autogluon.timeseries 1.3.2b20250702__py3-none-any.whl → 1.3.2b20250703__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- autogluon/timeseries/models/abstract/abstract_timeseries_model.py +4 -0
- autogluon/timeseries/models/ensemble/greedy.py +1 -0
- autogluon/timeseries/trainer.py +2 -3
- autogluon/timeseries/version.py +1 -1
- {autogluon.timeseries-1.3.2b20250702.dist-info → autogluon.timeseries-1.3.2b20250703.dist-info}/METADATA +5 -5
- {autogluon.timeseries-1.3.2b20250702.dist-info → autogluon.timeseries-1.3.2b20250703.dist-info}/RECORD +13 -13
- /autogluon.timeseries-1.3.2b20250702-py3.9-nspkg.pth → /autogluon.timeseries-1.3.2b20250703-py3.9-nspkg.pth +0 -0
- {autogluon.timeseries-1.3.2b20250702.dist-info → autogluon.timeseries-1.3.2b20250703.dist-info}/LICENSE +0 -0
- {autogluon.timeseries-1.3.2b20250702.dist-info → autogluon.timeseries-1.3.2b20250703.dist-info}/NOTICE +0 -0
- {autogluon.timeseries-1.3.2b20250702.dist-info → autogluon.timeseries-1.3.2b20250703.dist-info}/WHEEL +0 -0
- {autogluon.timeseries-1.3.2b20250702.dist-info → autogluon.timeseries-1.3.2b20250703.dist-info}/namespace_packages.txt +0 -0
- {autogluon.timeseries-1.3.2b20250702.dist-info → autogluon.timeseries-1.3.2b20250703.dist-info}/top_level.txt +0 -0
- {autogluon.timeseries-1.3.2b20250702.dist-info → autogluon.timeseries-1.3.2b20250703.dist-info}/zip-safe +0 -0
@@ -591,6 +591,10 @@ class AbstractTimeSeriesModel(TimeSeriesModelBase, TimeSeriesTunable, ABC):
|
|
591
591
|
predictions = self._predict(data=data, known_covariates=known_covariates, **kwargs)
|
592
592
|
self.covariate_regressor = covariate_regressor
|
593
593
|
|
594
|
+
column_order = pd.Index(["mean"] + [str(q) for q in self.quantile_levels])
|
595
|
+
if not predictions.columns.equals(column_order):
|
596
|
+
predictions = predictions.reindex(columns=column_order)
|
597
|
+
|
594
598
|
# "0.5" might be missing from the quantiles if self is a wrapper (MultiWindowBacktestingModel or ensemble)
|
595
599
|
if "0.5" in predictions.columns:
|
596
600
|
if self.eval_metric.optimized_by_median:
|
@@ -85,6 +85,7 @@ class TimeSeriesEnsembleSelection(EnsembleSelection):
|
|
85
85
|
dummy_pred = copy.deepcopy(predictions[0][window_idx])
|
86
86
|
# This should never happen; sanity check to make sure that all predictions have the same index
|
87
87
|
assert all(dummy_pred.index.equals(pred[window_idx].index) for pred in predictions)
|
88
|
+
assert all(dummy_pred.columns.equals(pred[window_idx].columns) for pred in predictions)
|
88
89
|
|
89
90
|
self.dummy_pred_per_window.append(dummy_pred)
|
90
91
|
|
autogluon/timeseries/trainer.py
CHANGED
@@ -370,10 +370,9 @@ class TimeSeriesTrainer(AbstractTrainer[TimeSeriesModelBase]):
|
|
370
370
|
self.save_model(model=model)
|
371
371
|
except TimeLimitExceeded:
|
372
372
|
logger.error(f"\tTime limit exceeded... Skipping {model.name}.")
|
373
|
-
except (Exception, MemoryError)
|
373
|
+
except (Exception, MemoryError):
|
374
374
|
logger.error(f"\tWarning: Exception caused {model.name} to fail during training... Skipping this model.")
|
375
|
-
logger.error(
|
376
|
-
logger.debug(traceback.format_exc())
|
375
|
+
logger.error(traceback.format_exc())
|
377
376
|
else:
|
378
377
|
self._add_model(model=model) # noqa: F821
|
379
378
|
model_names_trained.append(model.name) # noqa: F821
|
autogluon/timeseries/version.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: autogluon.timeseries
|
3
|
-
Version: 1.3.
|
3
|
+
Version: 1.3.2b20250703
|
4
4
|
Summary: Fast and Accurate ML in 3 Lines of Code
|
5
5
|
Home-page: https://github.com/autogluon/autogluon
|
6
6
|
Author: AutoGluon Community
|
@@ -55,10 +55,10 @@ Requires-Dist: fugue>=0.9.0
|
|
55
55
|
Requires-Dist: tqdm<5,>=4.38
|
56
56
|
Requires-Dist: orjson~=3.9
|
57
57
|
Requires-Dist: tensorboard<3,>=2.9
|
58
|
-
Requires-Dist: autogluon.core[raytune]==1.3.
|
59
|
-
Requires-Dist: autogluon.common==1.3.
|
60
|
-
Requires-Dist: autogluon.features==1.3.
|
61
|
-
Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.3.
|
58
|
+
Requires-Dist: autogluon.core[raytune]==1.3.2b20250703
|
59
|
+
Requires-Dist: autogluon.common==1.3.2b20250703
|
60
|
+
Requires-Dist: autogluon.features==1.3.2b20250703
|
61
|
+
Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.3.2b20250703
|
62
62
|
Provides-Extra: all
|
63
63
|
Provides-Extra: chronos-onnx
|
64
64
|
Requires-Dist: optimum[onnxruntime]<1.23,>=1.17; extra == "chronos-onnx"
|
@@ -1,12 +1,12 @@
|
|
1
|
-
autogluon.timeseries-1.3.
|
1
|
+
autogluon.timeseries-1.3.2b20250703-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
|
2
2
|
autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
|
3
3
|
autogluon/timeseries/evaluator.py,sha256=l642tYfTHsl8WVIq_vV6qhgAFVFr9UuZD7gLra3A_Kc,250
|
4
4
|
autogluon/timeseries/learner.py,sha256=pIn4YSOk0aqCWyBpIlwnAsFnG4h7PLXk8guFH3wFS-w,13923
|
5
5
|
autogluon/timeseries/predictor.py,sha256=u4d7-xMs669g5xxqIYuvEyGQ0P6Y8IoToiyg9zUZoy4,88168
|
6
6
|
autogluon/timeseries/regressor.py,sha256=ozlhO-wce6YEtSMj0bfMgfNVeblfU3rI6ITuIk_WAFo,11868
|
7
7
|
autogluon/timeseries/splitter.py,sha256=yzPca9p2bWV-_VJAptUyyzQsxu-uixAdpMoGQtDzMD4,3205
|
8
|
-
autogluon/timeseries/trainer.py,sha256
|
9
|
-
autogluon/timeseries/version.py,sha256=
|
8
|
+
autogluon/timeseries/trainer.py,sha256=-xdGZ4v8OTA3AzMjBJ4CwGYhmKBRsY0Q-dm6YioFOmc,57977
|
9
|
+
autogluon/timeseries/version.py,sha256=pWlgET6yxGPLWvhWe1ps6GjAnMlly1diPybcw8cMxCw,91
|
10
10
|
autogluon/timeseries/configs/__init__.py,sha256=BTtHIPCYeGjqgOcvqb8qPD4VNX-ICKOg6wnkew1cPOE,98
|
11
11
|
autogluon/timeseries/configs/presets_configs.py,sha256=cLat8ecLlWrI-SC5KLBDCX2SbVXaucemy2pjxJAtSY0,2543
|
12
12
|
autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
|
@@ -19,7 +19,7 @@ autogluon/timeseries/metrics/utils.py,sha256=HuDe1BNe8yJU4f_DKM913nNrUueoRaw6zhx
|
|
19
19
|
autogluon/timeseries/models/__init__.py,sha256=MYD9JJ-wUDE5B6jW6E6LU2eXQ6vflfQBvqQJkdzJa3A,1189
|
20
20
|
autogluon/timeseries/models/presets.py,sha256=HEACiRpnY6dcff7W44gnM0x1KRgr2bNf5D6zcaHgHxo,12201
|
21
21
|
autogluon/timeseries/models/abstract/__init__.py,sha256=Htfkjjc3vo92RvyM8rIlQ0PLWt3jcrCKZES07UvCMV0,146
|
22
|
-
autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=
|
22
|
+
autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=kycfhAlBlGnJBx31gZvoSNLvL8K3WA3Me4XDBDSy2oA,32312
|
23
23
|
autogluon/timeseries/models/abstract/model_trial.py,sha256=ENPg_7nsdxIvaNM0o0UShZ3x8jFlRmwRc5m0fGPC0TM,3720
|
24
24
|
autogluon/timeseries/models/abstract/tunable.py,sha256=SFl4vjkb6BfFFaRPVdftnnLYlIyCThutLHxiiAlV6tY,7168
|
25
25
|
autogluon/timeseries/models/autogluon_tabular/__init__.py,sha256=r9i6jWcyeLHYClkcMSKRVsfrkBUMxpDrTATNTBc_qgQ,136
|
@@ -36,7 +36,7 @@ autogluon/timeseries/models/chronos/pipeline/utils.py,sha256=rWqT3DB9upZb7GFVMOx
|
|
36
36
|
autogluon/timeseries/models/ensemble/__init__.py,sha256=x2Y6dWk15XugTEWNUKq8U5z6nIjelo3UjpI-TfS13OE,159
|
37
37
|
autogluon/timeseries/models/ensemble/abstract.py,sha256=ie-BKD4JIkQQoKqtf6sYI5Aix7dSgywFsSdeGPxoElk,5821
|
38
38
|
autogluon/timeseries/models/ensemble/basic.py,sha256=BRPWg_Wgfb87iInFSoTRE75BRHaovRR5HFRvzxET_wU,3423
|
39
|
-
autogluon/timeseries/models/ensemble/greedy.py,sha256=
|
39
|
+
autogluon/timeseries/models/ensemble/greedy.py,sha256=s4gz5Qqrf34Wtu6E1JtyK3EvIyoBHJDM859GhcqxfDA,7320
|
40
40
|
autogluon/timeseries/models/gluonts/__init__.py,sha256=YfyNYOkhhNsloA4MAavfmqKO29_q6o4lwPoV7L4_h7M,355
|
41
41
|
autogluon/timeseries/models/gluonts/abstract.py,sha256=ae-VGN2KY6W8RtzZH3wxhjUP-aMjdWZrZbAPOIYh-1Y,27808
|
42
42
|
autogluon/timeseries/models/gluonts/dataset.py,sha256=I_4Rq2CXiLiiSf99WYYaRfT7NXEUmlkW1JIZnWjAdLY,5121
|
@@ -60,11 +60,11 @@ autogluon/timeseries/utils/datetime/base.py,sha256=3NdsH3NDq4cVAOSoy3XpaNixyNlbj
|
|
60
60
|
autogluon/timeseries/utils/datetime/lags.py,sha256=gQDk5_zmsY5DUWDUpSaCKYkQ9nHKKY-LsywJQRAoYSk,5988
|
61
61
|
autogluon/timeseries/utils/datetime/seasonality.py,sha256=YK_2k8hvYIMW-sJPnjGWRtCnvIOthwA2hATB3nwVoD4,834
|
62
62
|
autogluon/timeseries/utils/datetime/time_features.py,sha256=MjLi3zQ00uWWJtXH9oGX2GJkTbvjdSiuabSa4kcVuxE,2672
|
63
|
-
autogluon.timeseries-1.3.
|
64
|
-
autogluon.timeseries-1.3.
|
65
|
-
autogluon.timeseries-1.3.
|
66
|
-
autogluon.timeseries-1.3.
|
67
|
-
autogluon.timeseries-1.3.
|
68
|
-
autogluon.timeseries-1.3.
|
69
|
-
autogluon.timeseries-1.3.
|
70
|
-
autogluon.timeseries-1.3.
|
63
|
+
autogluon.timeseries-1.3.2b20250703.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
|
64
|
+
autogluon.timeseries-1.3.2b20250703.dist-info/METADATA,sha256=i6k4C-kPMxV4ud1Ij6dCnUDDFTkv2bTpTBZbOpFEejo,12737
|
65
|
+
autogluon.timeseries-1.3.2b20250703.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
|
66
|
+
autogluon.timeseries-1.3.2b20250703.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
|
67
|
+
autogluon.timeseries-1.3.2b20250703.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
68
|
+
autogluon.timeseries-1.3.2b20250703.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
69
|
+
autogluon.timeseries-1.3.2b20250703.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
70
|
+
autogluon.timeseries-1.3.2b20250703.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|