autogluon.timeseries 1.1.1b20240603__tar.gz → 1.1.1b20240604__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of autogluon.timeseries might be problematic. Click here for more details.

Files changed (63) hide show
  1. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/PKG-INFO +1 -1
  2. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/setup.py +1 -1
  3. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon/timeseries/models/__init__.py +2 -0
  4. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon/timeseries/models/gluonts/__init__.py +2 -0
  5. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon/timeseries/models/gluonts/torch/models.py +91 -0
  6. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon/timeseries/models/presets.py +3 -0
  7. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon/timeseries/predictor.py +7 -0
  8. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon/timeseries/version.py +1 -1
  9. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon.timeseries.egg-info/PKG-INFO +1 -1
  10. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon.timeseries.egg-info/requires.txt +4 -4
  11. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/setup.cfg +0 -0
  12. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon/timeseries/__init__.py +0 -0
  13. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon/timeseries/configs/__init__.py +0 -0
  14. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon/timeseries/configs/presets_configs.py +0 -0
  15. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon/timeseries/dataset/__init__.py +0 -0
  16. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon/timeseries/dataset/ts_dataframe.py +0 -0
  17. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon/timeseries/evaluator.py +0 -0
  18. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon/timeseries/learner.py +0 -0
  19. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon/timeseries/metrics/__init__.py +0 -0
  20. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon/timeseries/metrics/abstract.py +0 -0
  21. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon/timeseries/metrics/point.py +0 -0
  22. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon/timeseries/metrics/quantile.py +0 -0
  23. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon/timeseries/metrics/utils.py +0 -0
  24. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon/timeseries/models/abstract/__init__.py +0 -0
  25. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon/timeseries/models/abstract/abstract_timeseries_model.py +0 -0
  26. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon/timeseries/models/abstract/model_trial.py +0 -0
  27. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon/timeseries/models/autogluon_tabular/__init__.py +0 -0
  28. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon/timeseries/models/autogluon_tabular/mlforecast.py +0 -0
  29. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon/timeseries/models/autogluon_tabular/utils.py +0 -0
  30. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon/timeseries/models/chronos/__init__.py +0 -0
  31. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon/timeseries/models/chronos/model.py +0 -0
  32. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon/timeseries/models/chronos/pipeline.py +0 -0
  33. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon/timeseries/models/chronos/utils.py +0 -0
  34. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon/timeseries/models/ensemble/__init__.py +0 -0
  35. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon/timeseries/models/ensemble/abstract_timeseries_ensemble.py +0 -0
  36. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon/timeseries/models/ensemble/greedy_ensemble.py +0 -0
  37. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon/timeseries/models/gluonts/abstract_gluonts.py +0 -0
  38. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon/timeseries/models/gluonts/torch/__init__.py +0 -0
  39. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon/timeseries/models/local/__init__.py +0 -0
  40. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon/timeseries/models/local/abstract_local_model.py +0 -0
  41. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon/timeseries/models/local/naive.py +0 -0
  42. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon/timeseries/models/local/npts.py +0 -0
  43. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon/timeseries/models/local/statsforecast.py +0 -0
  44. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon/timeseries/models/multi_window/__init__.py +0 -0
  45. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon/timeseries/models/multi_window/multi_window_model.py +0 -0
  46. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon/timeseries/splitter.py +0 -0
  47. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon/timeseries/trainer/__init__.py +0 -0
  48. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon/timeseries/trainer/abstract_trainer.py +0 -0
  49. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon/timeseries/trainer/auto_trainer.py +0 -0
  50. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon/timeseries/utils/__init__.py +0 -0
  51. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon/timeseries/utils/datetime/__init__.py +0 -0
  52. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon/timeseries/utils/datetime/base.py +0 -0
  53. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon/timeseries/utils/datetime/lags.py +0 -0
  54. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon/timeseries/utils/datetime/seasonality.py +0 -0
  55. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon/timeseries/utils/datetime/time_features.py +0 -0
  56. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon/timeseries/utils/features.py +0 -0
  57. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon/timeseries/utils/forecast.py +0 -0
  58. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon/timeseries/utils/warning_filters.py +0 -0
  59. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon.timeseries.egg-info/SOURCES.txt +0 -0
  60. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon.timeseries.egg-info/dependency_links.txt +0 -0
  61. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon.timeseries.egg-info/namespace_packages.txt +0 -0
  62. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon.timeseries.egg-info/top_level.txt +0 -0
  63. {autogluon.timeseries-1.1.1b20240603 → autogluon.timeseries-1.1.1b20240604}/src/autogluon.timeseries.egg-info/zip-safe +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.timeseries
3
- Version: 1.1.1b20240603
3
+ Version: 1.1.1b20240604
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -30,7 +30,7 @@ install_requires = [
30
30
  "pytorch_lightning", # version range defined in `core/_setup_utils.py`
31
31
  "transformers[sentencepiece]", # version range defined in `core/_setup_utils.py`
32
32
  "accelerate", # version range defined in `core/_setup_utils.py`
33
- "gluonts>=0.14.0,<0.14.4", # 0.14.4 caps pandas<2.2
33
+ "gluonts==0.15.1",
34
34
  "networkx", # version range defined in `core/_setup_utils.py`
35
35
  # TODO: update statsforecast to v1.5.0 - resolve antlr4-python3-runtime dependency clash with multimodal
36
36
  "statsforecast>=1.4.0,<1.5",
@@ -6,6 +6,7 @@ from .gluonts import (
6
6
  PatchTSTModel,
7
7
  SimpleFeedForwardModel,
8
8
  TemporalFusionTransformerModel,
9
+ TiDEModel,
9
10
  WaveNetModel,
10
11
  )
11
12
  from .local import (
@@ -55,6 +56,7 @@ __all__ = [
55
56
  "SimpleFeedForwardModel",
56
57
  "TemporalFusionTransformerModel",
57
58
  "ThetaModel",
59
+ "TiDEModel",
58
60
  "WaveNetModel",
59
61
  "ZeroModel",
60
62
  ]
@@ -4,6 +4,7 @@ from .torch.models import (
4
4
  PatchTSTModel,
5
5
  SimpleFeedForwardModel,
6
6
  TemporalFusionTransformerModel,
7
+ TiDEModel,
7
8
  WaveNetModel,
8
9
  )
9
10
 
@@ -13,5 +14,6 @@ __all__ = [
13
14
  "PatchTSTModel",
14
15
  "SimpleFeedForwardModel",
15
16
  "TemporalFusionTransformerModel",
17
+ "TiDEModel",
16
18
  "WaveNetModel",
17
19
  ]
@@ -424,3 +424,94 @@ class WaveNetModel(AbstractGluonTSModel):
424
424
  init_kwargs.setdefault("time_features", get_time_features_for_frequency(self.freq))
425
425
  init_kwargs.setdefault("num_parallel_samples", self.default_num_samples)
426
426
  return init_kwargs
427
+
428
+
429
+ class TiDEModel(AbstractGluonTSModel):
430
+ """Time series dense encoder model from [Das2023]_.
431
+
432
+ Based on `gluonts.torch.model.tide.TiDEEstimator <https://ts.gluon.ai/stable/api/gluonts/gluonts.torch.model.tide.html>`_.
433
+ See GluonTS documentation for additional hyperparameters.
434
+
435
+
436
+ References
437
+ ----------
438
+ .. [Das2023] Das, Abhimanyu, et al.
439
+ "Long-term Forecasting with TiDE: Time-series Dense Encoder."
440
+ Transactions of Machine Learning Research. 2023.
441
+
442
+ Other Parameters
443
+ ----------------
444
+ context_length : int, default = max(64, 2 * prediction_length)
445
+ Number of past values used for prediction.
446
+ disable_static_features : bool, default = False
447
+ If True, static features won't be used by the model even if they are present in the dataset.
448
+ If False, static features will be used by the model if they are present in the dataset.
449
+ disable_known_covariates : bool, default = False
450
+ If True, known covariates won't be used by the model even if they are present in the dataset.
451
+ If False, known covariates will be used by the model if they are present in the dataset.
452
+ disable_past_covariates : bool, default = False
453
+ If True, past covariates won't be used by the model even if they are present in the dataset.
454
+ If False, past covariates will be used by the model if they are present in the dataset.
455
+ feat_proj_hidden_dim : int, default = 4
456
+ Size of the feature projection layer.
457
+ encoder_hidden_dim : int, default = 4
458
+ Size of the dense encoder layer.
459
+ decoder_hidden_dim : int, default = 4
460
+ Size of the dense decoder layer.
461
+ temporal_hidden_dim : int, default = 4
462
+ Size of the temporal decoder layer.
463
+ distr_hidden_dim : int, default = 4
464
+ Size of the distribution projection layer.
465
+ num_layers_encoder : int, default = 1
466
+ Number of layers in dense encoder.
467
+ num_layers_decoder : int, default = 1
468
+ Number of layers in dense decoder.
469
+ decoder_output_dim : int, default = 4
470
+ Output size of the dense decoder.
471
+ dropout_rate : float, default = 0.3
472
+ Dropout regularization parameter.
473
+ num_feat_dynamic_proj : int, default = 2
474
+ Output size of feature projection layer.
475
+ embedding_dimension : int, default = [16] * num_feat_static_cat
476
+ Dimension of the embeddings for categorical features
477
+ layer_norm : bool, default = False
478
+ Should layer normalization be enabled?
479
+ scaling : {"mean", "std", None}, default = "mean"
480
+ Scaling applied to the inputs. One of ``"mean"`` (mean absolute scaling), ``"std"`` (standardization), ``None`` (no scaling).
481
+ max_epochs : int, default = 100
482
+ Number of epochs the model will be trained for
483
+ batch_size : int, default = 64
484
+ Size of batches used during training
485
+ predict_batch_size : int, default = 500
486
+ Size of batches used during prediction.
487
+ num_batches_per_epoch : int, default = 50
488
+ Number of batches processed every epoch
489
+ lr : float, default = 1e-3,
490
+ Learning rate used during training
491
+ trainer_kwargs : dict, optional
492
+ Optional keyword arguments passed to ``lightning.Trainer``.
493
+ early_stopping_patience : int or None, default = 20
494
+ Early stop training if the validation loss doesn't improve for this many epochs.
495
+ keep_lightning_logs : bool, default = False
496
+ If True, ``lightning_logs`` directory will NOT be removed after the model finished training.
497
+ """
498
+
499
+ supports_known_covariates = True
500
+ supports_static_features = True
501
+
502
+ @property
503
+ def default_context_length(self) -> int:
504
+ return min(512, max(64, 2 * self.prediction_length))
505
+
506
+ def _get_estimator_class(self) -> Type[GluonTSEstimator]:
507
+ from gluonts.torch.model.tide import TiDEEstimator
508
+
509
+ return TiDEEstimator
510
+
511
+ def _get_estimator_init_args(self) -> Dict[str, Any]:
512
+ init_kwargs = super()._get_estimator_init_args()
513
+ init_kwargs["num_feat_static_cat"] = self.num_feat_static_cat
514
+ init_kwargs["num_feat_static_real"] = self.num_feat_static_real
515
+ init_kwargs["cardinality"] = self.feat_static_cat_cardinality
516
+ init_kwargs["num_feat_dynamic_real"] = self.num_feat_dynamic_real
517
+ return init_kwargs
@@ -31,6 +31,7 @@ from . import (
31
31
  SimpleFeedForwardModel,
32
32
  TemporalFusionTransformerModel,
33
33
  ThetaModel,
34
+ TiDEModel,
34
35
  WaveNetModel,
35
36
  ZeroModel,
36
37
  )
@@ -51,6 +52,7 @@ MODEL_TYPES = dict(
51
52
  DLinear=DLinearModel,
52
53
  PatchTST=PatchTSTModel,
53
54
  TemporalFusionTransformer=TemporalFusionTransformerModel,
55
+ TiDE=TiDEModel,
54
56
  WaveNet=WaveNetModel,
55
57
  RecursiveTabular=RecursiveTabularModel,
56
58
  DirectTabular=DirectTabularModel,
@@ -93,6 +95,7 @@ DEFAULT_MODEL_PRIORITY = dict(
93
95
  # Models that can early stop are trained at the end
94
96
  TemporalFusionTransformer=45,
95
97
  DeepAR=40,
98
+ TiDE=30,
96
99
  PatchTST=30,
97
100
  # Models below are not included in any presets
98
101
  WaveNet=25,
@@ -1068,6 +1068,13 @@ class TimeSeriesPredictor(TimeSeriesPredictorDeprecatedMixin):
1068
1068
  def load(cls, path: Union[str, Path], require_version_match: bool = True) -> "TimeSeriesPredictor":
1069
1069
  """Load an existing ``TimeSeriesPredictor`` from given ``path``.
1070
1070
 
1071
+ .. warning::
1072
+
1073
+ :meth:`autogluon.timeseries.TimeSeriesPredictor.load` uses `pickle` module implicitly, which is known to
1074
+ be unsecure. It is possible to construct malicious pickle data which will execute arbitrary code during
1075
+ unpickling. Never load data that could have come from an untrusted source, or that could have been tampered
1076
+ with. **Only load data you trust.**
1077
+
1071
1078
  Parameters
1072
1079
  ----------
1073
1080
  path : str or pathlib.Path
@@ -1,3 +1,3 @@
1
1
  """This is the autogluon version file."""
2
- __version__ = '1.1.1b20240603'
2
+ __version__ = '1.1.1b20240604'
3
3
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.timeseries
3
- Version: 1.1.1b20240603
3
+ Version: 1.1.1b20240604
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -7,7 +7,7 @@ lightning<2.2,>=2.1
7
7
  pytorch_lightning<2.3,>=2.2
8
8
  transformers[sentencepiece]<4.41.0,>=4.38.0
9
9
  accelerate<0.22.0,>=0.21.0
10
- gluonts<0.14.4,>=0.14.0
10
+ gluonts==0.15.1
11
11
  networkx<4,>=3.0
12
12
  statsforecast<1.5,>=1.4.0
13
13
  mlforecast<0.10.1,>=0.10.0
@@ -15,9 +15,9 @@ utilsforecast<0.0.11,>=0.0.10
15
15
  tqdm<5,>=4.38
16
16
  orjson~=3.9
17
17
  tensorboard<3,>=2.9
18
- autogluon.core[raytune]==1.1.1b20240603
19
- autogluon.common==1.1.1b20240603
20
- autogluon.tabular[catboost,lightgbm,xgboost]==1.1.1b20240603
18
+ autogluon.core[raytune]==1.1.1b20240604
19
+ autogluon.common==1.1.1b20240604
20
+ autogluon.tabular[catboost,lightgbm,xgboost]==1.1.1b20240604
21
21
 
22
22
  [all]
23
23
  optimum[onnxruntime]<1.19,>=1.17