awslabs.dynamodb-mcp-server 2.0.1__tar.gz → 2.0.2__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of awslabs.dynamodb-mcp-server might be problematic. Click here for more details.
- {awslabs_dynamodb_mcp_server-2.0.1 → awslabs_dynamodb_mcp_server-2.0.2}/Dockerfile +2 -2
- awslabs_dynamodb_mcp_server-2.0.2/PKG-INFO +256 -0
- awslabs_dynamodb_mcp_server-2.0.2/README.md +223 -0
- awslabs_dynamodb_mcp_server-2.0.2/awslabs/__init__.py +36 -0
- {awslabs_dynamodb_mcp_server-2.0.1 → awslabs_dynamodb_mcp_server-2.0.2}/awslabs/dynamodb_mcp_server/__init__.py +1 -1
- awslabs_dynamodb_mcp_server-2.0.2/awslabs/dynamodb_mcp_server/database_analysis_queries.py +210 -0
- awslabs_dynamodb_mcp_server-2.0.2/awslabs/dynamodb_mcp_server/database_analyzers.py +383 -0
- {awslabs_dynamodb_mcp_server-2.0.1 → awslabs_dynamodb_mcp_server-2.0.2}/awslabs/dynamodb_mcp_server/prompts/dynamodb_architect.md +13 -0
- awslabs_dynamodb_mcp_server-2.0.2/awslabs/dynamodb_mcp_server/server.py +246 -0
- {awslabs_dynamodb_mcp_server-2.0.1 → awslabs_dynamodb_mcp_server-2.0.2}/pyproject.toml +3 -2
- awslabs_dynamodb_mcp_server-2.0.2/tests/__init__.py +14 -0
- awslabs_dynamodb_mcp_server-2.0.2/tests/conftest.py +30 -0
- awslabs_dynamodb_mcp_server-2.0.2/tests/test_dynamodb_server.py +211 -0
- awslabs_dynamodb_mcp_server-2.0.2/tests/test_source_db_integration.py +480 -0
- {awslabs_dynamodb_mcp_server-2.0.1 → awslabs_dynamodb_mcp_server-2.0.2}/uv.lock +19 -1
- awslabs_dynamodb_mcp_server-2.0.1/PKG-INFO +0 -164
- awslabs_dynamodb_mcp_server-2.0.1/README.md +0 -132
- awslabs_dynamodb_mcp_server-2.0.1/awslabs/__init__.py +0 -16
- awslabs_dynamodb_mcp_server-2.0.1/awslabs/dynamodb_mcp_server/server.py +0 -81
- awslabs_dynamodb_mcp_server-2.0.1/tests/test_dynamodb_server.py +0 -53
- {awslabs_dynamodb_mcp_server-2.0.1 → awslabs_dynamodb_mcp_server-2.0.2}/.gitignore +0 -0
- {awslabs_dynamodb_mcp_server-2.0.1 → awslabs_dynamodb_mcp_server-2.0.2}/.python-version +0 -0
- {awslabs_dynamodb_mcp_server-2.0.1 → awslabs_dynamodb_mcp_server-2.0.2}/CHANGELOG.md +0 -0
- {awslabs_dynamodb_mcp_server-2.0.1 → awslabs_dynamodb_mcp_server-2.0.2}/LICENSE +0 -0
- {awslabs_dynamodb_mcp_server-2.0.1 → awslabs_dynamodb_mcp_server-2.0.2}/NOTICE +0 -0
- {awslabs_dynamodb_mcp_server-2.0.1 → awslabs_dynamodb_mcp_server-2.0.2}/awslabs/dynamodb_mcp_server/common.py +0 -0
- {awslabs_dynamodb_mcp_server-2.0.1 → awslabs_dynamodb_mcp_server-2.0.2}/docker-healthcheck.sh +0 -0
- {awslabs_dynamodb_mcp_server-2.0.1 → awslabs_dynamodb_mcp_server-2.0.2}/tests/evals/README.md +0 -0
- {awslabs_dynamodb_mcp_server-2.0.1 → awslabs_dynamodb_mcp_server-2.0.2}/tests/evals/dynamic_evaluators.py +0 -0
- {awslabs_dynamodb_mcp_server-2.0.1 → awslabs_dynamodb_mcp_server-2.0.2}/tests/evals/evaluation_registry.py +0 -0
- {awslabs_dynamodb_mcp_server-2.0.1 → awslabs_dynamodb_mcp_server-2.0.2}/tests/evals/logging_config.py +0 -0
- {awslabs_dynamodb_mcp_server-2.0.1 → awslabs_dynamodb_mcp_server-2.0.2}/tests/evals/multiturn_evaluator.py +0 -0
- {awslabs_dynamodb_mcp_server-2.0.1 → awslabs_dynamodb_mcp_server-2.0.2}/tests/evals/scenarios.py +0 -0
- {awslabs_dynamodb_mcp_server-2.0.1 → awslabs_dynamodb_mcp_server-2.0.2}/tests/evals/test_dspy_evals.py +0 -0
- {awslabs_dynamodb_mcp_server-2.0.1 → awslabs_dynamodb_mcp_server-2.0.2}/uv-requirements.txt +0 -0
|
@@ -13,7 +13,7 @@
|
|
|
13
13
|
# limitations under the License.
|
|
14
14
|
|
|
15
15
|
# dependabot should continue to update this to the latest hash.
|
|
16
|
-
FROM public.ecr.aws/docker/library/python:3.13
|
|
16
|
+
FROM public.ecr.aws/docker/library/python:3.13-alpine@sha256:070342a0cc1011532c0e69972cce2bbc6cc633eba294bae1d12abea8bd05303b AS uv
|
|
17
17
|
|
|
18
18
|
# Install the project into `/app`
|
|
19
19
|
WORKDIR /app
|
|
@@ -61,7 +61,7 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
|
|
61
61
|
# Make the directory just in case it doesn't exist
|
|
62
62
|
RUN mkdir -p /root/.local
|
|
63
63
|
|
|
64
|
-
FROM public.ecr.aws/docker/library/python:3.13
|
|
64
|
+
FROM public.ecr.aws/docker/library/python:3.13-alpine@sha256:070342a0cc1011532c0e69972cce2bbc6cc633eba294bae1d12abea8bd05303b
|
|
65
65
|
|
|
66
66
|
# Place executables in the environment at the front of the path and include other binaries
|
|
67
67
|
ENV PATH="/app/.venv/bin:$PATH" \
|
|
@@ -0,0 +1,256 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: awslabs.dynamodb-mcp-server
|
|
3
|
+
Version: 2.0.2
|
|
4
|
+
Summary: The official MCP Server for interacting with AWS DynamoDB
|
|
5
|
+
Project-URL: homepage, https://awslabs.github.io/mcp/
|
|
6
|
+
Project-URL: docs, https://awslabs.github.io/mcp/servers/dynamodb-mcp-server/
|
|
7
|
+
Project-URL: documentation, https://awslabs.github.io/mcp/servers/dynamodb-mcp-server/
|
|
8
|
+
Project-URL: repository, https://github.com/awslabs/mcp.git
|
|
9
|
+
Project-URL: changelog, https://github.com/awslabs/mcp/blob/main/src/dynamodb-mcp-server/CHANGELOG.md
|
|
10
|
+
Author: Amazon Web Services
|
|
11
|
+
Author-email: AWSLabs MCP <203918161+awslabs-mcp@users.noreply.github.com>, Erben Mo <moerben@amazon.com>
|
|
12
|
+
License: Apache-2.0
|
|
13
|
+
License-File: LICENSE
|
|
14
|
+
License-File: NOTICE
|
|
15
|
+
Classifier: License :: OSI Approved :: Apache Software License
|
|
16
|
+
Classifier: Operating System :: OS Independent
|
|
17
|
+
Classifier: Programming Language :: Python
|
|
18
|
+
Classifier: Programming Language :: Python :: 3
|
|
19
|
+
Classifier: Programming Language :: Python :: 3.10
|
|
20
|
+
Classifier: Programming Language :: Python :: 3.11
|
|
21
|
+
Classifier: Programming Language :: Python :: 3.12
|
|
22
|
+
Classifier: Programming Language :: Python :: 3.13
|
|
23
|
+
Requires-Python: >=3.10
|
|
24
|
+
Requires-Dist: awslabs-mysql-mcp-server==1.0.5
|
|
25
|
+
Requires-Dist: boto3==1.40.5
|
|
26
|
+
Requires-Dist: dspy-ai>=2.6.27
|
|
27
|
+
Requires-Dist: loguru==0.7.3
|
|
28
|
+
Requires-Dist: mcp[cli]==1.12.4
|
|
29
|
+
Requires-Dist: pydantic==2.11.7
|
|
30
|
+
Requires-Dist: strands-agents>=1.5.0
|
|
31
|
+
Requires-Dist: typing-extensions==4.14.1
|
|
32
|
+
Description-Content-Type: text/markdown
|
|
33
|
+
|
|
34
|
+
# AWS DynamoDB MCP Server
|
|
35
|
+
|
|
36
|
+
The official developer experience MCP Server for Amazon DynamoDB. This server provides DynamoDB expert design guidance and data modeling assistance.
|
|
37
|
+
|
|
38
|
+
## Available MCP Tools
|
|
39
|
+
|
|
40
|
+
Right now the DynamoDB MCP server contains two tools that support data modeling tasks. You can design a data model in natural language by using only the `dynamodb_data_modeling` tool or you can analyze your MySQL database and convert the analysis into a DynamoDB data model by using the `source_db_analyzer` tool.
|
|
41
|
+
|
|
42
|
+
### Design & Modeling
|
|
43
|
+
|
|
44
|
+
* `dynamodb_data_modeling` - Retrieves the complete DynamoDB Data Modeling Expert prompt
|
|
45
|
+
* `source_db_analyzer` - Executes predefined SQL queries against source databases to analyze schema and access patterns
|
|
46
|
+
|
|
47
|
+
## Migration Notice
|
|
48
|
+
|
|
49
|
+
Starting with version 2.0.0, this server focuses exclusively on DynamoDB design and modeling guidance. All operational DynamoDB management tools (table operations, item operations, queries, backups, etc.) have been removed in favor of the [AWS API MCP Server](https://github.com/awslabs/mcp/tree/main/src/aws-api-mcp-server) which provides the same capability and more.
|
|
50
|
+
|
|
51
|
+
**This server does not do:**
|
|
52
|
+
|
|
53
|
+
- ❌ Operational DynamoDB management (CRUD operations)
|
|
54
|
+
- ❌ Table creation or data migration
|
|
55
|
+
- ❌ Direct data queries or transformations
|
|
56
|
+
|
|
57
|
+
### Recommended: AWS API MCP Server
|
|
58
|
+
|
|
59
|
+
For operational DynamoDB management (retrieving data, managing tables, etc.), use the [AWS API MCP Server](https://github.com/awslabs/mcp/tree/main/src/aws-api-mcp-server) which provides comprehensive DynamoDB operations. [Migration guide available here](https://github.com/awslabs/mcp/tree/main/src/aws-api-mcp-server).
|
|
60
|
+
|
|
61
|
+
### Not Recommended: Legacy Version
|
|
62
|
+
|
|
63
|
+
If you must use the previous operational tools, you can pin to version 1.0.9, though this is not recommended:
|
|
64
|
+
|
|
65
|
+
```json
|
|
66
|
+
{
|
|
67
|
+
"mcpServers": {
|
|
68
|
+
"awslabs.dynamodb-mcp-server": {
|
|
69
|
+
"command": "uvx",
|
|
70
|
+
"args": ["awslabs.dynamodb-mcp-server@1.0.9"],
|
|
71
|
+
"env": {
|
|
72
|
+
"DDB-MCP-READONLY": "true",
|
|
73
|
+
"AWS_PROFILE": "default",
|
|
74
|
+
"AWS_REGION": "us-west-2",
|
|
75
|
+
"FASTMCP_LOG_LEVEL": "ERROR"
|
|
76
|
+
},
|
|
77
|
+
"disabled": false,
|
|
78
|
+
"autoApprove": []
|
|
79
|
+
}
|
|
80
|
+
}
|
|
81
|
+
}
|
|
82
|
+
```
|
|
83
|
+
|
|
84
|
+
## Instructions
|
|
85
|
+
|
|
86
|
+
To design a data model in natural language you can simply ask your AI agent to “use my DynamoDB MCP to help me design a DynamoDB data model,” or something similar. If you want to analyze your MySQL query patterns then you can follow these additional steps below to setup connectivity and then say something like “analyze my MySQL database and then help me design a DynamoDB data model.”
|
|
87
|
+
|
|
88
|
+
## Source Database Integration
|
|
89
|
+
|
|
90
|
+
The DynamoDB MCP server includes source database integration for database analysis and the tool `source_db_analyzer` is useful to get the actual source database schema and access patterns which helps to design the model in DynamoDB. We recommend running this tool against a non-production database instance and it currently supports Aurora MySQL with additional database support planned for future releases.
|
|
91
|
+
|
|
92
|
+
### Prerequisites for MySQL Integration
|
|
93
|
+
|
|
94
|
+
1. Aurora MySQL Cluster with MySQL username and password stored in AWS Secrets Manager
|
|
95
|
+
2. Enable RDS Data API for your Aurora MySQL Cluster
|
|
96
|
+
3. Enable Performance Schema for access pattern analysis (optional):
|
|
97
|
+
|
|
98
|
+
* Go to the parameter group for your DB instance and set performance_schema value to 1. Make sure to reboot the DB instance after the changes whenever you turn the Performance Schema on or off. Follow the [Instructions](https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_WorkingWithParamGroups.Modifying.html) to modify DB parameter group in Amazon Aurora.
|
|
99
|
+
* After the parameter values are modified, you can run the "SHOW GLOBAL VARIABLES LIKE'%performance_schema'"; command to view the value of the performance_schema parameter of the database instance, also consider tunning the below parameters if required.
|
|
100
|
+
* `performance_schema_digests_size` [parameter](https://dev.mysql.com/doc/refman/8.0/en/performance-schema-system-variables.html#sysvar_performance_schema_digests_size) - Sets the maximum number of rows stored in the events_statements_summary_by_digest table for querying access pattern. (When you hit this limit, some logs will be lost, potentially missing important access patterns)
|
|
101
|
+
* `performance_schema_max_digest_length` [parameter](https://dev.mysql.com/doc/refman/8.0/en/performance-schema-system-variables.html#sysvar_performance_schema_max_digest_length) - Sets the maximum byte length for each individual statement digest (access pattern) that the Performance Schema stores. (Default is 1024 bytes, Complex queries might not be fully captured when you hit this limit)
|
|
102
|
+
* Without these Performance Schema query access patterns, DynamoDB Data Modeler tool recommends access patterns based on the information schema from the source Database.
|
|
103
|
+
|
|
104
|
+
1. Set up AWS credentials with access to AWS services:
|
|
105
|
+
|
|
106
|
+
* Configure AWS credentials with `aws configure` or environment variables (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, AWS_SESSION_TOKEN) . The server will automatically use credentials from environment variables or other standard AWS credential sources.
|
|
107
|
+
* AWS profile with permissions to access RDS Data API and AWS Secrets Manager
|
|
108
|
+
|
|
109
|
+
### MySQL Environment Variables
|
|
110
|
+
|
|
111
|
+
Add these environment variables to DynamoDB MCP Server configuration to enable MySQL integration:
|
|
112
|
+
|
|
113
|
+
* `MYSQL_CLUSTER_ARN`: The Resource ARN of the Aurora MySQL cluster
|
|
114
|
+
* `MYSQL_SECRET_ARN`: The ARN of the secret containing database credentials
|
|
115
|
+
* `MYSQL_DATABASE`: The name of the database to connect to
|
|
116
|
+
* `AWS_REGION`: AWS region of the Aurora MySQL cluster
|
|
117
|
+
* `MYSQL_MAX_QUERY_RESULTS`: Maximum number of rows to include in analysis output files for schema and access_pattern logs (optional, default: "500")
|
|
118
|
+
|
|
119
|
+
### MCP configuration with MySQL Environment Variables
|
|
120
|
+
|
|
121
|
+
```json
|
|
122
|
+
{
|
|
123
|
+
"mcpServers": {
|
|
124
|
+
"awslabs.dynamodb-mcp-server": {
|
|
125
|
+
"command": "uvx",
|
|
126
|
+
"args": ["awslabs.dynamodb-mcp-server@latest"],
|
|
127
|
+
"env": {
|
|
128
|
+
"DDB-MCP-READONLY": "true",
|
|
129
|
+
"AWS_PROFILE": "default",
|
|
130
|
+
"AWS_REGION": "us-west-2",
|
|
131
|
+
"FASTMCP_LOG_LEVEL": "ERROR",
|
|
132
|
+
"MYSQL_CLUSTER_ARN":"arn:aws:rds:$REGION:$ACCOUNT_ID:cluster:$CLUSTER_NAME",
|
|
133
|
+
"MYSQL_SECRET_ARN":"arn:aws:secretsmanager:$REGION:$ACCOUNT_ID:secret:$SECRET_NAME",
|
|
134
|
+
"MYSQL_DATABASE":"<DATABASE_NAME>",
|
|
135
|
+
"MYSQL_MAX_QUERY_RESULTS": 500
|
|
136
|
+
},
|
|
137
|
+
"disabled": false,
|
|
138
|
+
"autoApprove": []
|
|
139
|
+
}
|
|
140
|
+
}
|
|
141
|
+
}
|
|
142
|
+
```
|
|
143
|
+
|
|
144
|
+
## Prerequisites
|
|
145
|
+
|
|
146
|
+
1. Install `uv` from [Astral](https://docs.astral.sh/uv/getting-started/installation/) or the [GitHub README](https://github.com/astral-sh/uv#installation)
|
|
147
|
+
2. Install Python using `uv python install 3.10`
|
|
148
|
+
3. Set up AWS credentials with access to AWS services
|
|
149
|
+
|
|
150
|
+
* Consider setting up Read-only permission if you don't want the LLM to modify any resources
|
|
151
|
+
|
|
152
|
+
## Installation
|
|
153
|
+
|
|
154
|
+
| Cursor | VS Code |
|
|
155
|
+
|:------:|:-------:|
|
|
156
|
+
| [](https://cursor.com/en/install-mcp?name=awslabs.dynamodb-mcp-server&config=JTdCJTIyY29tbWFuZCUyMiUzQSUyMnV2eCUyMGF3c2xhYnMuZHluYW1vZGItbWNwLXNlcnZlciU0MGxhdGVzdCUyMiUyQyUyMmVudiUyMiUzQSU3QiUyMkREQi1NQ1AtUkVBRE9OTFklMjIlM0ElMjJ0cnVlJTIyJTJDJTIyQVdTX1BST0ZJTEUlMjIlM0ElMjJkZWZhdWx0JTIyJTJDJTIyQVdTX1JFR0lPTiUyMiUzQSUyMnVzLXdlc3QtMiUyMiUyQyUyMkZBU1RNQ1BfTE9HX0xFVkVMJTIyJTNBJTIyRVJST1IlMjIlN0QlMkMlMjJkaXNhYmxlZCUyMiUzQWZhbHNlJTJDJTIyYXV0b0FwcHJvdmUlMjIlM0ElNUIlNUQlN0Q%3D)| [](https://insiders.vscode.dev/redirect/mcp/install?name=DynamoDB%20MCP%20Server&config=%7B%22command%22%3A%22uvx%22%2C%22args%22%3A%5B%22awslabs.dynamodb-mcp-server%40latest%22%5D%2C%22env%22%3A%7B%22DDB-MCP-READONLY%22%3A%22true%22%2C%22AWS_PROFILE%22%3A%22default%22%2C%22AWS_REGION%22%3A%22us-west-2%22%2C%22FASTMCP_LOG_LEVEL%22%3A%22ERROR%22%7D%2C%22disabled%22%3Afalse%2C%22autoApprove%22%3A%5B%5D%7D) |
|
|
157
|
+
|
|
158
|
+
Add the MCP to your favorite agentic tools. (e.g. for Amazon Q Developer CLI MCP, `~/.aws/amazonq/mcp.json`):
|
|
159
|
+
|
|
160
|
+
```json
|
|
161
|
+
{
|
|
162
|
+
"mcpServers": {
|
|
163
|
+
"awslabs.dynamodb-mcp-server": {
|
|
164
|
+
"command": "uvx",
|
|
165
|
+
"args": ["awslabs.dynamodb-mcp-server@latest"],
|
|
166
|
+
"env": {
|
|
167
|
+
"DDB-MCP-READONLY": "true",
|
|
168
|
+
"AWS_PROFILE": "default",
|
|
169
|
+
"AWS_REGION": "us-west-2",
|
|
170
|
+
"FASTMCP_LOG_LEVEL": "ERROR"
|
|
171
|
+
},
|
|
172
|
+
"disabled": false,
|
|
173
|
+
"autoApprove": []
|
|
174
|
+
}
|
|
175
|
+
}
|
|
176
|
+
}
|
|
177
|
+
```
|
|
178
|
+
|
|
179
|
+
### Windows Installation
|
|
180
|
+
|
|
181
|
+
For Windows users, the MCP server configuration format is slightly different:
|
|
182
|
+
|
|
183
|
+
```json
|
|
184
|
+
{
|
|
185
|
+
"mcpServers": {
|
|
186
|
+
"awslabs.dynamodb-mcp-server": {
|
|
187
|
+
"disabled": false,
|
|
188
|
+
"timeout": 60,
|
|
189
|
+
"type": "stdio",
|
|
190
|
+
"command": "uv",
|
|
191
|
+
"args": [
|
|
192
|
+
"tool",
|
|
193
|
+
"run",
|
|
194
|
+
"--from",
|
|
195
|
+
"awslabs.dynamodb-mcp-server@latest",
|
|
196
|
+
"awslabs.dynamodb-mcp-server.exe"
|
|
197
|
+
],
|
|
198
|
+
"env": {
|
|
199
|
+
"FASTMCP_LOG_LEVEL": "ERROR",
|
|
200
|
+
"AWS_PROFILE": "your-aws-profile",
|
|
201
|
+
"AWS_REGION": "us-west-2"
|
|
202
|
+
}
|
|
203
|
+
}
|
|
204
|
+
}
|
|
205
|
+
}
|
|
206
|
+
```
|
|
207
|
+
|
|
208
|
+
|
|
209
|
+
or docker after a successful `docker build -t awslabs/dynamodb-mcp-server .`:
|
|
210
|
+
|
|
211
|
+
```json
|
|
212
|
+
{
|
|
213
|
+
"mcpServers": {
|
|
214
|
+
"awslabs.dynamodb-mcp-server": {
|
|
215
|
+
"command": "docker",
|
|
216
|
+
"args": [
|
|
217
|
+
"run",
|
|
218
|
+
"--rm",
|
|
219
|
+
"--interactive",
|
|
220
|
+
"--env",
|
|
221
|
+
"FASTMCP_LOG_LEVEL=ERROR",
|
|
222
|
+
"awslabs/dynamodb-mcp-server:latest"
|
|
223
|
+
],
|
|
224
|
+
"env": {},
|
|
225
|
+
"disabled": false,
|
|
226
|
+
"autoApprove": []
|
|
227
|
+
}
|
|
228
|
+
}
|
|
229
|
+
}
|
|
230
|
+
```
|
|
231
|
+
|
|
232
|
+
## Limitations & Considerations
|
|
233
|
+
|
|
234
|
+
### **Application-Level Patterns:**
|
|
235
|
+
|
|
236
|
+
* Queries generated dynamically in application code
|
|
237
|
+
* Caching layer behavior (Redis, Memcached)
|
|
238
|
+
* Real-time vs. analytics query differentiation
|
|
239
|
+
* Background job access patterns
|
|
240
|
+
|
|
241
|
+
### Business Context:
|
|
242
|
+
|
|
243
|
+
* Data consistency requirements
|
|
244
|
+
* Compliance and audit requirements
|
|
245
|
+
* Geographic distribution requirements
|
|
246
|
+
|
|
247
|
+
### Recommendation:
|
|
248
|
+
|
|
249
|
+
Supplement analysis with documentation or natural language descriptions based on:
|
|
250
|
+
|
|
251
|
+
* Application code review
|
|
252
|
+
* Architecture documentation review
|
|
253
|
+
* Stakeholder interviews with development team
|
|
254
|
+
* Load testing results analysis
|
|
255
|
+
|
|
256
|
+
There are also more complex patterns that result from stored procedures, triggers, aggregations, that the tool does not currently handle consistently but we plan to improve in future iterations.
|
|
@@ -0,0 +1,223 @@
|
|
|
1
|
+
# AWS DynamoDB MCP Server
|
|
2
|
+
|
|
3
|
+
The official developer experience MCP Server for Amazon DynamoDB. This server provides DynamoDB expert design guidance and data modeling assistance.
|
|
4
|
+
|
|
5
|
+
## Available MCP Tools
|
|
6
|
+
|
|
7
|
+
Right now the DynamoDB MCP server contains two tools that support data modeling tasks. You can design a data model in natural language by using only the `dynamodb_data_modeling` tool or you can analyze your MySQL database and convert the analysis into a DynamoDB data model by using the `source_db_analyzer` tool.
|
|
8
|
+
|
|
9
|
+
### Design & Modeling
|
|
10
|
+
|
|
11
|
+
* `dynamodb_data_modeling` - Retrieves the complete DynamoDB Data Modeling Expert prompt
|
|
12
|
+
* `source_db_analyzer` - Executes predefined SQL queries against source databases to analyze schema and access patterns
|
|
13
|
+
|
|
14
|
+
## Migration Notice
|
|
15
|
+
|
|
16
|
+
Starting with version 2.0.0, this server focuses exclusively on DynamoDB design and modeling guidance. All operational DynamoDB management tools (table operations, item operations, queries, backups, etc.) have been removed in favor of the [AWS API MCP Server](https://github.com/awslabs/mcp/tree/main/src/aws-api-mcp-server) which provides the same capability and more.
|
|
17
|
+
|
|
18
|
+
**This server does not do:**
|
|
19
|
+
|
|
20
|
+
- ❌ Operational DynamoDB management (CRUD operations)
|
|
21
|
+
- ❌ Table creation or data migration
|
|
22
|
+
- ❌ Direct data queries or transformations
|
|
23
|
+
|
|
24
|
+
### Recommended: AWS API MCP Server
|
|
25
|
+
|
|
26
|
+
For operational DynamoDB management (retrieving data, managing tables, etc.), use the [AWS API MCP Server](https://github.com/awslabs/mcp/tree/main/src/aws-api-mcp-server) which provides comprehensive DynamoDB operations. [Migration guide available here](https://github.com/awslabs/mcp/tree/main/src/aws-api-mcp-server).
|
|
27
|
+
|
|
28
|
+
### Not Recommended: Legacy Version
|
|
29
|
+
|
|
30
|
+
If you must use the previous operational tools, you can pin to version 1.0.9, though this is not recommended:
|
|
31
|
+
|
|
32
|
+
```json
|
|
33
|
+
{
|
|
34
|
+
"mcpServers": {
|
|
35
|
+
"awslabs.dynamodb-mcp-server": {
|
|
36
|
+
"command": "uvx",
|
|
37
|
+
"args": ["awslabs.dynamodb-mcp-server@1.0.9"],
|
|
38
|
+
"env": {
|
|
39
|
+
"DDB-MCP-READONLY": "true",
|
|
40
|
+
"AWS_PROFILE": "default",
|
|
41
|
+
"AWS_REGION": "us-west-2",
|
|
42
|
+
"FASTMCP_LOG_LEVEL": "ERROR"
|
|
43
|
+
},
|
|
44
|
+
"disabled": false,
|
|
45
|
+
"autoApprove": []
|
|
46
|
+
}
|
|
47
|
+
}
|
|
48
|
+
}
|
|
49
|
+
```
|
|
50
|
+
|
|
51
|
+
## Instructions
|
|
52
|
+
|
|
53
|
+
To design a data model in natural language you can simply ask your AI agent to “use my DynamoDB MCP to help me design a DynamoDB data model,” or something similar. If you want to analyze your MySQL query patterns then you can follow these additional steps below to setup connectivity and then say something like “analyze my MySQL database and then help me design a DynamoDB data model.”
|
|
54
|
+
|
|
55
|
+
## Source Database Integration
|
|
56
|
+
|
|
57
|
+
The DynamoDB MCP server includes source database integration for database analysis and the tool `source_db_analyzer` is useful to get the actual source database schema and access patterns which helps to design the model in DynamoDB. We recommend running this tool against a non-production database instance and it currently supports Aurora MySQL with additional database support planned for future releases.
|
|
58
|
+
|
|
59
|
+
### Prerequisites for MySQL Integration
|
|
60
|
+
|
|
61
|
+
1. Aurora MySQL Cluster with MySQL username and password stored in AWS Secrets Manager
|
|
62
|
+
2. Enable RDS Data API for your Aurora MySQL Cluster
|
|
63
|
+
3. Enable Performance Schema for access pattern analysis (optional):
|
|
64
|
+
|
|
65
|
+
* Go to the parameter group for your DB instance and set performance_schema value to 1. Make sure to reboot the DB instance after the changes whenever you turn the Performance Schema on or off. Follow the [Instructions](https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_WorkingWithParamGroups.Modifying.html) to modify DB parameter group in Amazon Aurora.
|
|
66
|
+
* After the parameter values are modified, you can run the "SHOW GLOBAL VARIABLES LIKE'%performance_schema'"; command to view the value of the performance_schema parameter of the database instance, also consider tunning the below parameters if required.
|
|
67
|
+
* `performance_schema_digests_size` [parameter](https://dev.mysql.com/doc/refman/8.0/en/performance-schema-system-variables.html#sysvar_performance_schema_digests_size) - Sets the maximum number of rows stored in the events_statements_summary_by_digest table for querying access pattern. (When you hit this limit, some logs will be lost, potentially missing important access patterns)
|
|
68
|
+
* `performance_schema_max_digest_length` [parameter](https://dev.mysql.com/doc/refman/8.0/en/performance-schema-system-variables.html#sysvar_performance_schema_max_digest_length) - Sets the maximum byte length for each individual statement digest (access pattern) that the Performance Schema stores. (Default is 1024 bytes, Complex queries might not be fully captured when you hit this limit)
|
|
69
|
+
* Without these Performance Schema query access patterns, DynamoDB Data Modeler tool recommends access patterns based on the information schema from the source Database.
|
|
70
|
+
|
|
71
|
+
1. Set up AWS credentials with access to AWS services:
|
|
72
|
+
|
|
73
|
+
* Configure AWS credentials with `aws configure` or environment variables (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, AWS_SESSION_TOKEN) . The server will automatically use credentials from environment variables or other standard AWS credential sources.
|
|
74
|
+
* AWS profile with permissions to access RDS Data API and AWS Secrets Manager
|
|
75
|
+
|
|
76
|
+
### MySQL Environment Variables
|
|
77
|
+
|
|
78
|
+
Add these environment variables to DynamoDB MCP Server configuration to enable MySQL integration:
|
|
79
|
+
|
|
80
|
+
* `MYSQL_CLUSTER_ARN`: The Resource ARN of the Aurora MySQL cluster
|
|
81
|
+
* `MYSQL_SECRET_ARN`: The ARN of the secret containing database credentials
|
|
82
|
+
* `MYSQL_DATABASE`: The name of the database to connect to
|
|
83
|
+
* `AWS_REGION`: AWS region of the Aurora MySQL cluster
|
|
84
|
+
* `MYSQL_MAX_QUERY_RESULTS`: Maximum number of rows to include in analysis output files for schema and access_pattern logs (optional, default: "500")
|
|
85
|
+
|
|
86
|
+
### MCP configuration with MySQL Environment Variables
|
|
87
|
+
|
|
88
|
+
```json
|
|
89
|
+
{
|
|
90
|
+
"mcpServers": {
|
|
91
|
+
"awslabs.dynamodb-mcp-server": {
|
|
92
|
+
"command": "uvx",
|
|
93
|
+
"args": ["awslabs.dynamodb-mcp-server@latest"],
|
|
94
|
+
"env": {
|
|
95
|
+
"DDB-MCP-READONLY": "true",
|
|
96
|
+
"AWS_PROFILE": "default",
|
|
97
|
+
"AWS_REGION": "us-west-2",
|
|
98
|
+
"FASTMCP_LOG_LEVEL": "ERROR",
|
|
99
|
+
"MYSQL_CLUSTER_ARN":"arn:aws:rds:$REGION:$ACCOUNT_ID:cluster:$CLUSTER_NAME",
|
|
100
|
+
"MYSQL_SECRET_ARN":"arn:aws:secretsmanager:$REGION:$ACCOUNT_ID:secret:$SECRET_NAME",
|
|
101
|
+
"MYSQL_DATABASE":"<DATABASE_NAME>",
|
|
102
|
+
"MYSQL_MAX_QUERY_RESULTS": 500
|
|
103
|
+
},
|
|
104
|
+
"disabled": false,
|
|
105
|
+
"autoApprove": []
|
|
106
|
+
}
|
|
107
|
+
}
|
|
108
|
+
}
|
|
109
|
+
```
|
|
110
|
+
|
|
111
|
+
## Prerequisites
|
|
112
|
+
|
|
113
|
+
1. Install `uv` from [Astral](https://docs.astral.sh/uv/getting-started/installation/) or the [GitHub README](https://github.com/astral-sh/uv#installation)
|
|
114
|
+
2. Install Python using `uv python install 3.10`
|
|
115
|
+
3. Set up AWS credentials with access to AWS services
|
|
116
|
+
|
|
117
|
+
* Consider setting up Read-only permission if you don't want the LLM to modify any resources
|
|
118
|
+
|
|
119
|
+
## Installation
|
|
120
|
+
|
|
121
|
+
| Cursor | VS Code |
|
|
122
|
+
|:------:|:-------:|
|
|
123
|
+
| [](https://cursor.com/en/install-mcp?name=awslabs.dynamodb-mcp-server&config=JTdCJTIyY29tbWFuZCUyMiUzQSUyMnV2eCUyMGF3c2xhYnMuZHluYW1vZGItbWNwLXNlcnZlciU0MGxhdGVzdCUyMiUyQyUyMmVudiUyMiUzQSU3QiUyMkREQi1NQ1AtUkVBRE9OTFklMjIlM0ElMjJ0cnVlJTIyJTJDJTIyQVdTX1BST0ZJTEUlMjIlM0ElMjJkZWZhdWx0JTIyJTJDJTIyQVdTX1JFR0lPTiUyMiUzQSUyMnVzLXdlc3QtMiUyMiUyQyUyMkZBU1RNQ1BfTE9HX0xFVkVMJTIyJTNBJTIyRVJST1IlMjIlN0QlMkMlMjJkaXNhYmxlZCUyMiUzQWZhbHNlJTJDJTIyYXV0b0FwcHJvdmUlMjIlM0ElNUIlNUQlN0Q%3D)| [](https://insiders.vscode.dev/redirect/mcp/install?name=DynamoDB%20MCP%20Server&config=%7B%22command%22%3A%22uvx%22%2C%22args%22%3A%5B%22awslabs.dynamodb-mcp-server%40latest%22%5D%2C%22env%22%3A%7B%22DDB-MCP-READONLY%22%3A%22true%22%2C%22AWS_PROFILE%22%3A%22default%22%2C%22AWS_REGION%22%3A%22us-west-2%22%2C%22FASTMCP_LOG_LEVEL%22%3A%22ERROR%22%7D%2C%22disabled%22%3Afalse%2C%22autoApprove%22%3A%5B%5D%7D) |
|
|
124
|
+
|
|
125
|
+
Add the MCP to your favorite agentic tools. (e.g. for Amazon Q Developer CLI MCP, `~/.aws/amazonq/mcp.json`):
|
|
126
|
+
|
|
127
|
+
```json
|
|
128
|
+
{
|
|
129
|
+
"mcpServers": {
|
|
130
|
+
"awslabs.dynamodb-mcp-server": {
|
|
131
|
+
"command": "uvx",
|
|
132
|
+
"args": ["awslabs.dynamodb-mcp-server@latest"],
|
|
133
|
+
"env": {
|
|
134
|
+
"DDB-MCP-READONLY": "true",
|
|
135
|
+
"AWS_PROFILE": "default",
|
|
136
|
+
"AWS_REGION": "us-west-2",
|
|
137
|
+
"FASTMCP_LOG_LEVEL": "ERROR"
|
|
138
|
+
},
|
|
139
|
+
"disabled": false,
|
|
140
|
+
"autoApprove": []
|
|
141
|
+
}
|
|
142
|
+
}
|
|
143
|
+
}
|
|
144
|
+
```
|
|
145
|
+
|
|
146
|
+
### Windows Installation
|
|
147
|
+
|
|
148
|
+
For Windows users, the MCP server configuration format is slightly different:
|
|
149
|
+
|
|
150
|
+
```json
|
|
151
|
+
{
|
|
152
|
+
"mcpServers": {
|
|
153
|
+
"awslabs.dynamodb-mcp-server": {
|
|
154
|
+
"disabled": false,
|
|
155
|
+
"timeout": 60,
|
|
156
|
+
"type": "stdio",
|
|
157
|
+
"command": "uv",
|
|
158
|
+
"args": [
|
|
159
|
+
"tool",
|
|
160
|
+
"run",
|
|
161
|
+
"--from",
|
|
162
|
+
"awslabs.dynamodb-mcp-server@latest",
|
|
163
|
+
"awslabs.dynamodb-mcp-server.exe"
|
|
164
|
+
],
|
|
165
|
+
"env": {
|
|
166
|
+
"FASTMCP_LOG_LEVEL": "ERROR",
|
|
167
|
+
"AWS_PROFILE": "your-aws-profile",
|
|
168
|
+
"AWS_REGION": "us-west-2"
|
|
169
|
+
}
|
|
170
|
+
}
|
|
171
|
+
}
|
|
172
|
+
}
|
|
173
|
+
```
|
|
174
|
+
|
|
175
|
+
|
|
176
|
+
or docker after a successful `docker build -t awslabs/dynamodb-mcp-server .`:
|
|
177
|
+
|
|
178
|
+
```json
|
|
179
|
+
{
|
|
180
|
+
"mcpServers": {
|
|
181
|
+
"awslabs.dynamodb-mcp-server": {
|
|
182
|
+
"command": "docker",
|
|
183
|
+
"args": [
|
|
184
|
+
"run",
|
|
185
|
+
"--rm",
|
|
186
|
+
"--interactive",
|
|
187
|
+
"--env",
|
|
188
|
+
"FASTMCP_LOG_LEVEL=ERROR",
|
|
189
|
+
"awslabs/dynamodb-mcp-server:latest"
|
|
190
|
+
],
|
|
191
|
+
"env": {},
|
|
192
|
+
"disabled": false,
|
|
193
|
+
"autoApprove": []
|
|
194
|
+
}
|
|
195
|
+
}
|
|
196
|
+
}
|
|
197
|
+
```
|
|
198
|
+
|
|
199
|
+
## Limitations & Considerations
|
|
200
|
+
|
|
201
|
+
### **Application-Level Patterns:**
|
|
202
|
+
|
|
203
|
+
* Queries generated dynamically in application code
|
|
204
|
+
* Caching layer behavior (Redis, Memcached)
|
|
205
|
+
* Real-time vs. analytics query differentiation
|
|
206
|
+
* Background job access patterns
|
|
207
|
+
|
|
208
|
+
### Business Context:
|
|
209
|
+
|
|
210
|
+
* Data consistency requirements
|
|
211
|
+
* Compliance and audit requirements
|
|
212
|
+
* Geographic distribution requirements
|
|
213
|
+
|
|
214
|
+
### Recommendation:
|
|
215
|
+
|
|
216
|
+
Supplement analysis with documentation or natural language descriptions based on:
|
|
217
|
+
|
|
218
|
+
* Application code review
|
|
219
|
+
* Architecture documentation review
|
|
220
|
+
* Stakeholder interviews with development team
|
|
221
|
+
* Load testing results analysis
|
|
222
|
+
|
|
223
|
+
There are also more complex patterns that result from stored procedures, triggers, aggregations, that the tool does not currently handle consistently but we plan to improve in future iterations.
|
|
@@ -0,0 +1,36 @@
|
|
|
1
|
+
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
# This file is part of the awslabs namespace.
|
|
16
|
+
# It is intentionally minimal to support PEP 420 namespace packages.
|
|
17
|
+
|
|
18
|
+
# Namespace Package Configuration
|
|
19
|
+
#
|
|
20
|
+
# This line resolves namespace conflicts when multiple packages share the 'awslabs' namespace prefix.
|
|
21
|
+
# Without this configuration, test suites fail and build issues occur because Python cannot properly
|
|
22
|
+
# resolve which package owns the 'awslabs' namespace when both 'awslabs.dynamodb-mcp-server' and
|
|
23
|
+
# 'awslabs.mysql-mcp-server' are installed in the same environment.
|
|
24
|
+
#
|
|
25
|
+
# The extend_path() function implements PEP 420 namespace packages, allowing multiple distributions
|
|
26
|
+
# to contribute modules to the same namespace. This ensures that:
|
|
27
|
+
# 1. Both DynamoDB and MySQL MCP servers can coexist in the same Python environment
|
|
28
|
+
# 2. Import statements like 'from awslabs.dynamodb_mcp_server import ...' work correctly
|
|
29
|
+
# 3. Test discovery and execution functions properly across both packages
|
|
30
|
+
# 4. Build processes complete successfully without namespace collision errors
|
|
31
|
+
#
|
|
32
|
+
# This is the standard solution for namespace packages in Python and is required for proper
|
|
33
|
+
# multi-package namespace support in the awslabs ecosystem.
|
|
34
|
+
|
|
35
|
+
# Extend namespace to include installed packages
|
|
36
|
+
__path__ = __import__('pkgutil').extend_path(__path__, __name__)
|