autogluon.timeseries 1.1.2b20241121__tar.gz → 1.1.2b20241123__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (71) hide show
  1. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/PKG-INFO +1 -1
  2. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/setup.py +1 -1
  3. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/models/chronos/model.py +14 -7
  4. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/models/chronos/pipeline/utils.py +1 -1
  5. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/models/presets.py +0 -1
  6. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/version.py +1 -1
  7. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon.timeseries.egg-info/PKG-INFO +1 -1
  8. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon.timeseries.egg-info/requires.txt +6 -6
  9. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/setup.cfg +0 -0
  10. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/__init__.py +0 -0
  11. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/configs/__init__.py +0 -0
  12. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/configs/presets_configs.py +0 -0
  13. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/dataset/__init__.py +0 -0
  14. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/dataset/ts_dataframe.py +0 -0
  15. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/evaluator.py +0 -0
  16. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/learner.py +0 -0
  17. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/metrics/__init__.py +0 -0
  18. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/metrics/abstract.py +0 -0
  19. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/metrics/point.py +0 -0
  20. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/metrics/quantile.py +0 -0
  21. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/metrics/utils.py +0 -0
  22. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/models/__init__.py +0 -0
  23. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/models/abstract/__init__.py +0 -0
  24. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/models/abstract/abstract_timeseries_model.py +0 -0
  25. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/models/abstract/model_trial.py +0 -0
  26. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/models/autogluon_tabular/__init__.py +0 -0
  27. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/models/autogluon_tabular/mlforecast.py +0 -0
  28. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/models/autogluon_tabular/transforms.py +0 -0
  29. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/models/autogluon_tabular/utils.py +0 -0
  30. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/models/chronos/__init__.py +0 -0
  31. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/models/chronos/pipeline/__init__.py +0 -0
  32. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/models/chronos/pipeline/base.py +0 -0
  33. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/models/chronos/pipeline/chronos.py +0 -0
  34. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/models/chronos/pipeline/chronos_bolt.py +0 -0
  35. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/models/ensemble/__init__.py +0 -0
  36. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/models/ensemble/abstract_timeseries_ensemble.py +0 -0
  37. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/models/ensemble/greedy_ensemble.py +0 -0
  38. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/models/gluonts/__init__.py +0 -0
  39. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/models/gluonts/abstract_gluonts.py +0 -0
  40. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/models/gluonts/torch/__init__.py +0 -0
  41. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/models/gluonts/torch/models.py +0 -0
  42. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/models/local/__init__.py +0 -0
  43. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/models/local/abstract_local_model.py +0 -0
  44. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/models/local/naive.py +0 -0
  45. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/models/local/npts.py +0 -0
  46. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/models/local/statsforecast.py +0 -0
  47. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/models/multi_window/__init__.py +0 -0
  48. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/models/multi_window/multi_window_model.py +0 -0
  49. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/predictor.py +0 -0
  50. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/regressor.py +0 -0
  51. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/splitter.py +0 -0
  52. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/trainer/__init__.py +0 -0
  53. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/trainer/abstract_trainer.py +0 -0
  54. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/trainer/auto_trainer.py +0 -0
  55. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/transforms/__init__.py +0 -0
  56. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/transforms/covariate_scaler.py +0 -0
  57. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/transforms/target_scaler.py +0 -0
  58. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/utils/__init__.py +0 -0
  59. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/utils/datetime/__init__.py +0 -0
  60. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/utils/datetime/base.py +0 -0
  61. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/utils/datetime/lags.py +0 -0
  62. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/utils/datetime/seasonality.py +0 -0
  63. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/utils/datetime/time_features.py +0 -0
  64. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/utils/features.py +0 -0
  65. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/utils/forecast.py +0 -0
  66. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon/timeseries/utils/warning_filters.py +0 -0
  67. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon.timeseries.egg-info/SOURCES.txt +0 -0
  68. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon.timeseries.egg-info/dependency_links.txt +0 -0
  69. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon.timeseries.egg-info/namespace_packages.txt +0 -0
  70. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon.timeseries.egg-info/top_level.txt +0 -0
  71. {autogluon.timeseries-1.1.2b20241121 → autogluon.timeseries-1.1.2b20241123}/src/autogluon.timeseries.egg-info/zip-safe +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.timeseries
3
- Version: 1.1.2b20241121
3
+ Version: 1.1.2b20241123
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -30,7 +30,7 @@ install_requires = [
30
30
  "pytorch_lightning", # version range defined in `core/_setup_utils.py`
31
31
  "transformers[sentencepiece]", # version range defined in `core/_setup_utils.py`
32
32
  "accelerate", # version range defined in `core/_setup_utils.py`
33
- "gluonts==0.16.0",
33
+ "gluonts>=0.15.0,<0.17",
34
34
  "networkx", # version range defined in `core/_setup_utils.py`
35
35
  "statsforecast>=1.7.0,<1.8",
36
36
  "mlforecast==0.13.4",
@@ -1,6 +1,7 @@
1
1
  import logging
2
2
  import os
3
3
  import shutil
4
+ import warnings
4
5
  from pathlib import Path
5
6
  from typing import Any, Dict, Literal, Optional, Union
6
7
 
@@ -15,6 +16,11 @@ from autogluon.timeseries.utils.warning_filters import disable_duplicate_logs, w
15
16
 
16
17
  logger = logging.getLogger("autogluon.timeseries.models.chronos")
17
18
 
19
+ # TODO: Replace `evaluation_strategy` with `eval_strategy` when upgrading to `transformers>=4.41` + remove warning filter
20
+ warnings.filterwarnings("ignore", category=FutureWarning, message="`evaluation_strategy` is deprecated")
21
+ # TODO: Remove warning filter when upgrading to `transformers>=4.40`
22
+ warnings.filterwarnings("ignore", category=FutureWarning, message="Passing the following arguments to ")
23
+
18
24
 
19
25
  # allowed HuggingFace model paths with custom parameter definitions
20
26
  MODEL_CONFIGS = {
@@ -104,7 +110,7 @@ class ChronosModel(AbstractTimeSeriesModel):
104
110
 
105
111
  Other Parameters
106
112
  ----------------
107
- model_path: str, default = "autogluon/chronos-t5-small"
113
+ model_path: str, default = "autogluon/chronos-bolt-small"
108
114
  Model path used for the model, i.e., a HuggingFace transformers ``name_or_path``. Can be a
109
115
  compatible model name on HuggingFace Hub or a local path to a model directory. Original
110
116
  Chronos models (i.e., ``autogluon/chronos-t5-{model_size}``) can be specified with aliases
@@ -140,8 +146,9 @@ class ChronosModel(AbstractTimeSeriesModel):
140
146
  for more information.
141
147
  fine_tune : bool, default = False
142
148
  If True, the pretrained model will be fine-tuned
143
- fine_tune_lr: float, default = 0.0001
144
- The learning rate used for fine-tuning
149
+ fine_tune_lr: float, default = 1e-5
150
+ The learning rate used for fine-tuning. This default is suitable for Chronos-Bolt models; for the original
151
+ Chronos models, we recommend using a higher learning rate such as ``1e-4``
145
152
  fine_tune_steps : int, default = 1000
146
153
  The number of gradient update steps to fine-tune for
147
154
  fine_tune_batch_size : int, default = 32
@@ -163,7 +170,7 @@ class ChronosModel(AbstractTimeSeriesModel):
163
170
 
164
171
  # default number of samples for prediction
165
172
  default_num_samples: int = 20
166
- default_model_path = "autogluon/chronos-t5-small"
173
+ default_model_path = "autogluon/chronos-bolt-small"
167
174
  default_max_time_limit_ratio = 0.8
168
175
  maximum_context_length = 2048
169
176
  fine_tuned_ckpt_name: str = "fine-tuned-ckpt"
@@ -198,7 +205,7 @@ class ChronosModel(AbstractTimeSeriesModel):
198
205
  self.context_length = hyperparameters.get("context_length")
199
206
 
200
207
  if self.context_length is not None and self.context_length > self.maximum_context_length:
201
- logger.warning(
208
+ logger.info(
202
209
  f"\tContext length {self.context_length} exceeds maximum context length {self.maximum_context_length}."
203
210
  f"Context length will be set to {self.maximum_context_length}."
204
211
  )
@@ -321,7 +328,7 @@ class ChronosModel(AbstractTimeSeriesModel):
321
328
 
322
329
  init_args.setdefault("fine_tune", False)
323
330
  init_args.setdefault("keep_transformers_logs", False)
324
- init_args.setdefault("fine_tune_lr", 1e-4)
331
+ init_args.setdefault("fine_tune_lr", 1e-5)
325
332
  init_args.setdefault("fine_tune_steps", 1000)
326
333
  init_args.setdefault("fine_tune_batch_size", 32)
327
334
  init_args.setdefault("eval_during_fine_tune", False)
@@ -341,6 +348,7 @@ class ChronosModel(AbstractTimeSeriesModel):
341
348
  logging_dir=str(output_dir),
342
349
  logging_strategy="steps",
343
350
  logging_steps=100,
351
+ disable_tqdm=True,
344
352
  report_to="none",
345
353
  max_steps=init_args["fine_tune_steps"],
346
354
  gradient_accumulation_steps=1,
@@ -434,7 +442,6 @@ class ChronosModel(AbstractTimeSeriesModel):
434
442
  )
435
443
 
436
444
  fine_tune_trainer_kwargs = fine_tune_args["fine_tune_trainer_kwargs"]
437
- fine_tune_trainer_kwargs["disable_tqdm"] = fine_tune_trainer_kwargs.get("disable_tqdm", (verbosity < 3))
438
445
  fine_tune_trainer_kwargs["use_cpu"] = str(self.model_pipeline.inner_model.device) == "cpu"
439
446
 
440
447
  if fine_tune_trainer_kwargs["use_cpu"]:
@@ -317,7 +317,7 @@ class TimeLimitCallback(TrainerCallback):
317
317
  def on_step_end(self, args, state, control, **kwargs):
318
318
  elapsed_time = time.monotonic() - self.start_time
319
319
  if elapsed_time > self.time_limit:
320
- logger.info("\tStopping fine-tuning since time_limit is reached")
320
+ logger.log(15, "Stopping fine-tuning since time_limit is reached")
321
321
  control.should_training_stop = True
322
322
 
323
323
 
@@ -145,7 +145,6 @@ def get_default_hps(key):
145
145
  },
146
146
  "default": {
147
147
  "SeasonalNaive": {},
148
- "Croston": {},
149
148
  "AutoETS": {},
150
149
  "NPTS": {},
151
150
  "DynamicOptimizedTheta": {},
@@ -1,3 +1,3 @@
1
1
  """This is the autogluon version file."""
2
- __version__ = '1.1.2b20241121'
2
+ __version__ = '1.1.2b20241123'
3
3
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.timeseries
3
- Version: 1.1.2b20241121
3
+ Version: 1.1.2b20241123
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -1,13 +1,13 @@
1
1
  joblib<2,>=1.1
2
- numpy<1.29,>=1.21
3
- scipy<1.13,>=1.5.4
2
+ numpy<2.1.4,>=1.25.0
3
+ scipy<1.16,>=1.5.4
4
4
  pandas<2.3.0,>=2.0.0
5
5
  torch<2.6,>=2.2
6
6
  lightning<2.6,>=2.2
7
7
  pytorch_lightning
8
8
  transformers[sentencepiece]<5,>=4.38.0
9
9
  accelerate<1.0,>=0.32.0
10
- gluonts==0.16.0
10
+ gluonts<0.17,>=0.15.0
11
11
  networkx<4,>=3.0
12
12
  statsforecast<1.8,>=1.7.0
13
13
  mlforecast==0.13.4
@@ -17,9 +17,9 @@ fugue>=0.9.0
17
17
  tqdm<5,>=4.38
18
18
  orjson~=3.9
19
19
  tensorboard<3,>=2.9
20
- autogluon.core[raytune]==1.1.2b20241121
21
- autogluon.common==1.1.2b20241121
22
- autogluon.tabular[catboost,lightgbm,xgboost]==1.1.2b20241121
20
+ autogluon.core[raytune]==1.1.2b20241123
21
+ autogluon.common==1.1.2b20241123
22
+ autogluon.tabular[catboost,lightgbm,xgboost]==1.1.2b20241123
23
23
 
24
24
  [all]
25
25
  optimum[onnxruntime]<1.20,>=1.17