autogluon.timeseries 1.2.1b20250218__tar.gz → 1.2.1b20250219__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/PKG-INFO +1 -1
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/models/gluonts/torch/models.py +14 -16
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/version.py +1 -1
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon.timeseries.egg-info/PKG-INFO +1 -1
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon.timeseries.egg-info/requires.txt +3 -3
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/setup.cfg +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/setup.py +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/__init__.py +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/configs/__init__.py +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/configs/presets_configs.py +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/dataset/__init__.py +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/dataset/ts_dataframe.py +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/evaluator.py +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/learner.py +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/metrics/__init__.py +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/metrics/abstract.py +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/metrics/point.py +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/metrics/quantile.py +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/metrics/utils.py +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/models/__init__.py +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/models/abstract/__init__.py +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/models/abstract/abstract_timeseries_model.py +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/models/abstract/model_trial.py +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/models/autogluon_tabular/__init__.py +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/models/autogluon_tabular/mlforecast.py +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/models/autogluon_tabular/transforms.py +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/models/autogluon_tabular/utils.py +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/models/chronos/__init__.py +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/models/chronos/model.py +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/models/chronos/pipeline/__init__.py +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/models/chronos/pipeline/base.py +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/models/chronos/pipeline/chronos.py +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/models/chronos/pipeline/chronos_bolt.py +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/models/chronos/pipeline/utils.py +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/models/ensemble/__init__.py +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/models/ensemble/abstract_timeseries_ensemble.py +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/models/ensemble/greedy_ensemble.py +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/models/gluonts/__init__.py +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/models/gluonts/abstract_gluonts.py +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/models/gluonts/torch/__init__.py +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/models/local/__init__.py +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/models/local/abstract_local_model.py +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/models/local/naive.py +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/models/local/npts.py +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/models/local/statsforecast.py +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/models/multi_window/__init__.py +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/models/multi_window/multi_window_model.py +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/models/presets.py +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/predictor.py +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/regressor.py +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/splitter.py +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/trainer.py +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/transforms/__init__.py +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/transforms/covariate_scaler.py +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/transforms/target_scaler.py +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/utils/__init__.py +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/utils/datetime/__init__.py +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/utils/datetime/base.py +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/utils/datetime/lags.py +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/utils/datetime/seasonality.py +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/utils/datetime/time_features.py +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/utils/features.py +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/utils/forecast.py +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon/timeseries/utils/warning_filters.py +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon.timeseries.egg-info/SOURCES.txt +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon.timeseries.egg-info/dependency_links.txt +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon.timeseries.egg-info/namespace_packages.txt +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon.timeseries.egg-info/top_level.txt +0 -0
- {autogluon.timeseries-1.2.1b20250218 → autogluon.timeseries-1.2.1b20250219}/src/autogluon.timeseries.egg-info/zip-safe +0 -0
@@ -17,14 +17,6 @@ from autogluon.timeseries.utils.datetime import (
|
|
17
17
|
# NOTE: We avoid imports for torch and lightning.pytorch at the top level and hide them inside class methods.
|
18
18
|
# This is done to skip these imports during multiprocessing (which may cause bugs)
|
19
19
|
|
20
|
-
# FIXME: introduces cpflows dependency. We exclude this model until a future release.
|
21
|
-
# from gluonts.torch.model.mqf2 import MQF2MultiHorizonEstimator
|
22
|
-
|
23
|
-
# FIXME: DeepNPTS does not implement the GluonTS PyTorch API, and does not use
|
24
|
-
# PyTorch Lightning. We exclude this model until a future release.
|
25
|
-
# from gluonts.torch.model.deep_npts import DeepNPTSEstimator
|
26
|
-
|
27
|
-
|
28
20
|
logger = logging.getLogger(__name__)
|
29
21
|
|
30
22
|
|
@@ -63,8 +55,8 @@ class DeepARModel(AbstractGluonTSModel):
|
|
63
55
|
(if None, defaults to [min(50, (cat+1)//2) for cat in cardinality])
|
64
56
|
max_cat_cardinality : int, default = 100
|
65
57
|
Maximum number of dimensions to use when one-hot-encoding categorical known_covariates.
|
66
|
-
distr_output : gluonts.torch.distributions.
|
67
|
-
Distribution
|
58
|
+
distr_output : gluonts.torch.distributions.Output, default = StudentTOutput()
|
59
|
+
Distribution output object that defines how the model output is converted to a forecast, and how the loss is computed.
|
68
60
|
scaling: bool, default = True
|
69
61
|
If True, mean absolute scaling will be applied to each *context window* during training & prediction.
|
70
62
|
Note that this is different from the `target_scaler` that is applied to the *entire time series*.
|
@@ -120,8 +112,8 @@ class SimpleFeedForwardModel(AbstractGluonTSModel):
|
|
120
112
|
Number of time units that condition the predictions
|
121
113
|
hidden_dimensions: List[int], default = [20, 20]
|
122
114
|
Size of hidden layers in the feedforward network
|
123
|
-
distr_output : gluonts.torch.distributions.
|
124
|
-
Distribution to
|
115
|
+
distr_output : gluonts.torch.distributions.Output, default = StudentTOutput()
|
116
|
+
Distribution output object that defines how the model output is converted to a forecast, and how the loss is computed.
|
125
117
|
batch_normalization : bool, default = False
|
126
118
|
Whether to use batch normalization
|
127
119
|
mean_scaling : bool, default = True
|
@@ -169,6 +161,8 @@ class TemporalFusionTransformerModel(AbstractGluonTSModel):
|
|
169
161
|
----------------
|
170
162
|
context_length : int, default = max(64, 2 * prediction_length)
|
171
163
|
Number of past values used for prediction.
|
164
|
+
distr_output : gluonts.torch.distributions.Output, default = QuantileOutput()
|
165
|
+
Distribution output object that defines how the model output is converted to a forecast, and how the loss is computed.
|
172
166
|
disable_static_features : bool, default = False
|
173
167
|
If True, static features won't be used by the model even if they are present in the dataset.
|
174
168
|
If False, static features will be used by the model if they are present in the dataset.
|
@@ -235,6 +229,10 @@ class TemporalFusionTransformerModel(AbstractGluonTSModel):
|
|
235
229
|
init_kwargs["past_dynamic_cardinalities"] = self.past_feat_dynamic_cat_cardinality
|
236
230
|
|
237
231
|
init_kwargs.setdefault("time_features", get_time_features_for_frequency(self.freq))
|
232
|
+
|
233
|
+
# 'distr_output' and 'quantiles' shouldn't be included at the same time (otherwise an exception will be raised)
|
234
|
+
if "distr_output" in init_kwargs:
|
235
|
+
init_kwargs.pop("quantiles", None)
|
238
236
|
return init_kwargs
|
239
237
|
|
240
238
|
|
@@ -256,8 +254,8 @@ class DLinearModel(AbstractGluonTSModel):
|
|
256
254
|
Number of time units that condition the predictions
|
257
255
|
hidden_dimension: int, default = 20
|
258
256
|
Size of hidden layers in the feedforward network
|
259
|
-
distr_output : gluonts.torch.distributions.
|
260
|
-
Distribution to
|
257
|
+
distr_output : gluonts.torch.distributions.Output, default = StudentTOutput()
|
258
|
+
Distribution output object that defines how the model output is converted to a forecast, and how the loss is computed.
|
261
259
|
scaling : {"mean", "std", None}, default = "mean"
|
262
260
|
Scaling applied to each *context window* during training & prediction.
|
263
261
|
One of ``"mean"`` (mean absolute scaling), ``"std"`` (standardization), ``None`` (no scaling).
|
@@ -320,8 +318,8 @@ class PatchTSTModel(AbstractGluonTSModel):
|
|
320
318
|
Number of attention heads in the Transformer encoder which must divide d_model.
|
321
319
|
num_encoder_layers : int, default = 2
|
322
320
|
Number of layers in the Transformer encoder.
|
323
|
-
distr_output : gluonts.torch.distributions.
|
324
|
-
Distribution to
|
321
|
+
distr_output : gluonts.torch.distributions.Output, default = StudentTOutput()
|
322
|
+
Distribution output object that defines how the model output is converted to a forecast, and how the loss is computed.
|
325
323
|
scaling : {"mean", "std", None}, default = "mean"
|
326
324
|
Scaling applied to each *context window* during training & prediction.
|
327
325
|
One of ``"mean"`` (mean absolute scaling), ``"std"`` (standardization), ``None`` (no scaling).
|
@@ -17,9 +17,9 @@ fugue>=0.9.0
|
|
17
17
|
tqdm<5,>=4.38
|
18
18
|
orjson~=3.9
|
19
19
|
tensorboard<3,>=2.9
|
20
|
-
autogluon.core[raytune]==1.2.
|
21
|
-
autogluon.common==1.2.
|
22
|
-
autogluon.tabular[catboost,lightgbm,xgboost]==1.2.
|
20
|
+
autogluon.core[raytune]==1.2.1b20250219
|
21
|
+
autogluon.common==1.2.1b20250219
|
22
|
+
autogluon.tabular[catboost,lightgbm,xgboost]==1.2.1b20250219
|
23
23
|
|
24
24
|
[all]
|
25
25
|
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|