autogluon.timeseries 1.3.2b20250702__py3-none-any.whl → 1.3.2b20250703__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -591,6 +591,10 @@ class AbstractTimeSeriesModel(TimeSeriesModelBase, TimeSeriesTunable, ABC):
591
591
  predictions = self._predict(data=data, known_covariates=known_covariates, **kwargs)
592
592
  self.covariate_regressor = covariate_regressor
593
593
 
594
+ column_order = pd.Index(["mean"] + [str(q) for q in self.quantile_levels])
595
+ if not predictions.columns.equals(column_order):
596
+ predictions = predictions.reindex(columns=column_order)
597
+
594
598
  # "0.5" might be missing from the quantiles if self is a wrapper (MultiWindowBacktestingModel or ensemble)
595
599
  if "0.5" in predictions.columns:
596
600
  if self.eval_metric.optimized_by_median:
@@ -85,6 +85,7 @@ class TimeSeriesEnsembleSelection(EnsembleSelection):
85
85
  dummy_pred = copy.deepcopy(predictions[0][window_idx])
86
86
  # This should never happen; sanity check to make sure that all predictions have the same index
87
87
  assert all(dummy_pred.index.equals(pred[window_idx].index) for pred in predictions)
88
+ assert all(dummy_pred.columns.equals(pred[window_idx].columns) for pred in predictions)
88
89
 
89
90
  self.dummy_pred_per_window.append(dummy_pred)
90
91
 
@@ -370,10 +370,9 @@ class TimeSeriesTrainer(AbstractTrainer[TimeSeriesModelBase]):
370
370
  self.save_model(model=model)
371
371
  except TimeLimitExceeded:
372
372
  logger.error(f"\tTime limit exceeded... Skipping {model.name}.")
373
- except (Exception, MemoryError) as err:
373
+ except (Exception, MemoryError):
374
374
  logger.error(f"\tWarning: Exception caused {model.name} to fail during training... Skipping this model.")
375
- logger.error(f"\t{err}")
376
- logger.debug(traceback.format_exc())
375
+ logger.error(traceback.format_exc())
377
376
  else:
378
377
  self._add_model(model=model) # noqa: F821
379
378
  model_names_trained.append(model.name) # noqa: F821
@@ -1,4 +1,4 @@
1
1
  """This is the autogluon version file."""
2
2
 
3
- __version__ = "1.3.2b20250702"
3
+ __version__ = "1.3.2b20250703"
4
4
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.timeseries
3
- Version: 1.3.2b20250702
3
+ Version: 1.3.2b20250703
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -55,10 +55,10 @@ Requires-Dist: fugue>=0.9.0
55
55
  Requires-Dist: tqdm<5,>=4.38
56
56
  Requires-Dist: orjson~=3.9
57
57
  Requires-Dist: tensorboard<3,>=2.9
58
- Requires-Dist: autogluon.core[raytune]==1.3.2b20250702
59
- Requires-Dist: autogluon.common==1.3.2b20250702
60
- Requires-Dist: autogluon.features==1.3.2b20250702
61
- Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.3.2b20250702
58
+ Requires-Dist: autogluon.core[raytune]==1.3.2b20250703
59
+ Requires-Dist: autogluon.common==1.3.2b20250703
60
+ Requires-Dist: autogluon.features==1.3.2b20250703
61
+ Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.3.2b20250703
62
62
  Provides-Extra: all
63
63
  Provides-Extra: chronos-onnx
64
64
  Requires-Dist: optimum[onnxruntime]<1.23,>=1.17; extra == "chronos-onnx"
@@ -1,12 +1,12 @@
1
- autogluon.timeseries-1.3.2b20250702-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
1
+ autogluon.timeseries-1.3.2b20250703-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
2
2
  autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
3
3
  autogluon/timeseries/evaluator.py,sha256=l642tYfTHsl8WVIq_vV6qhgAFVFr9UuZD7gLra3A_Kc,250
4
4
  autogluon/timeseries/learner.py,sha256=pIn4YSOk0aqCWyBpIlwnAsFnG4h7PLXk8guFH3wFS-w,13923
5
5
  autogluon/timeseries/predictor.py,sha256=u4d7-xMs669g5xxqIYuvEyGQ0P6Y8IoToiyg9zUZoy4,88168
6
6
  autogluon/timeseries/regressor.py,sha256=ozlhO-wce6YEtSMj0bfMgfNVeblfU3rI6ITuIk_WAFo,11868
7
7
  autogluon/timeseries/splitter.py,sha256=yzPca9p2bWV-_VJAptUyyzQsxu-uixAdpMoGQtDzMD4,3205
8
- autogluon/timeseries/trainer.py,sha256=4T7y58P3RImDbRZn-Og2qSQtOLpEocwdHi_tl1yt0Sc,58021
9
- autogluon/timeseries/version.py,sha256=up8BCvDG_ncWH_6rHJAbZaw9A7X7OXJi0vp5tsp9Aa0,91
8
+ autogluon/timeseries/trainer.py,sha256=-xdGZ4v8OTA3AzMjBJ4CwGYhmKBRsY0Q-dm6YioFOmc,57977
9
+ autogluon/timeseries/version.py,sha256=pWlgET6yxGPLWvhWe1ps6GjAnMlly1diPybcw8cMxCw,91
10
10
  autogluon/timeseries/configs/__init__.py,sha256=BTtHIPCYeGjqgOcvqb8qPD4VNX-ICKOg6wnkew1cPOE,98
11
11
  autogluon/timeseries/configs/presets_configs.py,sha256=cLat8ecLlWrI-SC5KLBDCX2SbVXaucemy2pjxJAtSY0,2543
12
12
  autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
@@ -19,7 +19,7 @@ autogluon/timeseries/metrics/utils.py,sha256=HuDe1BNe8yJU4f_DKM913nNrUueoRaw6zhx
19
19
  autogluon/timeseries/models/__init__.py,sha256=MYD9JJ-wUDE5B6jW6E6LU2eXQ6vflfQBvqQJkdzJa3A,1189
20
20
  autogluon/timeseries/models/presets.py,sha256=HEACiRpnY6dcff7W44gnM0x1KRgr2bNf5D6zcaHgHxo,12201
21
21
  autogluon/timeseries/models/abstract/__init__.py,sha256=Htfkjjc3vo92RvyM8rIlQ0PLWt3jcrCKZES07UvCMV0,146
22
- autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=v4qgHYGmktNz-rY-qCgZjm1n1aOQ6F_OOZIpBsw46hc,32103
22
+ autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=kycfhAlBlGnJBx31gZvoSNLvL8K3WA3Me4XDBDSy2oA,32312
23
23
  autogluon/timeseries/models/abstract/model_trial.py,sha256=ENPg_7nsdxIvaNM0o0UShZ3x8jFlRmwRc5m0fGPC0TM,3720
24
24
  autogluon/timeseries/models/abstract/tunable.py,sha256=SFl4vjkb6BfFFaRPVdftnnLYlIyCThutLHxiiAlV6tY,7168
25
25
  autogluon/timeseries/models/autogluon_tabular/__init__.py,sha256=r9i6jWcyeLHYClkcMSKRVsfrkBUMxpDrTATNTBc_qgQ,136
@@ -36,7 +36,7 @@ autogluon/timeseries/models/chronos/pipeline/utils.py,sha256=rWqT3DB9upZb7GFVMOx
36
36
  autogluon/timeseries/models/ensemble/__init__.py,sha256=x2Y6dWk15XugTEWNUKq8U5z6nIjelo3UjpI-TfS13OE,159
37
37
  autogluon/timeseries/models/ensemble/abstract.py,sha256=ie-BKD4JIkQQoKqtf6sYI5Aix7dSgywFsSdeGPxoElk,5821
38
38
  autogluon/timeseries/models/ensemble/basic.py,sha256=BRPWg_Wgfb87iInFSoTRE75BRHaovRR5HFRvzxET_wU,3423
39
- autogluon/timeseries/models/ensemble/greedy.py,sha256=fKVLtnaJZ03zrfr9yqxvyA5IdiMtFL6TQidqw0BoqkU,7220
39
+ autogluon/timeseries/models/ensemble/greedy.py,sha256=s4gz5Qqrf34Wtu6E1JtyK3EvIyoBHJDM859GhcqxfDA,7320
40
40
  autogluon/timeseries/models/gluonts/__init__.py,sha256=YfyNYOkhhNsloA4MAavfmqKO29_q6o4lwPoV7L4_h7M,355
41
41
  autogluon/timeseries/models/gluonts/abstract.py,sha256=ae-VGN2KY6W8RtzZH3wxhjUP-aMjdWZrZbAPOIYh-1Y,27808
42
42
  autogluon/timeseries/models/gluonts/dataset.py,sha256=I_4Rq2CXiLiiSf99WYYaRfT7NXEUmlkW1JIZnWjAdLY,5121
@@ -60,11 +60,11 @@ autogluon/timeseries/utils/datetime/base.py,sha256=3NdsH3NDq4cVAOSoy3XpaNixyNlbj
60
60
  autogluon/timeseries/utils/datetime/lags.py,sha256=gQDk5_zmsY5DUWDUpSaCKYkQ9nHKKY-LsywJQRAoYSk,5988
61
61
  autogluon/timeseries/utils/datetime/seasonality.py,sha256=YK_2k8hvYIMW-sJPnjGWRtCnvIOthwA2hATB3nwVoD4,834
62
62
  autogluon/timeseries/utils/datetime/time_features.py,sha256=MjLi3zQ00uWWJtXH9oGX2GJkTbvjdSiuabSa4kcVuxE,2672
63
- autogluon.timeseries-1.3.2b20250702.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
64
- autogluon.timeseries-1.3.2b20250702.dist-info/METADATA,sha256=TVdwie2TxLd3ilLqojHRMQIMQB5xqmxVL6cIizIY_Lo,12737
65
- autogluon.timeseries-1.3.2b20250702.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
66
- autogluon.timeseries-1.3.2b20250702.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
67
- autogluon.timeseries-1.3.2b20250702.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
68
- autogluon.timeseries-1.3.2b20250702.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
69
- autogluon.timeseries-1.3.2b20250702.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
70
- autogluon.timeseries-1.3.2b20250702.dist-info/RECORD,,
63
+ autogluon.timeseries-1.3.2b20250703.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
64
+ autogluon.timeseries-1.3.2b20250703.dist-info/METADATA,sha256=i6k4C-kPMxV4ud1Ij6dCnUDDFTkv2bTpTBZbOpFEejo,12737
65
+ autogluon.timeseries-1.3.2b20250703.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
66
+ autogluon.timeseries-1.3.2b20250703.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
67
+ autogluon.timeseries-1.3.2b20250703.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
68
+ autogluon.timeseries-1.3.2b20250703.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
69
+ autogluon.timeseries-1.3.2b20250703.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
70
+ autogluon.timeseries-1.3.2b20250703.dist-info/RECORD,,