if torch.is_tensor(idx):
213
+ idx = idx.tolist()
214
+ # valid `idx` should start from 1 instead of 0
215
+ data: List[str] = self.data[idx + 1].replace("\n", "").split(",")
216
+ data_dict: Dict[str, List[str]] = {}
217
+ for key in self.header_idx_dict:
218
+ data_dict[key] = [data[i] for i in self.header_idx_dict[key]]
219
+ return self.mapping(data_dict)
220
+
221
+ def map(self, mapping: Callable[[Dict[str, List[str]]], Any]) -> None:
222
+ """
223
+ Pass a customised mapping function to transform the data entities to tensors.
224
+
225
+ e.g.
226
+ ```python
227
+ import torch
228
+ from bayesianflow_for_chem.data import smiles2token, CSVData
229
+
230
+
231
+ def encode(x):
232
+ return {
233
+ "token": smiles2token(".".join(x["smiles"])),
234
+ "value": torch.tensor([float(i) if i != "" else torch.inf for i in x["value"]]),
235
+ }
236
+
237
+ dataset = CSVData(...)
238
+ dataset.map(encode)
239
+ ```
240
+
241
+ :param mapping: customised mapping function
242
+ :type mapping: callable
243
+ :return:
244
+ :rtype: None
245
+ """
246
+ self.mapping = mapping
247
+
248
+
249
+ if __name__ == "__main__":
250
+ ...