autogluon.timeseries 1.3.2b20250711__tar.gz → 1.3.2b20250713__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (72) hide show
  1. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/PKG-INFO +1 -1
  2. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/setup.py +1 -1
  3. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/models/autogluon_tabular/mlforecast.py +13 -8
  4. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/version.py +1 -1
  5. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon.timeseries.egg-info/PKG-INFO +1 -1
  6. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon.timeseries.egg-info/requires.txt +5 -5
  7. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/setup.cfg +0 -0
  8. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/__init__.py +0 -0
  9. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/configs/__init__.py +0 -0
  10. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/configs/presets_configs.py +0 -0
  11. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/dataset/__init__.py +0 -0
  12. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/dataset/ts_dataframe.py +0 -0
  13. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/evaluator.py +0 -0
  14. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/learner.py +0 -0
  15. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/metrics/__init__.py +0 -0
  16. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/metrics/abstract.py +0 -0
  17. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/metrics/point.py +0 -0
  18. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/metrics/quantile.py +0 -0
  19. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/metrics/utils.py +0 -0
  20. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/models/__init__.py +0 -0
  21. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/models/abstract/__init__.py +0 -0
  22. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/models/abstract/abstract_timeseries_model.py +0 -0
  23. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/models/abstract/model_trial.py +0 -0
  24. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/models/abstract/tunable.py +0 -0
  25. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/models/autogluon_tabular/__init__.py +0 -0
  26. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/models/autogluon_tabular/per_step.py +0 -0
  27. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/models/autogluon_tabular/transforms.py +0 -0
  28. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/models/autogluon_tabular/utils.py +0 -0
  29. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/models/chronos/__init__.py +0 -0
  30. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/models/chronos/model.py +0 -0
  31. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/models/chronos/pipeline/__init__.py +0 -0
  32. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/models/chronos/pipeline/base.py +0 -0
  33. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/models/chronos/pipeline/chronos.py +0 -0
  34. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/models/chronos/pipeline/chronos_bolt.py +0 -0
  35. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/models/chronos/pipeline/utils.py +0 -0
  36. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/models/ensemble/__init__.py +0 -0
  37. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/models/ensemble/abstract.py +0 -0
  38. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/models/ensemble/basic.py +0 -0
  39. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/models/ensemble/greedy.py +0 -0
  40. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/models/gluonts/__init__.py +0 -0
  41. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/models/gluonts/abstract.py +0 -0
  42. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/models/gluonts/dataset.py +0 -0
  43. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/models/gluonts/models.py +0 -0
  44. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/models/local/__init__.py +0 -0
  45. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/models/local/abstract_local_model.py +0 -0
  46. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/models/local/naive.py +0 -0
  47. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/models/local/npts.py +0 -0
  48. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/models/local/statsforecast.py +0 -0
  49. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/models/multi_window/__init__.py +0 -0
  50. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/models/multi_window/multi_window_model.py +0 -0
  51. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/models/presets.py +0 -0
  52. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/predictor.py +0 -0
  53. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/regressor.py +0 -0
  54. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/splitter.py +0 -0
  55. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/trainer.py +0 -0
  56. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/transforms/__init__.py +0 -0
  57. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/transforms/covariate_scaler.py +0 -0
  58. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/transforms/target_scaler.py +0 -0
  59. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/utils/__init__.py +0 -0
  60. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/utils/datetime/__init__.py +0 -0
  61. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/utils/datetime/base.py +0 -0
  62. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/utils/datetime/lags.py +0 -0
  63. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/utils/datetime/seasonality.py +0 -0
  64. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/utils/datetime/time_features.py +0 -0
  65. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/utils/features.py +0 -0
  66. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/utils/forecast.py +0 -0
  67. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon/timeseries/utils/warning_filters.py +0 -0
  68. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon.timeseries.egg-info/SOURCES.txt +0 -0
  69. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon.timeseries.egg-info/dependency_links.txt +0 -0
  70. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon.timeseries.egg-info/namespace_packages.txt +0 -0
  71. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon.timeseries.egg-info/top_level.txt +0 -0
  72. {autogluon.timeseries-1.3.2b20250711 → autogluon.timeseries-1.3.2b20250713}/src/autogluon.timeseries.egg-info/zip-safe +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.timeseries
3
- Version: 1.3.2b20250711
3
+ Version: 1.3.2b20250713
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -21,7 +21,7 @@ version = ag.update_version(version)
21
21
  submodule = "timeseries"
22
22
  install_requires = [
23
23
  # version ranges added in ag.get_dependency_version_ranges()
24
- "joblib>=1.1,<2",
24
+ "joblib", # version range defined in `core/_setup_utils.py`
25
25
  "numpy", # version range defined in `core/_setup_utils.py`
26
26
  "scipy", # version range defined in `core/_setup_utils.py`
27
27
  "pandas", # version range defined in `core/_setup_utils.py`
@@ -11,6 +11,7 @@ from sklearn.base import BaseEstimator
11
11
 
12
12
  import autogluon.core as ag
13
13
  from autogluon.core.models import AbstractModel as AbstractTabularModel
14
+ from autogluon.features import AutoMLPipelineFeatureGenerator
14
15
  from autogluon.tabular.registry import ag_model_registry
15
16
  from autogluon.timeseries.dataset.ts_dataframe import ITEMID, TIMESTAMP, TimeSeriesDataFrame
16
17
  from autogluon.timeseries.metrics.abstract import TimeSeriesScorer
@@ -35,14 +36,18 @@ class TabularModel(BaseEstimator):
35
36
  def __init__(self, model_class: Type[AbstractTabularModel], model_kwargs: Optional[dict] = None):
36
37
  self.model_class = model_class
37
38
  self.model_kwargs = {} if model_kwargs is None else model_kwargs
39
+ self.feature_pipeline = AutoMLPipelineFeatureGenerator()
38
40
 
39
- def fit(self, *args, **kwargs):
41
+ def fit(self, X: pd.DataFrame, y: pd.Series, X_val: pd.DataFrame, y_val: pd.Series, **kwargs):
40
42
  self.model = self.model_class(**self.model_kwargs)
41
- self.model.fit(*args, **kwargs)
43
+ X = self.feature_pipeline.fit_transform(X=X)
44
+ X_val = self.feature_pipeline.transform(X=X_val)
45
+ self.model.fit(X=X, y=y, X_val=X_val, y_val=y_val, **kwargs)
42
46
  return self
43
47
 
44
- def predict(self, *args, **kwargs):
45
- return self.model.predict(*args, **kwargs)
48
+ def predict(self, X: pd.DataFrame, **kwargs):
49
+ X = self.feature_pipeline.transform(X=X)
50
+ return self.model.predict(X=X, **kwargs)
46
51
 
47
52
  def get_params(self, deep=True):
48
53
  params = {"model_class": self.model_class, "model_kwargs": self.model_kwargs}
@@ -346,7 +351,7 @@ class AbstractMLForecastModel(AbstractTimeSeriesModel):
346
351
  max_num_samples=model_params["max_num_samples"],
347
352
  )
348
353
 
349
- with set_loggers_level(regex=r"^autogluon.tabular.*", level=logging.ERROR):
354
+ with set_loggers_level(regex=r"^autogluon\.(tabular|features).*", level=logging.ERROR):
350
355
  tabular_model = self._create_tabular_model(
351
356
  model_name=model_params["model_name"], model_hyperparameters=model_params["model_hyperparameters"]
352
357
  )
@@ -364,12 +369,12 @@ class AbstractMLForecastModel(AbstractTimeSeriesModel):
364
369
 
365
370
  self._save_residuals_std(val_df)
366
371
 
367
- def get_tabular_model(self) -> AbstractTabularModel:
368
- """Get the unerlyin tabular regression model."""
372
+ def get_tabular_model(self) -> TabularModel:
373
+ """Get the underlying tabular regression model."""
369
374
  assert "mean" in self._mlf.models_, "Call `fit` before calling `get_tabular_model`"
370
375
  mean_estimator = self._mlf.models_["mean"]
371
376
  assert isinstance(mean_estimator, TabularModel)
372
- return mean_estimator.model
377
+ return mean_estimator
373
378
 
374
379
  def _save_residuals_std(self, val_df: pd.DataFrame) -> None:
375
380
  """Compute standard deviation of residuals for each item using the validation set.
@@ -1,4 +1,4 @@
1
1
  """This is the autogluon version file."""
2
2
 
3
- __version__ = "1.3.2b20250711"
3
+ __version__ = "1.3.2b20250713"
4
4
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.timeseries
3
- Version: 1.3.2b20250711
3
+ Version: 1.3.2b20250713
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -1,4 +1,4 @@
1
- joblib<2,>=1.1
1
+ joblib<1.7,>=1.2
2
2
  numpy<2.4.0,>=1.25.0
3
3
  scipy<1.17,>=1.5.4
4
4
  pandas<2.4.0,>=2.0.0
@@ -17,10 +17,10 @@ fugue>=0.9.0
17
17
  tqdm<5,>=4.38
18
18
  orjson~=3.9
19
19
  tensorboard<3,>=2.9
20
- autogluon.core[raytune]==1.3.2b20250711
21
- autogluon.common==1.3.2b20250711
22
- autogluon.features==1.3.2b20250711
23
- autogluon.tabular[catboost,lightgbm,xgboost]==1.3.2b20250711
20
+ autogluon.core[raytune]==1.3.2b20250713
21
+ autogluon.common==1.3.2b20250713
22
+ autogluon.features==1.3.2b20250713
23
+ autogluon.tabular[catboost,lightgbm,xgboost]==1.3.2b20250713
24
24
 
25
25
  [all]
26
26