autogluon.timeseries 1.1.2b20240818__py3-none-any.whl → 1.1.2b20240819__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -365,7 +365,7 @@ class AbstractMLForecastModel(AbstractTimeSeriesModel):
365
365
  Seasonal naive forecast for short series, if there are any in the dataset.
366
366
  """
367
367
  ts_lengths = data.num_timesteps_per_item()
368
- short_series = ts_lengths.index[ts_lengths <= self._sum_of_differences + 1]
368
+ short_series = ts_lengths.index[ts_lengths <= self._sum_of_differences]
369
369
  if len(short_series) > 0:
370
370
  logger.warning(
371
371
  f"Warning: {len(short_series)} time series ({len(short_series) / len(ts_lengths):.1%}) are shorter "
@@ -1098,6 +1098,10 @@ class TimeSeriesPredictor(TimeSeriesPredictorDeprecatedMixin):
1098
1098
  raise ValueError("`path` cannot be None or empty in load().")
1099
1099
  path: str = setup_outputdir(path, warn_if_exist=False)
1100
1100
 
1101
+ predictor_path = Path(path) / cls.predictor_file_name
1102
+ if not predictor_path.exists():
1103
+ raise FileNotFoundError(f"No such file '{predictor_path}'")
1104
+
1101
1105
  try:
1102
1106
  version_saved = cls._load_version_file(path=path)
1103
1107
  except:
@@ -1116,7 +1120,7 @@ class TimeSeriesPredictor(TimeSeriesPredictorDeprecatedMixin):
1116
1120
 
1117
1121
  logger.info(f"Loading predictor from path {path}")
1118
1122
  learner = AbstractLearner.load(path)
1119
- predictor = load_pkl.load(path=os.path.join(learner.path, cls.predictor_file_name))
1123
+ predictor = load_pkl.load(path=str(predictor_path))
1120
1124
  predictor._learner = learner
1121
1125
  predictor.path = learner.path
1122
1126
  return predictor
@@ -1,3 +1,3 @@
1
1
  """This is the autogluon version file."""
2
- __version__ = '1.1.2b20240818'
2
+ __version__ = '1.1.2b20240819'
3
3
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.timeseries
3
- Version: 1.1.2b20240818
3
+ Version: 1.1.2b20240819
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -52,9 +52,9 @@ Requires-Dist: fugue>=0.9.0
52
52
  Requires-Dist: tqdm<5,>=4.38
53
53
  Requires-Dist: orjson~=3.9
54
54
  Requires-Dist: tensorboard<3,>=2.9
55
- Requires-Dist: autogluon.core[raytune]==1.1.2b20240818
56
- Requires-Dist: autogluon.common==1.1.2b20240818
57
- Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.1.2b20240818
55
+ Requires-Dist: autogluon.core[raytune]==1.1.2b20240819
56
+ Requires-Dist: autogluon.common==1.1.2b20240819
57
+ Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.1.2b20240819
58
58
  Provides-Extra: all
59
59
  Requires-Dist: optimum[onnxruntime]<1.19,>=1.17; extra == "all"
60
60
  Provides-Extra: chronos-onnx
@@ -1,10 +1,10 @@
1
- autogluon.timeseries-1.1.2b20240818-py3.8-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
1
+ autogluon.timeseries-1.1.2b20240819-py3.8-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
2
2
  autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
3
3
  autogluon/timeseries/evaluator.py,sha256=l642tYfTHsl8WVIq_vV6qhgAFVFr9UuZD7gLra3A_Kc,250
4
4
  autogluon/timeseries/learner.py,sha256=IYXpJSDyTzjZXjKL_SrTujt5Uke83mSJFA0sMj25_sM,13828
5
- autogluon/timeseries/predictor.py,sha256=th-UrZx2-4tJ3dnw_XUBwBW_obrfa_YC4VtY9bRfv8A,83073
5
+ autogluon/timeseries/predictor.py,sha256=IaooHyVzNTjYn6uVEVKvqecIdMTH9oEa4f3YMJbHdXM,83216
6
6
  autogluon/timeseries/splitter.py,sha256=eghGwAAN2_cxGk5aJBILgjGWtLzjxJcytMy49gg_q18,3061
7
- autogluon/timeseries/version.py,sha256=CB6QRJsxsBnkpJGuflDdQ2klk5JoIkbWUXj7Vk6J5Qk,90
7
+ autogluon/timeseries/version.py,sha256=w_Hi_Ourowp-fTYym9GwA4zcFGdzHUee9WJisThJxDs,90
8
8
  autogluon/timeseries/configs/__init__.py,sha256=BTtHIPCYeGjqgOcvqb8qPD4VNX-ICKOg6wnkew1cPOE,98
9
9
  autogluon/timeseries/configs/presets_configs.py,sha256=94-yL9teDHKs2irWjP3kpewI7FE1ChYCgEgz9XHJ6gc,1965
10
10
  autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
@@ -20,7 +20,7 @@ autogluon/timeseries/models/abstract/__init__.py,sha256=wvDsQAZIV0N3AwBeMaGItoQ8
20
20
  autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=MvLF529b3fo0icgle-qmS0oce-ftiiQ1jPBLnY-39fk,23435
21
21
  autogluon/timeseries/models/abstract/model_trial.py,sha256=ENPg_7nsdxIvaNM0o0UShZ3x8jFlRmwRc5m0fGPC0TM,3720
22
22
  autogluon/timeseries/models/autogluon_tabular/__init__.py,sha256=r9i6jWcyeLHYClkcMSKRVsfrkBUMxpDrTATNTBc_qgQ,136
23
- autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=uqvKBAKiMwTEPl-cmRIohB3XkDKvsc_XjDPtWUSu0L0,32819
23
+ autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=Px5_VuQx8f74CpQYuClijtyK-yJLkNW7fSjCZrmJZ0s,32815
24
24
  autogluon/timeseries/models/autogluon_tabular/utils.py,sha256=4-gTrBtizxeMVQlsuscugPqw9unaXWXhS1TVVssfzYY,2125
25
25
  autogluon/timeseries/models/chronos/__init__.py,sha256=wT77HzTtmQxW3sw2k0mA5Ot6PSHivX-Uvn5fjM05EU4,60
26
26
  autogluon/timeseries/models/chronos/model.py,sha256=vnKzRExX-2CAv9yD0HeeLRF4oY9HnZwrRIAEfLbAMtg,14703
@@ -52,11 +52,11 @@ autogluon/timeseries/utils/datetime/base.py,sha256=3NdsH3NDq4cVAOSoy3XpaNixyNlbj
52
52
  autogluon/timeseries/utils/datetime/lags.py,sha256=GoLtvcZ8oKb3QkoBJ9E59LSPLOP7Qjxrr2UmMSZgjyw,5909
53
53
  autogluon/timeseries/utils/datetime/seasonality.py,sha256=h_4w00iEytAz_N_EpCENQ8RCXy7KQITczrYjBgVqWkQ,764
54
54
  autogluon/timeseries/utils/datetime/time_features.py,sha256=PAXbYbQ0z_5GFbkxSNi41zLY_2-U3x0Ynm1m_WhdtGc,2572
55
- autogluon.timeseries-1.1.2b20240818.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
56
- autogluon.timeseries-1.1.2b20240818.dist-info/METADATA,sha256=quTssyYiDM8H0EnJgCnVsVUxgEa3ZF1jmi67Ixr5kbo,12460
57
- autogluon.timeseries-1.1.2b20240818.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
58
- autogluon.timeseries-1.1.2b20240818.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
59
- autogluon.timeseries-1.1.2b20240818.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
60
- autogluon.timeseries-1.1.2b20240818.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
61
- autogluon.timeseries-1.1.2b20240818.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
62
- autogluon.timeseries-1.1.2b20240818.dist-info/RECORD,,
55
+ autogluon.timeseries-1.1.2b20240819.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
56
+ autogluon.timeseries-1.1.2b20240819.dist-info/METADATA,sha256=oo7CaGnfZl47Xt40EkZFp0aV7XMBK7qrGZhWC_GlCQI,12460
57
+ autogluon.timeseries-1.1.2b20240819.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
58
+ autogluon.timeseries-1.1.2b20240819.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
59
+ autogluon.timeseries-1.1.2b20240819.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
60
+ autogluon.timeseries-1.1.2b20240819.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
61
+ autogluon.timeseries-1.1.2b20240819.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
62
+ autogluon.timeseries-1.1.2b20240819.dist-info/RECORD,,