autogluon.timeseries 1.4.1b20251201__tar.gz → 1.4.1b20251202__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of autogluon.timeseries might be problematic. Click here for more details.

Files changed (107) hide show
  1. {autogluon_timeseries-1.4.1b20251201/src/autogluon.timeseries.egg-info → autogluon_timeseries-1.4.1b20251202}/PKG-INFO +8 -8
  2. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/learner.py +1 -1
  3. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/predictor.py +1 -1
  4. autogluon_timeseries-1.4.1b20251202/src/autogluon/timeseries/trainer/ensemble_composer.py +429 -0
  5. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/trainer/trainer.py +82 -47
  6. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/version.py +1 -1
  7. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202/src/autogluon.timeseries.egg-info}/PKG-INFO +8 -8
  8. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon.timeseries.egg-info/requires.txt +7 -7
  9. autogluon_timeseries-1.4.1b20251201/src/autogluon/timeseries/trainer/ensemble_composer.py +0 -221
  10. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/LICENSE +0 -0
  11. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/NOTICE +0 -0
  12. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/README.md +0 -0
  13. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/setup.cfg +0 -0
  14. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/setup.py +0 -0
  15. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/__init__.py +0 -0
  16. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/configs/__init__.py +0 -0
  17. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/configs/hyperparameter_presets.py +0 -0
  18. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/configs/predictor_presets.py +0 -0
  19. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/dataset/__init__.py +0 -0
  20. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/dataset/ts_dataframe.py +0 -0
  21. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/metrics/__init__.py +0 -0
  22. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/metrics/abstract.py +0 -0
  23. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/metrics/point.py +0 -0
  24. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/metrics/quantile.py +0 -0
  25. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/metrics/utils.py +0 -0
  26. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/models/__init__.py +0 -0
  27. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/models/abstract/__init__.py +0 -0
  28. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/models/abstract/abstract_timeseries_model.py +0 -0
  29. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/models/abstract/model_trial.py +0 -0
  30. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/models/abstract/tunable.py +0 -0
  31. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/models/autogluon_tabular/__init__.py +0 -0
  32. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/models/autogluon_tabular/mlforecast.py +0 -0
  33. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/models/autogluon_tabular/per_step.py +0 -0
  34. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/models/autogluon_tabular/transforms.py +0 -0
  35. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/models/autogluon_tabular/utils.py +0 -0
  36. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/models/chronos/__init__.py +0 -0
  37. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/models/chronos/model.py +0 -0
  38. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/models/chronos/utils.py +0 -0
  39. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/models/ensemble/__init__.py +0 -0
  40. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/models/ensemble/abstract.py +0 -0
  41. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/models/ensemble/array_based/__init__.py +0 -0
  42. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/models/ensemble/array_based/abstract.py +0 -0
  43. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/models/ensemble/array_based/models.py +0 -0
  44. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/models/ensemble/array_based/regressor/__init__.py +0 -0
  45. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/models/ensemble/array_based/regressor/abstract.py +0 -0
  46. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/models/ensemble/array_based/regressor/linear_stacker.py +0 -0
  47. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/models/ensemble/array_based/regressor/per_quantile_tabular.py +0 -0
  48. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/models/ensemble/array_based/regressor/tabular.py +0 -0
  49. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/models/ensemble/ensemble_selection.py +0 -0
  50. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/models/ensemble/per_item_greedy.py +0 -0
  51. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/models/ensemble/weighted/__init__.py +0 -0
  52. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/models/ensemble/weighted/abstract.py +0 -0
  53. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/models/ensemble/weighted/basic.py +0 -0
  54. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/models/ensemble/weighted/greedy.py +0 -0
  55. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/models/gluonts/__init__.py +0 -0
  56. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/models/gluonts/abstract.py +0 -0
  57. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/models/gluonts/dataset.py +0 -0
  58. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/models/gluonts/models.py +0 -0
  59. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/models/local/__init__.py +0 -0
  60. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/models/local/abstract_local_model.py +0 -0
  61. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/models/local/naive.py +0 -0
  62. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/models/local/npts.py +0 -0
  63. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/models/local/statsforecast.py +0 -0
  64. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/models/multi_window/__init__.py +0 -0
  65. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/models/multi_window/multi_window_model.py +0 -0
  66. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/models/registry.py +0 -0
  67. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/models/toto/__init__.py +0 -0
  68. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/models/toto/_internal/__init__.py +0 -0
  69. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/models/toto/_internal/backbone/__init__.py +0 -0
  70. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/models/toto/_internal/backbone/attention.py +0 -0
  71. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/models/toto/_internal/backbone/backbone.py +0 -0
  72. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/models/toto/_internal/backbone/distribution.py +0 -0
  73. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/models/toto/_internal/backbone/kvcache.py +0 -0
  74. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/models/toto/_internal/backbone/rope.py +0 -0
  75. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/models/toto/_internal/backbone/rotary_embedding_torch.py +0 -0
  76. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/models/toto/_internal/backbone/scaler.py +0 -0
  77. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/models/toto/_internal/backbone/transformer.py +0 -0
  78. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/models/toto/_internal/dataset.py +0 -0
  79. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/models/toto/_internal/forecaster.py +0 -0
  80. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/models/toto/dataloader.py +0 -0
  81. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/models/toto/hf_pretrained_model.py +0 -0
  82. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/models/toto/model.py +0 -0
  83. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/regressor.py +0 -0
  84. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/splitter.py +0 -0
  85. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/trainer/__init__.py +0 -0
  86. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/trainer/model_set_builder.py +0 -0
  87. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/trainer/prediction_cache.py +0 -0
  88. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/trainer/utils.py +0 -0
  89. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/transforms/__init__.py +0 -0
  90. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/transforms/covariate_scaler.py +0 -0
  91. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/transforms/target_scaler.py +0 -0
  92. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/utils/__init__.py +0 -0
  93. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/utils/constants.py +0 -0
  94. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/utils/datetime/__init__.py +0 -0
  95. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/utils/datetime/base.py +0 -0
  96. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/utils/datetime/lags.py +0 -0
  97. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/utils/datetime/seasonality.py +0 -0
  98. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/utils/datetime/time_features.py +0 -0
  99. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/utils/features.py +0 -0
  100. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/utils/forecast.py +0 -0
  101. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/utils/timer.py +0 -0
  102. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon/timeseries/utils/warning_filters.py +0 -0
  103. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon.timeseries.egg-info/SOURCES.txt +0 -0
  104. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon.timeseries.egg-info/dependency_links.txt +0 -0
  105. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon.timeseries.egg-info/namespace_packages.txt +0 -0
  106. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon.timeseries.egg-info/top_level.txt +0 -0
  107. {autogluon_timeseries-1.4.1b20251201 → autogluon_timeseries-1.4.1b20251202}/src/autogluon.timeseries.egg-info/zip-safe +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: autogluon.timeseries
3
- Version: 1.4.1b20251201
3
+ Version: 1.4.1b20251202
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -39,7 +39,7 @@ Requires-Dist: joblib<1.7,>=1.2
39
39
  Requires-Dist: numpy<2.4.0,>=1.25.0
40
40
  Requires-Dist: scipy<1.17,>=1.5.4
41
41
  Requires-Dist: pandas<2.4.0,>=2.0.0
42
- Requires-Dist: torch<2.8,>=2.6
42
+ Requires-Dist: torch<2.10,>=2.6
43
43
  Requires-Dist: lightning<2.6,>=2.5.1
44
44
  Requires-Dist: transformers[sentencepiece]<4.50,>=4.38.0
45
45
  Requires-Dist: accelerate<2.0,>=0.34.0
@@ -55,19 +55,19 @@ Requires-Dist: orjson~=3.9
55
55
  Requires-Dist: einops<1,>=0.7
56
56
  Requires-Dist: chronos-forecasting<3,>=2.0.1
57
57
  Requires-Dist: tensorboard<3,>=2.9
58
- Requires-Dist: autogluon.core==1.4.1b20251201
59
- Requires-Dist: autogluon.common==1.4.1b20251201
60
- Requires-Dist: autogluon.features==1.4.1b20251201
61
- Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.4.1b20251201
58
+ Requires-Dist: autogluon.core==1.4.1b20251202
59
+ Requires-Dist: autogluon.common==1.4.1b20251202
60
+ Requires-Dist: autogluon.features==1.4.1b20251202
61
+ Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.4.1b20251202
62
62
  Provides-Extra: tests
63
63
  Requires-Dist: pytest; extra == "tests"
64
64
  Requires-Dist: ruff>=0.0.285; extra == "tests"
65
65
  Requires-Dist: flaky<4,>=3.7; extra == "tests"
66
66
  Requires-Dist: pytest-timeout<3,>=2.1; extra == "tests"
67
67
  Provides-Extra: ray
68
- Requires-Dist: autogluon.core[raytune]==1.4.1b20251201; extra == "ray"
68
+ Requires-Dist: autogluon.core[raytune]==1.4.1b20251202; extra == "ray"
69
69
  Provides-Extra: all
70
- Requires-Dist: autogluon.core[raytune]==1.4.1b20251201; extra == "all"
70
+ Requires-Dist: autogluon.core[raytune]==1.4.1b20251202; extra == "all"
71
71
  Dynamic: author
72
72
  Dynamic: classifier
73
73
  Dynamic: description
@@ -59,7 +59,7 @@ class TimeSeriesLearner(AbstractLearner):
59
59
  val_data: TimeSeriesDataFrame | None = None,
60
60
  hyperparameter_tune_kwargs: str | dict | None = None,
61
61
  time_limit: float | None = None,
62
- num_val_windows: int | None = None,
62
+ num_val_windows: int = 1,
63
63
  val_step_size: int | None = None,
64
64
  refit_every_n_windows: int | None = 1,
65
65
  random_seed: int | None = None,
@@ -1678,7 +1678,7 @@ class TimeSeriesPredictor:
1678
1678
  trainer = self._trainer
1679
1679
  train_data = trainer.load_train_data()
1680
1680
  val_data = trainer.load_val_data()
1681
- base_model_names = trainer.get_model_names(level=0)
1681
+ base_model_names = trainer.get_model_names(layer=0)
1682
1682
  pred_proba_dict_val: dict[str, list[TimeSeriesDataFrame]] = {
1683
1683
  model_name: trainer._get_model_oof_predictions(model_name)
1684
1684
  for model_name in base_model_names
@@ -0,0 +1,429 @@
1
+ import logging
2
+ import os
3
+ import time
4
+ import traceback
5
+ from pathlib import Path
6
+ from typing import Any, Iterator
7
+
8
+ import networkx as nx
9
+ import numpy as np
10
+ from typing_extensions import Self
11
+
12
+ from autogluon.timeseries import TimeSeriesDataFrame
13
+ from autogluon.timeseries.metrics import TimeSeriesScorer
14
+ from autogluon.timeseries.models.ensemble import (
15
+ AbstractTimeSeriesEnsembleModel,
16
+ PerformanceWeightedEnsemble,
17
+ get_ensemble_class,
18
+ )
19
+ from autogluon.timeseries.utils.timer import SplitTimer
20
+ from autogluon.timeseries.utils.warning_filters import warning_filter
21
+
22
+ from .utils import log_scores_and_times
23
+
24
+ logger = logging.getLogger("autogluon.timeseries.trainer")
25
+
26
+
27
+ class EnsembleComposer:
28
+ """Helper class for TimeSeriesTrainer to build multi-layer stack ensembles.
29
+
30
+ This class depends on the trainer to provide the necessary initialization parameters, training
31
+ and validation data, as well as having fit the base (non-ensemble) models and persisted their
32
+ out-of-fold predictions which will be used for ensemble training.
33
+
34
+ Parameters
35
+ ----------
36
+ path
37
+ Path of the calling TimeSeriesTrainer. EnsembleComposer finds the model objects and their
38
+ out-of-fold prediction artifacts with respect to this path. EnsembleComposer only saves
39
+ ensemble models and their out-of-fold predictions to this folder (i.e., does not pickle
40
+ itself).
41
+ prediction_length
42
+ Number of time steps to forecast.
43
+ eval_metric
44
+ Metric used to evaluate ensemble performance.
45
+ target
46
+ Name of the target column in the time series data.
47
+ num_windows_per_layer
48
+ Number of windows used for training each ensemble layer. Length must match the number of layers
49
+ in ensemble_hyperparameters. Example: (3, 2) means first layer uses 3 windows, second layer uses
50
+ 2 windows.
51
+
52
+ Base models must have OOF predictions saved for all sum(num_windows_per_layer) windows, prior
53
+ to this class being called.
54
+ ensemble_hyperparameters
55
+ Ensemble configuration. A list of dicts, one per layer. If an ensemble model should be fitted
56
+ with multiple hyperparameter configurations, a list of dicts may be provided as the value.
57
+ Each layer's dict maps ensemble names to either a single hyperparameter dict or a list of
58
+ hyperparameter dicts.
59
+
60
+ Examples:
61
+ - ``[{"GreedyEnsemble": {}}, {"GreedyEnsemble": {}}]`` for 2 layers of greedy ensembles.
62
+ - ``[{"GreedyEnsemble": [{"ensemble_size": 10}, {"ensemble_size": 20}]}]`` for a single layer of
63
+ two greedy ensembles, with differing ensemble sizes.
64
+ quantile_levels
65
+ Quantile levels for probabilistic forecasting.
66
+ model_graph
67
+ Directed graph containing base models and their metadata (val_score, fit_time, etc.). Only
68
+ base models (nodes without predecessors) are used for ensemble training.
69
+ """
70
+
71
+ def __init__(
72
+ self,
73
+ path: str,
74
+ prediction_length: int,
75
+ eval_metric: TimeSeriesScorer,
76
+ target: str,
77
+ num_windows_per_layer: tuple[int, ...],
78
+ ensemble_hyperparameters: list[dict[str, dict | list[dict]]],
79
+ quantile_levels: list[float],
80
+ model_graph: nx.DiGraph,
81
+ ):
82
+ self.eval_metric = eval_metric
83
+ self.path = path
84
+ self.prediction_length = prediction_length
85
+ self.target = target
86
+ self.quantile_levels = quantile_levels
87
+
88
+ self.num_windows_per_layer = num_windows_per_layer
89
+ self.num_layers = len(num_windows_per_layer)
90
+
91
+ if len(ensemble_hyperparameters) != self.num_layers:
92
+ raise ValueError(
93
+ "Number of ensemble_hyperparameters must match the number of layers. "
94
+ f"Received {len(ensemble_hyperparameters)} ensemble_hyperparameters, "
95
+ f"but {self.num_layers} layers."
96
+ )
97
+ self.ensemble_hyperparameters = ensemble_hyperparameters
98
+
99
+ self.banned_model_names = list(model_graph.nodes)
100
+ self.model_graph = self._get_base_model_graph(source_graph=model_graph)
101
+
102
+ @staticmethod
103
+ def _get_base_model_graph(source_graph: nx.DiGraph) -> nx.DiGraph:
104
+ """Return a model graph by copying only base models (nodes without predecessors).
105
+
106
+ This ensures we start fresh for training ensembles.
107
+ """
108
+ rootset = EnsembleComposer._get_rootset(source_graph)
109
+
110
+ dst_graph = nx.DiGraph()
111
+ for node in rootset:
112
+ dst_graph.add_node(node, **source_graph.nodes[node])
113
+
114
+ return dst_graph
115
+
116
+ @staticmethod
117
+ def _get_rootset(graph: nx.DiGraph) -> list[str]:
118
+ return [n for n in graph.nodes if not list(graph.predecessors(n))]
119
+
120
+ def _load_model(self, model_name: str) -> Any:
121
+ """Load a model from the graph by name."""
122
+ attrs = self.model_graph.nodes[model_name]
123
+ model_path = os.path.join(self.path, *attrs["path"])
124
+ return attrs["type"].load(path=model_path)
125
+
126
+ def _iter_models(self, layer: int) -> Iterator[tuple[str, Any]]:
127
+ """Iterate over models in a specific layer of the model graph.
128
+
129
+ Parameters
130
+ ----------
131
+ layer
132
+ Layer index (0 for base models, 1+ for ensemble layers)
133
+
134
+ Yields
135
+ ------
136
+ model_name
137
+ Name of the model
138
+ model
139
+ Loaded model instance
140
+ """
141
+ rootset = self._get_rootset(self.model_graph)
142
+ layer_iter = nx.traversal.bfs_layers(self.model_graph, rootset)
143
+ for layer_idx, layer_keys in enumerate(layer_iter):
144
+ if layer_idx != layer:
145
+ continue
146
+
147
+ for model_name in layer_keys:
148
+ model = self._load_model(model_name)
149
+ yield model_name, model
150
+
151
+ def iter_ensembles(self) -> Iterator[tuple[int, AbstractTimeSeriesEnsembleModel, list[str]]]:
152
+ """Iterate over trained ensemble models, layer by layer. Used by the Trainer to copy the
153
+ fitted models in EnsembleComposer's ``model_graph``.
154
+
155
+ Yields
156
+ ------
157
+ layer_idx
158
+ The layer index of the ensemble.
159
+ model
160
+ The ensemble model object
161
+ base_model_names
162
+ The names of the base models that are part of the ensemble.
163
+ """
164
+ for layer_idx in range(1, self.num_layers + 1):
165
+ for model_name, model in self._iter_models(layer=layer_idx):
166
+ yield (layer_idx, model, list(self.model_graph.predecessors(model_name)))
167
+
168
+ def fit(
169
+ self,
170
+ data_per_window: list[TimeSeriesDataFrame],
171
+ predictions_per_window: dict[str, list[TimeSeriesDataFrame]],
172
+ time_limit: float | None = None,
173
+ ) -> Self:
174
+ base_model_names = [name for name, _ in self._iter_models(layer=0)]
175
+ if not self._can_fit_ensemble(time_limit, len(base_model_names)):
176
+ return self
177
+
178
+ num_ensembles = sum(
179
+ len(list(self.iter_layer_models_and_hps(layer))) for layer in range(1, self.num_layers + 1)
180
+ )
181
+ logger.info(f"Fitting {num_ensembles} ensemble(s), in {self.num_layers} layers.")
182
+
183
+ assert len(data_per_window) == sum(self.num_windows_per_layer)
184
+
185
+ def get_inputs_for_layer(layer_idx, model_names):
186
+ """Retrieve predictions from previous layer models for current layer training."""
187
+ if layer_idx == 1:
188
+ # we need base models, so we use predictions_per_window provided by the trainer,
189
+ # which contains base model predictions for all windows where ensembles will be
190
+ # trained.
191
+ num_windows = self.num_windows_per_layer[0]
192
+ inputs = {name: predictions_per_window[name][:num_windows] for name in model_names}
193
+ else:
194
+ # if layer_idx > 1, we will be relying on predictions of previously trained ensembles
195
+ window_start = -sum(self.num_windows_per_layer[layer_idx - 1 :])
196
+ window_slice = slice(
197
+ window_start,
198
+ window_start + self.num_windows_per_layer[layer_idx - 1] if layer_idx < self.num_layers else None,
199
+ )
200
+
201
+ inputs = {}
202
+ for model_name in model_names:
203
+ oof_predictions = self._get_model_oof_predictions(model_name)
204
+ inputs[model_name] = oof_predictions[window_slice]
205
+
206
+ return inputs
207
+
208
+ def get_ground_truth_for_layer(layer_idx):
209
+ window_start = sum(self.num_windows_per_layer[: layer_idx - 1])
210
+ window_end = window_start + self.num_windows_per_layer[layer_idx - 1]
211
+ return data_per_window[window_start:window_end]
212
+
213
+ main_loop_timer = SplitTimer(time_limit, rounds=num_ensembles).start()
214
+
215
+ # main loop over layers of ensembles
216
+ for layer_idx in range(1, self.num_layers + 1):
217
+ layer_input_model_names = [name for name, _ in self._iter_models(layer=layer_idx - 1)]
218
+ layer_input_model_scores = {
219
+ name: self.model_graph.nodes[name]["val_score"] for name in layer_input_model_names
220
+ }
221
+
222
+ layer_predictions_per_window = get_inputs_for_layer(layer_idx, model_names=layer_input_model_names)
223
+ layer_data_per_window = get_ground_truth_for_layer(layer_idx)
224
+
225
+ for ensemble_name, ensemble_hp_dict in self.iter_layer_models_and_hps(layer_idx):
226
+ try:
227
+ # train the ensemble model
228
+ time_start = time.monotonic()
229
+
230
+ ensemble = self._fit_single_ensemble(
231
+ model_name=ensemble_name,
232
+ hyperparameters=ensemble_hp_dict,
233
+ predictions_per_window=layer_predictions_per_window,
234
+ data_per_window=layer_data_per_window,
235
+ base_model_scores=layer_input_model_scores,
236
+ layer_idx=layer_idx,
237
+ time_limit=main_loop_timer.round_time_remaining(),
238
+ )
239
+ ensemble.fit_time = time.monotonic() - time_start
240
+
241
+ # for all windows of all layers starting from this layer, predict and save predictions
242
+ predictions = []
243
+ predict_time = 0
244
+ for pred_layer_idx in range(layer_idx, self.num_layers + 1):
245
+ predict_time_start = time.monotonic()
246
+
247
+ pred_base_predictions = get_inputs_for_layer(pred_layer_idx, ensemble.model_names)
248
+ for window_idx in range(self.num_windows_per_layer[pred_layer_idx - 1]):
249
+ prediction = ensemble.predict(
250
+ {n: pred_base_predictions[n][window_idx] for n in ensemble.model_names}
251
+ )
252
+ predictions.append(prediction)
253
+
254
+ predict_time = time.monotonic() - predict_time_start
255
+
256
+ # prediction time is last layer's time + base models
257
+ ensemble.predict_time = predict_time + self._calculate_base_models_predict_time(
258
+ ensemble.model_names
259
+ )
260
+ ensemble.cache_oof_predictions(predictions)
261
+
262
+ # compute validation score using the last layer's validation windows
263
+ last_layer_oof_predictions = ensemble.get_oof_predictions()[-self.num_windows_per_layer[-1] :]
264
+ last_layer_ground_truth = get_ground_truth_for_layer(self.num_layers)
265
+ score_per_fold = [
266
+ self.eval_metric(data, prediction, target=self.target)
267
+ for prediction, data in zip(last_layer_oof_predictions, last_layer_ground_truth)
268
+ ]
269
+ ensemble.val_score = float(np.mean(score_per_fold, dtype=np.float64))
270
+
271
+ # log performance and save
272
+ log_scores_and_times(
273
+ ensemble.val_score,
274
+ ensemble.fit_time,
275
+ ensemble.predict_time,
276
+ eval_metric_name=self.eval_metric.name_with_sign,
277
+ )
278
+
279
+ # save ensemble
280
+ self._add_model(ensemble, base_models=ensemble.model_names)
281
+ ensemble.save()
282
+
283
+ # check time and advance round
284
+ if main_loop_timer.timed_out():
285
+ logger.warning(
286
+ "Time limit exceeded during ensemble training, will stop training new ensembles."
287
+ )
288
+ return self
289
+
290
+ except Exception as err: # noqa
291
+ logger.error(
292
+ f"\tWarning: Exception caused {ensemble_name} to fail during training... Skipping this model."
293
+ )
294
+ logger.error(f"\t{err}")
295
+ logger.debug(traceback.format_exc())
296
+
297
+ finally:
298
+ main_loop_timer.next_round()
299
+
300
+ return self
301
+
302
+ def iter_layer_models_and_hps(self, layer_idx: int):
303
+ layer_hps = self.ensemble_hyperparameters[layer_idx - 1]
304
+
305
+ for model_name, hps in layer_hps.items():
306
+ if isinstance(hps, list):
307
+ # If a list is provided, create one ensemble per hyperparameter dict
308
+ for hp in hps:
309
+ yield model_name, hp
310
+ else:
311
+ yield model_name, hps
312
+
313
+ def _fit_single_ensemble(
314
+ self,
315
+ model_name: str,
316
+ hyperparameters: dict,
317
+ predictions_per_window: dict[str, list[TimeSeriesDataFrame]],
318
+ data_per_window: list[TimeSeriesDataFrame],
319
+ base_model_scores: dict[str, float],
320
+ layer_idx: int,
321
+ time_limit: float | None = None,
322
+ ) -> AbstractTimeSeriesEnsembleModel:
323
+ ensemble_class = get_ensemble_class(model_name)
324
+
325
+ # TODO: remove this after PerformanceWeightedEnsemble is removed. This is a temporary fix
326
+ # to make sure PerformanceWeightedEnsemble is not fit on the validation scores of future
327
+ # out-of-fold splits.
328
+ if layer_idx < self.num_layers and ensemble_class is PerformanceWeightedEnsemble:
329
+ raise RuntimeError(
330
+ "PerformanceWeightedEnsemble is not supported for multilayer stack ensembles, except "
331
+ "when it's used in the last layer of the ensemble."
332
+ )
333
+
334
+ ensemble: AbstractTimeSeriesEnsembleModel = ensemble_class(
335
+ eval_metric=self.eval_metric,
336
+ target=self.target,
337
+ prediction_length=self.prediction_length,
338
+ path=self.path,
339
+ freq=data_per_window[0].freq,
340
+ quantile_levels=self.quantile_levels,
341
+ hyperparameters=hyperparameters,
342
+ )
343
+
344
+ # update name to prevent name collisions
345
+ old_name = ensemble.name
346
+ ensemble.name = self._get_ensemble_model_name(ensemble.name, layer_idx)
347
+ if ensemble.name != old_name:
348
+ path_obj = Path(ensemble.path)
349
+ ensemble.path = str(path_obj.parent / ensemble.name)
350
+
351
+ with warning_filter():
352
+ ensemble.fit(
353
+ predictions_per_window=predictions_per_window,
354
+ data_per_window=data_per_window,
355
+ model_scores=base_model_scores,
356
+ time_limit=time_limit,
357
+ )
358
+
359
+ return ensemble
360
+
361
+ def _get_model_oof_predictions(self, model_name: str) -> list[TimeSeriesDataFrame]:
362
+ model_attrs = self.model_graph.nodes[model_name]
363
+ model_path = os.path.join(self.path, *model_attrs["path"])
364
+ return model_attrs["type"].load_oof_predictions(path=model_path)
365
+
366
+ def _add_model(self, model, base_models: list[str]):
367
+ self.model_graph.add_node(
368
+ model.name,
369
+ path=os.path.relpath(model.path, self.path).split(os.sep),
370
+ type=type(model),
371
+ fit_time=model.fit_time,
372
+ predict_time=model.predict_time,
373
+ val_score=model.val_score,
374
+ )
375
+ for base_model in base_models:
376
+ self.model_graph.add_edge(base_model, model.name)
377
+ self.banned_model_names.append(model.name)
378
+
379
+ def _can_fit_ensemble(
380
+ self,
381
+ time_limit: float | None,
382
+ num_models_available_for_ensemble: int,
383
+ ) -> bool:
384
+ if time_limit is not None and time_limit <= 0:
385
+ logger.info(f"Not fitting ensemble due to lack of time remaining. Time left: {time_limit:.1f} seconds")
386
+ return False
387
+
388
+ if num_models_available_for_ensemble <= 1:
389
+ logger.info(
390
+ "Not fitting ensemble as "
391
+ + (
392
+ "no models were successfully trained."
393
+ if not num_models_available_for_ensemble
394
+ else "only 1 model was trained."
395
+ )
396
+ )
397
+ return False
398
+
399
+ return True
400
+
401
+ def _get_ensemble_model_name(self, name: str, layer_idx: int) -> str:
402
+ """Revise name for an ensemble model, ensuring we don't have name collisions"""
403
+ base_name = name
404
+ layer_suffix = f"_L{layer_idx + 1}" if self.num_layers > 1 else ""
405
+ name = f"{base_name}" + layer_suffix
406
+ increment = 1
407
+ while name in self.banned_model_names:
408
+ increment += 1
409
+ name = f"{base_name}_{increment}" + layer_suffix
410
+ return name
411
+
412
+ def _calculate_base_models_predict_time(self, model_names: list[str]) -> float:
413
+ """Calculate ensemble predict time as sum of base model predict times."""
414
+ return sum(self.model_graph.nodes[name]["predict_time"] for name in model_names)
415
+
416
+
417
+ def validate_ensemble_hyperparameters(hyperparameters: list[dict[str, dict | list[dict]]]) -> None:
418
+ if not isinstance(hyperparameters, list):
419
+ raise ValueError(f"ensemble_hyperparameters must be list, got {type(hyperparameters)}")
420
+
421
+ for layer_idx, layer_hp in enumerate(hyperparameters):
422
+ if not isinstance(layer_hp, dict):
423
+ raise ValueError(f"Layer {layer_idx} hyperparameters must be dict, got {type(layer_hp)}")
424
+ for ensemble_name, ensemble_hp in layer_hp.items():
425
+ get_ensemble_class(ensemble_name) # Will raise if unknown
426
+ hp_is_dict = isinstance(ensemble_hp, dict)
427
+ hp_is_valid_list = isinstance(ensemble_hp, list) and all(isinstance(d, dict) for d in ensemble_hp)
428
+ if not (hp_is_dict or hp_is_valid_list):
429
+ raise ValueError(f"Hyperparameters for {ensemble_name} must be dict or list, got {type(ensemble_hp)}")